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Let X be a hypersurface of a Mori dream space Z . We provide
necessary and sufficient conditions for the Cox ring R(X) of X to
be isomorphic to R(Z)/( f ), where R(Z) is the Cox ring of Z and
f is a defining section for X . We apply our results to Calabi–Yau
hypersurfaces of toric Fano fourfolds. Our second application is to
general degree d hypersurfaces in P

n containing a linear subspace
of dimension n − 2.
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Introduction

Let Z be a Mori dream space, that is a normal variety without global invertible non-constant
regular functions, finitely generated class group and finitely generated Cox ring (which in case the
class group is torsion-free is given by):

R(Z) =
⊕

[D]∈Cl(Z)

Γ
(

Z ,OZ (D)
)
.

Given an inclusion i : X → Z of a closed irreducible normal subvariety X of Z such that the restriction
of classes of Weil divisors to X is well defined, there is a natural homomorphism iR :R(Z) →R(X).
In order to relate the two Cox rings it is natural to ask whether such homomorphism is surjective
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and what is its kernel. In [Hau08] J. Hausen studied the case when Z is a smooth toric variety. In par-
ticular, he proved that R(X) is isomorphic to a quotient of R(Z) via the homomorphism iR if the
inclusion i : X → Z is neat, which essentially means that the pull-back i∗ : Cl(Z) → Cl(X) is well
defined and is an isomorphism. This result and its proof can be extended to the case when Z is a fac-
torial Mori dream space. In this paper we use this generalized version of J. Hausen’s theorem to study
the case when X is a hypersurface in Z . More precisely, when X is a normal, irreducible and closed
hypersurface of a Mori dream space Z , we find necessary and sufficient conditions for the homomor-
phism iR to induce an isomorphism R(Z)/( f ) ∼= R(X), where f is a defining section for X . In case
Z is factorial, such conditions are the following ones: the pull-back i∗ : Cl(Z) → Cl(X) is an isomor-
phism and the intersection of the irrelevant locus with V ( f ) has codimension � 2 in V ( f ), where
V ( f ) ⊂ Z̄ = Spec(R(Z)). This generalizes the main result of [Jow10] to the non-smooth case. More-
over, in case X is the generic element of an ample and spanned linear series on Z , we show that the
latter condition on the codimension of the irrelevant locus is enough to guarantee the isomorphism.

The paper is organized as follows. In Section 1 we introduce good and neat embeddings. Section 2
contains our main Theorem 2.1 together with its corollary about general elements in ample linear
series of Mori dream spaces. An application of Theorem 2.1 to smooth Mori dream Calabi–Yau hyper-
surfaces of smooth toric Fano varieties is given in Section 3. Finally in Section 4 we compute the Cox
ring of a general degree d hypersurface in P

n containing a linear subspace of dimension n − 2.

1. Embeddings in Mori dream spaces

In what follows Z will be a normal variety over an algebraically closed field K of characteristic
zero with finitely generated class group Cl(Z) and without global invertible non-constant regular
functions, that is Γ (X,O∗) = K

∗ .
We briefly recall the definition of the Cox ring of Z as given in [ADHL, Chapter I, §4]. Let K be a

subgroup of WDiv(Z) such that the natural homorphism c : K → Cl(Z), mapping D to its class [D],
is surjective. Let K 0 = ker(c) and fix a character χ : K 0 → K(Z)∗ with div(χ(D)) = D for all D ∈ K 0.
Consider the following sheaves graded by K and Cl(Z) respectively:

S :=
⊕
D∈K

OZ (D), R = S/I,

where I is the ideal sheaf locally generated by elements of the form 1 − χ(D), with D ∈ K 0. The
isomorphism class of R(Z) as a Cl(Z)-graded ring does not depend on the choices of K and χ ,
so that it is called the Cox ring of Z . The variety Z is called a Mori dream space if R(Z) is finitely
generated.

For any effective class w ∈ Cl(Z) we define the Z-graded algebra R(Z , w) := ⊕
n∈ZR(Z)nw and

let R(Z , w)>0 be the subalgebra consisting of all the positively graded elements. We recall that the
irrelevant ideal Jirr(Z) of R(Z) is defined to be the radical of the ideal generated by the subalgebra
R(Z , w)>0, for any choice of an ample class w (see [ADHL, Chapter I, §6]). Let

Z̄ := SpecR(Z), Ẑ = Z̄ − V
(
Jirr(Z)

)
.

The open subset Ẑ is known to be big in Z̄ , that is its complementary has codimension at least 2.
Moreover there exists a good quotient p Z : Ẑ → Z with respect to the action of the quasi-torus H :=
Spec(K[Cl(Z)]) induced by the Cl(Z)-grading of the Cox ring (see [ADHL, Chapter I, §6]).

In what follows we will denote by Z F the locus of factorial points of Z , that is points z ∈ Z such
that the local ring OZ ,z is a unique factorization domain. Observe that since Z is normal, then Z F

is big in Z . Let X be a closed irreducible subvariety of Z and let i : X → Z be the inclusion map.
We define X̂ := p−1

Z (X) and let X̄ be the closure of X̂ in Z̄ . We have the following commutative
diagram:
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X̄ Z̄

X̂

p X

Ẑ

p Z

Ẑ F

p Z F

X
i

Z Z F

where p X and p Z F are restrictions of p Z , while all the remaining maps are inclusions. In order
to define a pull-back map on classes of Weil divisors of Z we will need the following assump-
tion.

Definition 1.1. The embedding i : X → Z is good if i−1(Z F ) is big in X .

Assume that i is good and let D = ∑
i ai Di be a Weil divisor of Z , where Di are prime divisors

and ai are positive integers, not containing X in its support. Let D ∩ Z F be the restriction of D to
Z F defined as

∑
i ai(Di ∩ Z F ). Observe that D ∩ Z F is a Cartier divisor since Z F is factorial. Thus we

define the pull-back of D via i∗ to be:

i∗(D) := i∗(D ∩ Z F ),

where i∗(D ∩ Z F ) denotes the usual pull-back of Cartier divisors and the overline denotes the closure
of the corresponding Cartier divisor in X . There is a unique divisor in X extending i∗(D ∩ Z F ) due to
the assumption that i−1(Z F ) is big in X .

The pull-back i∗ defined between Weil divisors induces a pull-back map between the class groups
of Z and X (that will be denoted with the same symbol). Such map can be obtained as follows.
Observe that Cl(Z) ∼= Cl(Z F ) ∼= Pic(Z F ), where the first isomorphism is due to the fact that Z F is big
in Z and the second to the fact that Z F is factorial. The same holds by substituting Z with X and
Z F with i−1(Z F ) ∩ X F , where X F is the factorial locus of X . This allows to define a pull-back map
i∗ : Cl(Z) → Cl(X) by means of the following commutative diagram:

Cl(Z)

∼=

i∗
Cl(X)

Pic(Z F ) Pic(i−1(Z F ) ∩ X F ),

∼=

where the lower horizontal arrow is induced by the pull-back of Cartier divisors, which clearly re-
spects linear equivalence (observe that any divisor is linearly equivalent to a divisor not containing
X in its support). In what follows, we define D X := i∗(D) for any divisor D not containing X in its
support.

Consider now the class w of a divisor D ∈ K . Given a non-zero element f ∈ R(Z)w there ex-
ists a unique f̃ ∈ S(Z)D which is projected to f via the quotient map S(Z) → R(Z) (see [ADHL,
Chapter I, §3]).

Definition 1.2. With the same notation as above, we say that an effective Weil divisor E is defined by
f ∈R(Z)w if E = div( f̃ )+ D . Moreover, we will denote by Ē the Cartier divisor of Z̄ which is defined
as the zero locus of the same f thought as a regular function on Z̄ .

The following definition is just a reformulation of [Hau08, Definition 2.5].
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Definition 1.3. Let Z be a Mori dream space and X ⊂ Z be a normal, irreducible closed subvariety.
The inclusion i : X → Z is a neat embedding if

(i) i is good;
(ii) the pull-back i∗ : Cl(Z) → Cl(X) is an isomorphism.

Remark 1.4. In the definition of neat embedding given in [Hau08, Definition 2.5] Z is a toric variety
and point i is replaced by the requirement that Dk

X := Dk ∩ X are distinct and irreducible divisors
in X , where the Dk are divisors defined by a minimal set of generators { f1, . . . , fk} of the Cox ring
of Z . It is not hard to show that this condition implies that i is good.

The proof of the following theorem is essentially the same as that of [Hau08, Theorem 2.6] in
case the ambient variety Z is a Mori dream space. Since i is good, we can assume that Z = Z F and
X = i−1(Z F ). In particular all divisors on Z are assumed to be Cartier. Let K be a subgroup of WDiv(Z)

generated by divisors which do not contain X in their support and whose classes generate Cl(Z).
Observe that i∗K is a well-defined subgroup of WDiv(X). Moreover, the natural homomorphism
i∗K → Cl(X) is surjective. The Cox sheaves of Z and X can be thus defined by means of the sub-
groups K and i∗K . With this choice, there is an isomorphism

i∗OZ (D) ∼= OX
(
i∗D

)
,

since all divisors are locally principal on Z . The rest of the proof follows as in [Hau08, Theorem 2.6].

Theorem 1.5. Let Z be a Mori dream space and X ⊂ Z be a normal, irreducible closed subvariety with
Γ (X,O∗) = K

∗ . If X ⊂ Z is a neat embedding and Z is factorial, then there is an isomorphism of K -graded
OX -algebras:

RX ∼= (p X )∗O X̂ ,

where RX is any Cox sheaf on X. Moreover, X̂ is normal and p X : X̂ → X is a characteristic space for X.

2. Hypersurfaces in Mori dream spaces

We will now specialize the results of the previous section to the case when X is a normal, irre-
ducible closed hypersurface in Z . In what follows we will assume the inclusion i : X → Z to be good,
so that the pull-back of Weil divisors is well defined. Observe that the inclusion i induces a pull-back
homomorphism

iR : R(Z) → R(X).

We recall that Z F is the factorial locus of Z and Ẑ F = p−1
Z (Z F ). We will denote by U X := Z F ∩ X and

by Û X := p−1
X (U X ).

Theorem 2.1. Let Z be a Mori dream space and let X be a normal, irreducible closed hypersurface of Z defined
by f ∈R(Z)w such that the inclusion i : X → Z is good. Then iR induces an isomorphism R(Z)/( f ) ∼=R(X)

if and only if the following conditions hold:

(i) X̂ is big in X̄ ,
(ii) Û X is big in X̂ ,

(iii) i∗ : Cl(Z) → Cl(X) is an isomorphism.
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Proof. Assume first that the three conditions (i), (ii) and (iii) hold. Consider the following commuta-
tive diagram:

Û X

p X

Ẑ F

p Z

U X
i

Z F .

Since Z F is factorial, we can apply Theorem 1.5 to the inclusion map i. Observe that i is neat by (iii),
Z F is big in Z and U X is big in X since i is good. Thus we obtain a sheaf isomorphism RU X

∼=
(p X )∗OÛ X

. Since Û X ⊂ X̂ and X̂ ⊂ X̄ are big inclusions by (i) and (ii), then:

R(X) = Γ (X,R) = Γ (U X ,R) = Γ (Û X ,O) = Γ ( X̂,O) = Γ ( X̄,O),

where the first equality is by definition, the second fourth and fifth are due to the fact that the corre-
sponding inclusions of subsets are big, and finally the third equality is due to the sheaf isomorphism
given above. The last ring is isomorphic to R(Z)/( f ) and the isomorphism is induced by iR .

Conversely, if iR induces an isomorphism R(Z)/( f ) ∼= R(X), then R(X) is graded by i∗ Cl(Z),
which is thus isomorphic to Cl(X). Moreover p X : X̂ → X is a characteristic space, so that X̂ is big
in X̄ and p X does not contract divisors by [ADHL, Chapter I, §6]. The latter property and the fact that
U X is big in X imply that Û X is big in X̂ . �
Remark 2.2. Let { f1, . . . , fk} be a minimal set of generators of R(Z) and D̄ j ’s be the zero sets of
the f j ’s in Z̄ . Conditions (i) and (ii) in Theorem 2.1 can be given in terms of D̄ j ∩ X̄ : if these are
Cl(X)-prime and distinct divisors, then conditions (i) and (ii) in hold. We recall that a Weil divisor on
X̄ is called Cl(X)-prime if it is a finite sum of distinct prime divisors which are transitively permuted
by the action of the quasi-torus H X (see [ADHL, Chapter I, §4]). In fact, it can be proved that the
complement V ⊂ Z̄ of all the intersections D̄i ∩ D̄ j , with i and j distinct, is contained in Ẑ F and that
V ∩ X̂ is big in X̄ because of the hypotheses on the divisors i∗(D̄ j)’s. This implies that V ∩ X̂ is big
in X̂ and that X̂ is big in X̄ , giving (ii) and (i) respectively.

Consider now an ample and spanned class w ∈ Cl(Z) and let X be the effective divisor defined by
a general f ∈ R(X)w . Given such a w , we will denote by ϕw : Z → P

n the morphism defined by the
complete linear series |w|.

Corollary 2.3. Let Z be a projective Mori dream space of dimension � 3 and let X be a closed hypersurface of
Z defined by a general f ∈ R(Z)w , where w is an ample and spanned class of Cl(Z). If dim(Z) = 3 we also
assume that f is very general and that (ϕw)∗K Z (1) is spanned. Then the following are equivalent:

(i) X̂ is big in X̄ .
(ii) iR induces an isomorphism R(Z)/( f ) ∼=R(X).

Proof. We have already seen that (ii) implies (i). So we now show that (i) implies (ii). Since w is
ample and spanned, and f is general in its Riemann Roch space, then X is irreducible and normal by
Bertini’s first theorem and [BS95, Theorem 1.7.1]. The genericity assumption on f and the fact that w
is spanned imply that i is good. Finally, the restriction map i∗ : Cl(Z) → Cl(X) is an isomorphism by
the generalized Lefschetz hyperplane theorems [RS06, Theorem 1] and [RS09, Theorem 1].

We now show that condition (ii) of Theorem 2.1 holds. Recall that the factorial locus Z F is big
in Z . Since p Z does not contract divisors, then Ẑ F is big in Ẑ . Consider an irreducible, not necessarily
closed, subvariety B of Z − Z F , which intersects X , and such that all the fibers of p Z over B have
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the same dimension d. Then dim(p−1
Z (B)) = dim(B) + d � dim( Ẑ) − 2. Since X is general and w is

spanned, the intersection B ∩ X has codimension one in B . Thus

dim
(

p−1
X (B ∩ X)

) = dim(B ∩ X) + d � dim( X̂) − 2.

Whence Û X = p−1
X (Z F ∩ X) is big in X̂ and the result follows from Theorem 2.1. �

Remark 2.4. In [Jow10, Theorem 6] Shin-Yao Jow proved that if Z is a smooth complex projective
Mori dream space of dimension � 4 such that

V
(
Jirr(Z)

) = Z̄ − Ẑ has codimension � 3 in Z̄ , (2.1)

then every smooth ample divisor X ⊂ Z is a Mori dream space such that, via the restriction map
Pic(Z)R ∼= Pic(X)R , the nef cones of Z and that of X coincide and each Mori chamber of X is a union
of Mori chambers of Z .

We observe that, under these hypotheses, condition (i) of Theorem 2.1 clearly holds, and condi-
tion (iii) is given by the classical Lefschetz hyperplane theorem. Thus Theorem 2.1 states that iR
induces an isomorphism R(Z)/( f ) ∼= R(X) if and only if X̂ is big in X̄ . The latter condition is equiv-
alent to (2.1). In fact, since the class of X in Cl(Z) is ample, then the irrelevant locus V (Jirr(Z)) is
contained in X̄ and equals X̄ − X̂ , so that it has codimension � 3 in Z̄ if and only if it has codimension
� 2 in X̄ .

Remark 2.5. The condition X ample in Z is not necessary to have R(X) ∼= R(Z)/( f ). For example
consider the smooth toric fourfold Z whose Cox ring R(Z) ∼= C[x1, . . . , x6] has grading matrix and
irrelevant ideal:

[
1 1 −1 1 −1 0
0 0 1 1 1 1

]
, Jirr(Z) = (x1, x2) ∩ (x3, x4, x5, x6).

If we put wi := deg(xi), then the movable and the nef cone of Z are Mov(Z) = 〈w1, w3〉 and Nef(Z) =
〈w1, w4〉, see [ADHL, Propositions 3.2.3 and 3.2.6]. Let

f := x1x2x2
5 + x3x4 + x2

6

be in Γ (Z ,OZ (D)) and let X := ( f ) + D be the prime divisor of Z defined by f . By the Samuel
criterion [Sam64] the quotient ring R :=R(Z)/( f ) is factorial, by choosing the Z-grading (1,2,2,3,1)

on the first five variables. If we denote by

X̄ := V ( f ), X̂ := X̄ − V
(
Jirr(Z)

)
,

then the restriction p X : X̂ → X of the characteristic map p Z : Ẑ → Z is a geometric quotient with re-
spect to the action of H := (C∗)2. Looking at f and Jirr(Z) we see that X̂ is big in X̄ . This implies that
X̂ does not admit invertible global regular functions. Moreover H acts freely on Ẑ , and consequently
on X̂ , since Z is smooth, so that the action of H is strongly stable in the sense of [ADHL, Defini-
tion 6.4.1]. Hence the quotient map p : X̂ → X is a characteristic space by [ADHL, Theorem 6.4.3], so
that R is isomorphic to the Cox ring of X . We conclude by observing that the class w3 of X in Cl(Z)

is not nef.
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3. Calabi–Yau threefolds in smooth toric Fano varieties

We apply results of the previous section to the case X ⊂ Z , where Z is a smooth toric Fano variety
and X is a smooth hyperplane section of Z in the anticanonical embedding. Thus X is a Calabi–Yau
threefold. We will often make use of the Magma database of smooth toric Fano varieties. To check
any Magma calculation contained in this paper follow these steps:

• open this page: http://www2.udec.cl/~alaface/software/T-Fano.txt and copy its content into the
online Magma calculator located here: http://magma.maths.usyd.edu.au/calc;

• paste in the same window, below the previous text, the function occurring in the calculation.

The result will be the output of the corresponding Magma calculation done in the paper. All the
software sessions in this section are in Magma code [BCP97].

Theorem 3.1. Let X be a smooth Calabi–Yau threefold which is hyperplane section of a smooth toric Fano
variety Z . Then R(X) ∼=R(Z)/( f ) if and only if Z is one of the following:

Z Grading matrix Irrelevant ideal

PP2 (O ⊕O ⊕O(2))

[
0 0 1 1 0 1

1 1 2 0 1 2

]
(x1, x2, x5) ∩ (x3, x4, x6)

PP2 (O ⊕O(1) ⊕O(1))

[
0 0 1 1 0 1

1 1 0 0 1 1

]
(x1, x2, x5) ∩ (x3, x4, x6)

PP2 (O ⊕O ⊕O(1))

[
0 0 1 1 0 1

1 1 1 0 1 1

]
(x1, x2, x5) ∩ (x3, x4, x6)

P
2 × P

2
[

0 0 1 1 0 1

1 1 0 0 1 0

]
(x1, x2, x5) ∩ (x3, x4, x6)

P
4 [ 1 1 1 1 1 ] (x1, . . . , x5)

Proof. First we show that, by looking into the Magma database of smooth toric Fano varieties, there
are exactly five such varieties whose Cox ring admits an irrelevant ideal of codimension at least 3.

> [n : n in [24..147] |
Length(FanoX(n))-Dimension(IrrelevantIdeal(FanoX(n))) ge 3];

[ 44, 70, 141, 146, 147 ]

Each of these varieties, let us say Z , satisfies the hypothesis of Theorem 2.1 by Remark 2.4, since
−K Z is very ample and in particular it is ample and spanned. Hence any smooth element X of the
linear series |− K Z | has Cox ring isomorphic to R(Z)/( f ), where f ∈ H0(Z ,−K Z ) is a defining section
for X in Z .

To obtain the grading matrix for the Cox ring of Z and the irrelevant ideal we again ask Magma
to do it. For example the variety n. 44 is:

> FanoX(44);
Toric variety of dimension 4
Variables: $.1, $.2, $.3, $.4, $.5, $.6
The components of the irrelevant ideal are:

($.6, $.4, $.3), ($.5, $.2, $.1)
The 2 gradings are:

0, 0, 1, 1, 0, 1,
1, 1, 2, 0, 1, 2

http://www2.udec.cl/~alaface/software/T-Fano.txt
http://magma.maths.usyd.edu.au/calc
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This gives the second and third column of the central table of our theorem. To provide the projec-
tive models for the five varieties we calculate the value of −K 4

Z , which is just the degree of Z in the
anticanonical embedding:

> Degree(-CanonicalDivisor(FanoX(44)));
594

and determine all the linear relations within the vertices of the polytope defined by −K Z :

> Kernel(Matrix(Vertices(FanoP(44))));
RSpace of degree 6, dimension 2 over Integer Ring
Echelonized basis:
( 1 1 0 -2 1 0)
( 0 0 1 1 0 1)

Looking for varieties with these invariants in [Bat99, Proposition 3.1.1 and p. 1046] we obtain the left
hand side column of our table. �
Remark 3.2. Observe that PP2 (O ⊕O ⊕O(2)) is isomorphic to the blow-up, along the vertex, of the
quadratic cone of dimension four with vertex a line, while PP2 (O ⊕ O ⊕ O(1)) is isomorphic to the
blow-up of P4 along a line.

Theorem 3.3. Let Z be one of the five varieties of Theorem 3.1 and let P Z be the polytope defined by −K Z . Let
Z∗ be the toric variety constructed from the polar polytope P∗

Z . Then the general element of | − K Z∗ | is a Mori
dream Calabi–Yau variety whose Cox ring admits just one relation: R(X∗) ∼=R(Z∗)/( f ∗).

Proof. By [Ba2] Z∗ is a toric Fano variety, so that −K Z∗ is ample. To prove the theorem it is enough
to show, by Corollary 2.3, that the irrelevant ideal of the Cox ring R(Z∗) has codimension at least 3.
The following Magma command calculates the codimension of the irrelevant ideal for any such Z∗:

> [Length(FanoDualX(n))-Dimension(IrrelevantIdeal(FanoDualX(n))):
n in [44,70,141,146,147]];
[ 3, 3, 3, 3, 5 ] �
4. Hypersurfaces of PPPn containing a codimension two linear space

Denote by Xd a general degree d smooth hypersurface of P
n containing a linear subspace L of

codimension 2. Here we assume Xd to be at least three dimensional. An elementary calculation shows
that Xd is singular at a finite set of points lying on L. However, after blowing up L in P

n , the resulting
strict transform X of Xd is smooth. Denote by π : Z → P

n the blow-up map at L. The Cox ring of Z
is a polynomial ring in n + 2 variables with grading matrix

[
1 1 1 . . . 1 0

−1 −1 0 . . . 0 1

]
.

The last variable, xn+2, corresponds to the exceptional divisor of the blow-up. Denote by Z̄ :=
Spec(R(Z)) and by Ẑ ⊆ Z̄ the characteristic space of Z together with the characteristic map
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p : Ẑ → Z . Observe that the irrelevant ideal of Z is

Jirr(Z) = (x1, x2) ∩ (x3, . . . , xn+2).

Let X̂ := p−1(X) and X̄ be its Zariski closure in Z̄ . The equation of X̄ in Z̄ is

x1 f + x2 g = 0,

where f and g are general polynomials of degree (d − 1)e1. Observe that the quotient ring
R(Z)/(x1 f + x2 g) is non-factorial, since x̄1 is irreducible in the quotient ring but it does not di-
vide ḡ due to the generality assumption on Xd . We introduce a new variable x0 in order to obtain
factoriality. Consider the Z

2-graded ring

R := C[x0, . . . , xn+2]/(x0x2 − f , x0x1 + g),

where the gradings of xi , with i = 1, . . . ,n + 2, are given before and deg(x0) = (d − 2)e1 + e2

=
[

d−2
1

]
.

Theorem 4.1. The Cox ring R(X) is isomorphic to R.

Proof. Let Z1 be the toric variety whose Cox ring R(Z) is isomorphic to the Z
2-graded polynomial

ring C[x0, . . . , xn+2] such that w := e1 is an ample class. The Cox ring of Z1 is a polynomial ring in
n + 3 variables with grading matrix

[
d − 2 1 1 1 . . . 1 0

1 −1 −1 0 . . . 0 1

]
. (4.1)

The first variable is the x0 just introduced, while the remaining variables have the same grading of
those of R(Z). The irrelevant ideal of R(Z1) is

Jirr(Z1) = (x0, x3, . . . , xn+2)

∩ (x1, . . . , xn+1),

so that the corresponding irrelevant locus has codimension n + 1 in Z̄1. Observe that a very general
element of the linear series |(d − 1)e1| in Z1 can be written in the form α(x0x2 − f ) + β(x0x1 + g),
with f and g very general. Let Y1 ∈ |(d − 1)e1| be such a very general element. We observe
that Y1 is normal, by [BS95, Theorem 1.7.1]. Moreover the inclusion map i : Y1 → Z1 induces
an isomorphism i∗ : Cl(Z1) → Cl(Y1), by [RS06, Theorem 1]. Let Y2 ⊆ Y1 be a very general ele-
ment of the linear series |(d − 1)e1| cut out in Z1 by the equations x0x2 − f = 0, x0x1 + g = 0.
As before we see that Y2 is normal and the inclusion map j : Y2 → Z2 induces an isomorphism
j∗ : Cl(Y1) → Cl(Y2). Let Ŷ i := p−1(Yi) and let Ȳ i be the Zariski closure of Ŷ i in Z̄ i . Observe that
the intersection {xk = 0} ∩ Ȳ i is irreducible for any i and k. Moreover, as k varies, the intersections
are distinct. Thus, since deg(x0x2 − f ) = deg(x0x1 + g) = (d − 1)e1 is ample and spanned in both
Z1 and Y1, then Ŷ i is a characteristic space for Yi , by Corollary 2.3. Consider now the commutative
diagram:
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Ȳ2

ϕ̄

Ȳ1 Z̄1

π

X̄ Z̄

Ŷ2

ϕ̂

Ŷ1 Ẑ1

p1X̂

p X

Ẑ

p

Y2
j

ϕ

Y1
i

Z1

X Z ,

where all the horizontal arrows are inclusion maps, π is the projection on the last n + 2 coor-
dinates and ϕ̄ is the restriction of π since (x0x2 − f , x0x1 + g) ∩ C[x1, . . . , xn+2] = (x1 f + x2 g).
If x ∈ Ŷ2 − {x1 = x2 = 0}, then x0 is uniquely determined by the equations of Y2, so that ϕ̂ is
one to one on this big open subset of Ŷ2. Observe that {x1 = x2 = 0} is not contained in X̂ since
it is contained in the irrelevant locus of Z̄ . Thus ϕ is an isomorphism in codimension 1 so that
R(X) ∼=R(Y2) ∼=O(Ȳ2) = R . �
Remark 4.2. Unfortunately Corollary 2.3 cannot be applied to compute R(X) in the case n = 3. In fact,
to show that the generalized Lefschetz Theorem still holds for Y2 ⊂ Y1 one needs the extra condition
that ϕ∗(KY1 )(1) is globally generated [RS09, Theorem 1], where ϕ is the morphism on Y1 associated
to the complete linear series |Y2|. According to the grading matrix (4.1) the class D of Y1 has degree
(d − 1)e1 and the zero locus of all monomials in the Riemann–Roch space of D coincides with the
irrelevant locus of Ȳ2. Thus D is very ample, so that the previous condition is equivalent to the
base-point freeness of the divisor KY2 + D . However, since KY2 + D = KY1 + 2D has degree (d − 4)e1
then the common zero locus of its monomials is the union of the two components V (x1, x2, x3, x4)

and V (x3, x4, x5). The first component is contained into the irrelevant locus, while the second one
intersects Ȳ2 = V (x0x2 − f ) along a two dimensional orbit which, under the action of the torus,
becomes a point p of Y2. Hence the base locus of KY1 + 2D consist exactly of p, so that the required
condition fails. In the following subsection we will prove the analogous of Theorem 4.1 in the three
dimensional case using a different technique.

4.1. Calculating the Cox ring when n = 3

We now proceed to calculate a presentation for the Cox ring in the three dimensional case.

Lemma 4.3. Let a, b be positive integers such that a + (2 − d)b > 0 and a + b > d − 4. Then D = aH + bL is
non-special, that is h1(D) = 0.

Proof. By the adjunction formula the canonical divisor K X is linearly equivalent to (d − 4)H . Write
D − K X = N + εL, where N := (a − d + 4)H + (b − ε)L and ε := (d − 4)/(d − 2). Intersecting with the
generators of the extremal rays of the effective cone gives
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N · L = (a − d + 4) + (b − ε)(2 − d) > 0, N · (H − L) = a + b − (d − 4) − ε > 0,

where the second inequality follows since 0 < ε < 1. Thus N lies in the interior of the nef cone, so
that it is ample. Thus we conclude by the Kawamata–Viehweg vanishing theorem. �
Theorem 4.4. The Cox ring of X is the following Z

2-graded ring

R(X) Grading matrix

C[x0,x1,x2,x3,x4,x5]
(x0 x1− f ,x0 x2−g)

[
d − 2 1 1 1 1 0

1 −1 −1 0 0 1

]

where f and g are very general polynomials in x1x5, x2x5, x3, x4 .

Proof. The grading matrix in the statement of the theorem is given with respect to the classes of H
and L. We now choose s0, . . . , s5 non-zero sections of the Cox ring such that the degree of si is the
i + 1-th column of the grading matrix. Let s0 ∈ H0((d − 2)H + L) be a section which does not vanish
on L. There is such a section by Lemma 4.3 and Kawamata–Viehweg. Let s1, s2 be a basis of H0(H − L)

and let s3, s4 be such that H0(H) = 〈s1s5, s2s5, s3, s4〉, where s5 is a section defining L.
To prove that the si actually generate the Cox ring it is enough to show it for nef divisors, since if

D is not nef, then D ∼ N + aL for some positive integer a and some nef divisor N . Thus H0(D) = sa
5 ·

H0(N). Consider now a nef divisor D = aH +bL. The exact sequence 0 →OX (D −2F ) →OX (D − F )⊕
OX (D − F ) →OX (D) → 0, where F ∼ H − L, induces the following exact sequence in cohomology:

H0(D − F ) ⊕ H0(D − F )
f

H0(D) H1(D − 2F ),

where f (u, v) = us1 + vs2. Observe that since D is nef then the following hold:

a + b � 0, k := D · L = a + (2 − d)b � 0.

We consider five cases.

(i) If b = 0, then D = aH . Since h1(OP3 (n)) = 0 for all n ∈ Z by [Har77, Theorem 5.1], then the
restriction map H0(OP3 (a)) → H0(aH) is surjective for all a � 0. This implies that the elements
of H0(aH) are polynomials in s1, . . . , s5, for any non-negative a.

(ii) If a + b = 0, then D is a multiple of F . Hence the complete linear series |D| is composed with
the pencil |F | or equivalently any element of H0(D) is a polynomial in s1, s2.

(iii) If k � 2d − 3 and a + b > d − 4, then h1(D − 2F ) = 0, by Lemma 4.3. In this case, the map f is
surjective, so that the elements of H0(D) are polynomials in s1, s2 and sections in H0(D − F ).

(iv) If k � 2d − 4 and b � 1, consider the commutative diagram:

H0(kH)

·sb
0

r′

0 H0(D − L)
·s5

H0(D)
r

H0(OP1(k)) H1(D − L),

where the bottom row is exact, the vertical map is multiplication by sb
0, since D = kH +

b((d − 2)H + L), and r′ is the restriction map to L. Since a � (d − 2)b and a +b � (d − 1)b � d − 1,
then h1(D − L) = 0 by Lemma 4.3, so that r is surjective. Moreover r′ is surjective for any k � 0
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since the restrictions of s3, s4 to L span H0(OP1 (1)). Thus any element s ∈ H0(D) is a sum
s = u s5 + v sb

0, with u ∈ H0(D − L) and v ∈ H0(kH).
(v) If a + b � d − 4, then b � 0 since a � (d − 2)b. Let C ∈ |H − L| be the curve defined by s1. Observe

that C is a plane curve of degree d := a + b. Thus we have a commutative diagram:

H0(OP3(d))
r1

γ

H0(OP2(d))

r2

0 H0(D − F )
·s1

H0(D)
r

H0(D |C ),

where r1, r2, r are restriction maps, γ is the restriction to X composed with the multiplication
by s−b

2 and the bottom row is exact. Since h1(OP2 (h)) = 0 for any h ∈ Z by [Har77, Theorem 5.1],
then r2 is surjective. Since both r1 and r2 are surjective, then r is surjective as well. Thus, any
section of s ∈ H0(D) is a sum s = u s1 + v s−b

2 , where u ∈ H0(D − F ) and v ∈ H0(dH).

The previous arguments show that the Cox ring R(X) is generated by s0, . . . , s5. Let I X be the
kernel of the ring homomorphism

C[x0, . . . , x5] → R(X), xi → si .

Since the vector space H0((d − 1)H) is generated by degree d − 1 polynomials in s1s5, s2s5, s3, s4
and s0s1, s0s2 belong to this space, then I X contains two polynomials of type x0x1 − f , x0x2 − g as in
the statement. The quotient ring R = C[x0, . . . , x5]/(x0x1 − f , x0x2 − g) is an integral domain, by the
generality assumption on f and g . The surjectivity of R →R(X) implies that the corresponding mor-
phism Spec(R(X)) → Spec(R) is injective. Since both Spec(R(X)) and Spec(R) are four dimensional
integral affine varieties, then we deduce R =R(X). �
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