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Abstract

We show that Thompson’s groupF does not satisfy Cannon’s almost convexity conditionAC(n)

for any positive integern with respect to the standard generating set with two elements
accomplish this, we construct a family of pairs of elements at distancen from the identity and
distance 2 from each other, which are not connected by a path lying inside then-ball of length
less thank for increasingly largek. Our techniques rely upon Fordham’s method for calculating
length of a word inF and upon an analysis of the generators’ geometric actions on the tre
diagrams representing elements ofF .
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Cannon [7] introduced the notion of almost convexity for a groupG with respect to
a finite generating setX. This finite generating setX determines a word metricdX for
G and its Cayley graph.G is almost convex(k) or AC(k) with respect toX if there is a
numberN(k) so that for all positive integersn, given two elementsy andz in the ball
B(n) of radiusn with dX(y, z) � k, there is a pathγ from y to z of length at mostN(k)

which lies entirely inB(n). Cannon showed that if a groupG is AC(2) with respect to a
finite generating set thenG is AC(k) for k � 2 and thus a group satisfyingAC(2) is called
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almost convexwith respect to that generating set. If a group is almost convex with re
to any finite generating set, we say the group isalmost convex. Almost convexity allows
algorithmic construction ofB(n + 1) from B(n) by making it sufficient to consider onl
a finite set of possible ways that an element inB(n + 1) can be obtained from differen
elements ofB(n).

A number of families of groups have been shown to be almost convex. Canno
showed that hyperbolic groups are almost convex and that amalgamated products o
convex groups are almost convex. Stein and Shapiro [13] showed that fundamental
of closed three manifolds whose geometry is not modeled onSolare almost convex. Othe
families of groups have been shown not to be almost convex. Cannon, Floyd, Gr
and Thurston [5] showed that fundamental groups of manifolds withSolgeometry are no
almost convex, and Miller and Shapiro [12] showed that the solvable Baumslag–S
groupsBS(1, n) are not almost convex. Unfortunately, the property of almost conve
can depend upon generating set. Thiel [14] showed that generalized Heisenberg gro
not almost convex with respect to the generating sets in their standard presentatio
are almost convex with respect to some finite generating sets from alternate presen

Although Thompson’s groupF has been studied extensively in many branche
mathematics, the metric properties ofF were poorly understood until recently. Buril
[4] and Burillo, Cleary and Stein [3] developed estimates for measuring distance inF , and
Fordham [8] developed a remarkable method for computing distance inF .

We prove below thatF does not satisfy Cannon’sAC(2) property in its standard finit
generating set, and thus is not almost convex with respect to that generating set.

Thompson’s groupF has a number of different manifestations. Originally discovere
Thompson [15], in logicF is understood as the group of automorphisms of a free alg
F also has connections with homotopy theory developed by Freyd and Heller [
groups of homeomorphisms of the interval studied by Brin and Squier [1] and Brow
Geoghegan [2] and diagram groups defined by Guba and Sapir [11]. Cannon, Flo
Parry [6] give an introduction to and summarize many of the remarkable propertiesF .

Thompson’s groupF has the infinite presentationP given by

P = 〈
xk, k � 0

∣∣ x−1
i xjxi = xj+1 if i < j

〉
.

We can see that the lower index generators conjugate the higher-index genera
incrementing their indices. Sincex0 conjugatesx1 to x2 and successively to all highe
index generators, it is clear thatF is finitely generated. In fact, all of the infinitely man
relators inP are consequences of a basic set of two relators. Thus, there is the foll
standard finite presentationF for F :

F = 〈
x0, x1

∣∣ [
x0x

−1
1 , x−1

0 x1x0
]
,

[
x0x

−1
1 , x−2

0 x1x
2
0

]〉
.

We prove the following theorem:

Theorem 1.1. Thompson’s groupF does not satisfy Cannon’s almost convexity condi
AC(2) with respect to the generators in the standard finite presentationF for F .
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We immediately obtain the corollary:

Corollary 1.2. Thompson’s groupF does not satisfy Cannon’s almost convexity condi
AC(n) for any positive integern > 2 with respect to the generators in the standard fin
presentation forF .

In all of the following, we will consider the convexity properties ofF only with respect
to the standard generating set of two generatorsx0 andx1.

2. Background on F

Analytically, we defineF as the group of orientation-preserving piecewise-lin
homeomorphisms from[0,1] to itself where each homeomorphism has only finitely m
singularities of slope, all such singularities lie in the dyadic rationalsZ[1

2], and, away from
the singularities, the slopes are powers of 2.

Combinatorially,F has the infinite and finite presentations given above. There
convenient set of normal forms for elements ofF in the infinite presentationP given
by x

r1
i1
x
r2
i2

· · ·xrk
ik
x

−sl
jl

· · ·x−s2
j2

x
−s1
j1

with ri , si > 0, i1 < i2 < · · · < ik andj1 < j2 < · · · < jl .
This normal form is unique if we further require that when bothxi andx−1

i occur, so does
xi+1 or x−1

i+1, as discussed by Brown and Geoghegan [2]. In what follows, when we
to a word in normal form, we always mean the unique normal form.

The geometric description ofF is in terms of tree pair diagrams. A tree pair diagr
is a pair of rooted binary trees with the same number of leaves, as described in [
number the leaves of each tree from left to right, beginning with 0. We refer to an in
node together with the two downward-directed edges from the node as acaret. We define
the right (respectively left) child of a caretC to be the caretCR (respectivelyCL) which is
attached to the right (left) downward edge of caretC.

Each tree in a tree pair can be regarded as a set of instructions for successive sub
of the unit interval: the root caret subdivides the interval in half, a right child of the
subdivides[1

2,1] in half, and so on. This gives a correspondence between elements oF in
the geometric description and the analytic description as follows. Let(T−, T+) be a pair of
trees each withn leaves. Each tree determines a subdivision of[0,1] into n subintervals.
The tree pair(T−, T+) corresponds to the piecewise linear homomorphism which map
subintervals of theT− subdivision to the subintervals of theT+ subdivision, in order. This
equivalence and the group operation are described in [6]. We refer toT− as thenegative
treeandT+ as thepositive treeof the pair(T−, T+).

A tree pair diagram isunreducedif each of T− and T+ contain a caret with leave
numberedm andm + 1, and it isreducedotherwise. Note that there are many tree p
diagrams representing the same element ofF but there is a unique reduced tree p
diagram for each element ofF . When we write(T−, T+) to represent an element ofF ,
we are assuming that the tree pair is reduced.

If x = (T−, T+) is a reduced pair of trees representingx, the normal form forx can
be constructed by the following process, described in [6]. Beginning with the tree
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Fig. 1. Tree pair diagram forx2
0x1x2x4x5x7x8x

−1
9 x−1

7 x−1
3 x−1

2 x−2
0 with carets and leaves numbered.

(T−, T+), we number the leaves ofT− andT+ from left to right, beginning with 0. The
exponentof the leaf labelledn, writtenE(n), is defined as the length of the maximal pa
consisting entirely of left edges fromn which does not reach the right side of the tree. N
that E(n) = 0 for a leaf labelledn which is a right child of a caret, as there is no p
consisting entirely of left edges originating fromn.

We computeE(n) for all leaves inT−, numbered 0 throughm. The negative part of th
normal form forx is thenx

−E(m)
m x

−E(m−1)
m−1 · · ·x−E(1)

1 x
−E(0)
0 . We compute the exponen

for the leaves of the positive tree and thus obtain the positive part of the normal fo
x
E(0)
0 x

E(1)
1 · · ·xE(m)

m . Many of the exponents may be 0, and after deleting these, we
index the remaining terms to correspond to the normal form given above, as detailed

In the tree pair diagram in Fig. 1, the exponentE(0) of the leaf labelled 0 ofT−
is 2 since there is a path of two left edges from leaf 0 which does not reach the
hand side of the tree. The third left edge emanating from leaf 0 touches the
hand side of the tree and thus does not contribute to the exponent. The expon
all the leaves ofT− are, in order, 2,0,1,1,0,0,0,1,0,1,0,0, and the exponents o
the leaves ofT+ are, in order, 2,1,1,0,1,1,0,1,1,0,0,0. Using these exponents, a
omitting any which are 0, we see that the tree pair diagram of Fig. 1 represents the
x2

0x1x2x4x5x7x8x
−1
9 x−1

7 x−1
3 x−1

2 x−2
0 , in normal form.

If R is a caret on the right side of the tree with a single left leaf labeledk, thenE(k) = 0
by definition. We use this fact to show that without loss of generality,T− andT+ may be
assumed to have the same number of carets.

Suppose thatT− has k fewer carets thanT+, and let the rightmost leaf ofT− be
numberedm. Attach a single caret to leafm in T−, obtaining a new treeT ′−. It is easily
computed that inT ′−, the final two exponents,E(m) andE(m + 1), are both 0. Thus th
element ofF represented by the tree pair(T ′−, T+) is identical to the element represent
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by the tree pair(T−, T+), andT ′− has one more caret thanT−. Repeat this processk − 1
additional times, with each repetition adding a caret to the rightmost leaf of the ne
tree. This has no effect on the normal form of the resulting element, and increas
number of carets in the negative tree of the pair. Thus without loss of generality we
assume thatT− andT+ have the same number of carets.

Similarly, given an elementx in normal form with respect to the infinite generating s
it is possible to construct a tree pair diagram (T−, T+) so that each leaf has the corre
exponent. In particular, the number of left edges ofT− emanating from the root caret
one more than the exponent ofx−1

0 in the normal form and the number of left edges
T+ emanating from the root caret is one more than the exponent ofx0 in the normal form
for x.

The processes described above relate the normal form of words inF in the infinite
presentationP to the tree pair representation. For many questions involving the geom
of F , we must consider the length of words inF with respect to a metric arising from
finite generating set. Burillo [4] presented a way of estimating the word length|x|F in the
finite generating setF from the normal form, which was refined by Burillo, Cleary, a
Stein in [3].

Theorem 2.1 (Burillo [4, Proposition 2]; Burillo, Cleary, and Stein [3, Theorem 1]).Let
w ∈ F have normal formw = x

r1
i1

· · ·xrn
in
x

−sm
jm

· · ·x−s1
j1

, and letD(w) = r1 + r2 +· · ·+ rn +
s1 + s2 + · · · + sm + in + jm. Then

D(w)

3
� |w|F � 3D(w).

Burillo, Cleary, and Stein [3] also estimated of the length|w|F of a wordw given by a
tree pair diagram in terms of the number of caretsN(w) in either tree.

2.1. Fordham’s method of calculating word length

Fordham [8] presents a method of calculating the exact word length inF given a reduced
pair of trees representing an elementx ∈ F . We make some preliminary definitions befo
explaining Fordham’s technique.

Let T be a finite rooted binary tree. Theleft sideof T is the maximal path of left edge
beginning at the root ofT . Similarly, we have theright sideof T . A caret inT is a left
caret if its left edge is on the left side of the tree, aright caret if it is not the root and its
right edge is on the right side of the tree, and aninterior caretotherwise. The carets inT
are numbered according to the infix ordering of nodes. We begin numbering with lea
the leftmost leaf and caret 0 the left caret whose left child is leaf 0. We number th
children of a caret before the caret itself, and number the right children after numb
the caret. The trees in Fig. 1 have their carets numbered according to this method.

Fordham classifies carets into seven disjoint types:

(1) L0: The first caret on the left side of the tree, with caret number 0. Every tree
exactly one caret of typeL0.
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(2) LL: Any left caret other than the one numbered 0.
(3) I0: An interior caret which has no right child.
(4) IR : An interior caret which has a right child.
(5) RI : Any right caret numberedk with the property that caretk + 1 is an interior caret.
(6) RNI : A right caret which is not anRI but for which there is a higher numbered inter

caret.
(7) R0: A right caret with no higher-numbered interior carets.

The root caret is always considered to be a left caret of typeLL unless it has no lef
children, in which case it is theL0 caret.

Working from caret 0 to caret 10, in infix order, in the treeT− from Fig. 1, we see tha
the carets are of types

L0, LL, IR, I0, LL, RNI, RI , I0, RI , I0, and R0.

The carets in the treeT+ of Fig. 1, in infix order, are of types

L0, IR, I0, LL, IR, I0, LL, IR, I0, R0, and R0.

The main result of Fordham [8] is that the word length|x|F of x = (T−, T+) can be
computed from knowing the caret types of the carets in the two trees, as long as the
a reduced pair, via the following process. We number thek + 1 carets according to th
infix method described above, and for eachi with 0 � i � k we form the pair of caret type
consisting of the type of caret numberi in T− and the type of caret numberi in T+. The
single caret of typeL0 in T− will be paired with the single caret of typeL0 in T+, and
for that pairing we assign a weight of 0. For all other caret pairings, we assign we
according to the following symmetric table:

R0 RNI RI LL I0 IR
R0 0 2 2 1 1 3
RNI 2 2 2 1 1 3
RI 2 2 2 1 3 3
LL 1 1 1 2 2 2
I0 1 1 3 2 2 4
IR 3 3 3 2 4 4

Fordham’s remarkable result is that the sum of these weights is exactly the length
word in the word metric arising from the finite generating set.

Theorem 2.2 (Fordham [8, Theorem 2.5.1]).Given a wordw ∈ F described by the reduce
tree pair diagram(T−, T+), the length|w|F of the word with respect to the generating s
F is the sum of the weights of the caret pairings in(T−, T+).

Considering the wordw in Fig. 1, we see that the carets numbered zero have
pairing (L0,L0), which has weight 0. The carets numbered 1 have types(LL, IR) which
contributes 2 to the weight of the word. The total weight of the word is easily comp
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to be 0+ 2 + 4 + 2+ 2 + 1+ 1 + 4 + 3 + 1 + 0 = 20. Thus, the length ofw in the word
metric |w|F is 20.

The proofs in Section 4 rely heavily on this technique of Fordham. Namely, we us
fact that we can apply a generator to a given word, whose length we know, and the c
in caret types, which is easily seen, exactly determines the change in word length.

2.2. Action of the generators on an element ofF

We begin with a lemma from Fordham [8] which states under fairly broad condit
that when applying a generator to a tree pair(T−, T+) exactly one pair of caret types wi
change. In Section 3, we construct a special family of elements which will provid
counterexamples to almost convexity for the standard two-generator generating seF .
These elements are constructed to satisfy the conditions of the lemma below.

Lemma 2.3 (Fordham [8, Lemma 2.3.1]).Let (T−, T+) be a reduced pair of trees, each
havingm + 1 carets, representing an elementx ∈ F , andα any generator ofF .

(1) If α = x0, we require that the left subtree of the root ofT− is nonempty.
(2) If α = x−1

0 , we require that the right subtree of the root ofT− is nonempty.
(3) If α = x1, we require that the left subtree of the right child of the root ofT− is nonempty
(4) If α = x−1

1 , we require that the right subtree of the right child of the root ofT− is
nonempty.

If the reduced tree pair diagram forxα also hasm + 1 carets, then there is exactly onei
with 0� i � m so that the pair of caret types of careti changes whenα is applied tox.

We now begin to understand geometrically the action of a generator ofF on a reduced
tree pair(T−, T+), and the corresponding change in normal form. We will generally ass
that the conditions of Lemma 2.3 are met by the generic elements with which we be

Let CR denote the caret which is the right child of the root caretR of T−, andCRR and
CRL the right and left carets, respectively, ofCR . Similarly, letCL denote the left child o
the root caret ofT−, andCLL andCLR its left and right children. Figures 2,3 and 4 will
be useful in understanding the geometric interpretation of the action of the genera
an element ofF . In all of these figures, the lettersa, b andc represent (possibly empty
subtrees of the given tree.

We first understand the action of the generatorx−1
0 on a tree pair(T−, T+) representing

an elementw ∈ F . Considerw written in normal form asw = x
r1
i1

· · ·xrn
in
x

−sm
jm

· · ·x−s1
j1

.

Then the elementwx−1
0 is still in normal form (unless we are in the degenerate case w

x = xm
0 ). Recall from Section 2 that the exponent ofx−1

0 in the normal form is one les
than the number of left edges of the treeT−. Thus, increasing the exponent ofx−1

0 by 1
adds a left edge toT−.

The numbering of the leaves and carets after this new edge is added must rem
same, since the normal form (and hence the exponents of the leaves) changes in
place. Thus, with the extra edge inT−, CR becomes the new root caret. The left subt
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of CR , which contains carets with smaller numbers thanCR , must become the right subtre
of the old root caret, which is now at position formerly occupied byCL. The left caretCL is
moved down and to the left and remains a left caret, now in the position formerly occ
by CLL and so on. This tree transformation is also called acounterclockwise rotationor
left rotationbased at the root. Figure 2 shows the negative treesT− for the elementsw and
wx−1

0 and illustrates a counterclockwise rotation based at the root.
When we consider the action ofx0 on w = (T−, T+), we can assume, according

Lemma 2.3, thatT− has at least two left edges, equivalently, that the exponent ofx−1
0 in

the normal form ofw is at least 1. Applying the generatorx0 cancels onex−1
0 in the normal

form. This corresponds to the treeT− losing a left edge, and thus the caretCL becomes the
root caret and the former root caretR moves to the position ofCR . The initial right subtree
of CL becomes the left subtree ofR in order to preserve the numbering of the carets. T
is a clockwise (or right) rotation based at the root ofT− and is illustrated in Fig. 3.

It is more difficult to visually understand the action ofx1 andx−1
1 on the pair(T−, T+)

corresponding tow, as it is more difficult to see how these generators change the no
form. Using the terminology given above, the following lemmas show that the gene
x1 andx−1

1 perform counterclockwise and clockwise rotations around the nodeCR .
We begin with a lemma relating the action ofx−1

1 on (T−, T+) to the normal form of
the corresponding elementw ∈ F .

Fig. 2. Rotation at the root induced by applyingx−1
0 to T−.

Fig. 3. Rotation at the root induced by applyingx0 to T−.
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Lemma 2.4 (The normal form ofwx−1
1 ). Let w ∈ F be represented by the tree pa

(T−, T+), and have normal formxr1
1 · · ·xrn

in
x

−sm
jm

· · ·x−s1
j1

. Thenwx−1
1 has normal form

x
r1
i1

· · ·xrn
in
x

−sm
jm

· · ·x−sq+1
jq+1

x−1
α x

−sq
jq

· · ·x−s1
j1

, (1)

where we might haveα = jq+1. If the root ofT− has right and left subtreesTR andTL,
respectively, thenα is smallest leaf number inTR.

Proof. We consider the proof in two cases. In the first case, ifj1 �= 0 thenα = 1 and the
expressionxr1

1 · · ·xrn
in
x

−sm
jm

· · ·x−s1
j1

x−1
1 is in normal form. In this case,T− has a single lef

edge on the left side of the tree, with leaf labelled 0, and the first left leaf of the first
subtree will be labelled 1.

In the second case we assume thatj1 = 0. Then the relators inP imply that α =
1+ s1 + s2 + · · · + sl , wherel is the first index satisfyingjl+1 � 1+ s1 + s2 + · · · + sl . It
remains to show that this is the label of the leftmost leaf of the first right subtree ofT−.

Let TL andTR be the left and right subtrees of the root caret ofT−. We consider the
number of interior carets inTL. If TL is empty, then we are in the first case discussed ab

If TL has no interior carets, but is not empty, then the number of left edges inTL is n,
for somen, and thus the last leaf number inTL is n as well. So the first leaf number inTR

is n + 1. Given this form ofT−, we see that the normal form ofx must end withx−s2
j2

x−n
0

wherej2 � n+ 1. Thus, using the relators to putx−1
1 into its proper position in the norma

form, we see that it becomesx−1
1+n, agreeing with the statement of the lemma.

If TL has a single interior caret, then the total number of left edges ofTL is n+1, where
n again represents the length of the left side ofTL. The interior caret also adds an addition
leaf, and thus the highest numbered leaf ofTL is n + 1. We know thatx−1

1 becomesx−1
n+1

when it is moved left past thex−n
0 . However,n+1 is now the highest numbered leaf inTL.

The extra left leaf added by the single interior caret corresponds to a letter in the n
form of x whose index is smaller thann + 1, thus when thex−1

n+1 is moved left past this

letter, it becomes anx−1
n+2. Since there are no other interior carets inTL, the next possible

index of a letter in the normal form ofx is n + 2. Thusx−1
n+2 is now in place in the norma

form, soα = n + 2, andn + 2 is the first leaf number ofTR, as required.
If TL has two interior carets, then there aren + 2 left edges inTL and the highes

leaf number inTL is n + 2. Moving left pastx−n
0 , thex−1

1 first becomesx−1
n+1, as in the

previous case. Again, we see thatn+ 1 is a leaf number inTL. Then, since there is a sing
leaf numbered higher thann + 1, the are not enough leaves to have the remaining
carets have leaves numbered higher thann + 1. So the first interior caret must have a le
with a lower number thann + 1, corresponding to a letter in the normal form ofx with
index smaller thann + 1. Thusx−1

n+1 must be moved left past this element as well, mak

it x−1
n+2. Now,n+2 is the highest leaf number inTL, so the second interior caret must ag

appear before leaf numbern + 2; that is, it corresponds to a letter in the normal form
x with index smaller thann + 2. Moving thex−1

n+2 past left this letter, we getx−1
n+3. Since

there are no more interior carets inTL, there are no other letters in the normal form w
index less thann+ 3, so we must havex−1

n+3 in its place in the normal form. Again, we se
thatn + 3 is the first leaf number inTR .
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In summary, each additional interior caret adds a letter to the normal form with sm
index thann + 1; thus thex−1

1 must be moved left past these letters to obtain the no
form. We can continue this method to apply to an arbitrary number of interior caretsTL,
proving the lemma. ✷
Lemma 2.5 (The normal form ofwx1). Let w satisfy the conditions of Lemma2.3 and
have normal formxr1

1 · · ·xrn
in
x

−sm
jm

· · ·x−s1
j1

. Thenwx1 has normal form:

x
r1
1 · · ·xrn

in
x

−sm
jm

· · ·x−(sl−1)
jl

· · ·x−s1
j1

, (2)

for some indexjl , in which casejl is the smallest leaf number in the right subtree ofT−.

Proof. As in the proof of Lemma 2.4, we use the relators ofP to movex1 to the generato
xα whereα = 1 + s1 + s2 + · · · + sl , and l is the first index satisfying the inequali
jl+1 � 1+ s1 + s2 + · · · + sl , orα = 1+ s1 + s2 + · · · + sm. From the proof of Lemma 2.
we again know thatα is the number of the leftmost leaf of the first right subtree ofT−.

According to Lemma 2.3, the left subtree ofCL is nonempty, so there is a leaf labell
α with exponent at least 2, i.e., there is an indexjk = α in the normal form ofw. Thus the
exponent ofxjk decreases by 1 because thexα cancels onex−1

jk
letter giving the norma

form (2). ✷
Lemma 2.6 (The action ofx−1

1 on T−). The generatorx−1
1 when applied to an elemen

w of F represented by a tree pair(T−, T+) which satisfies the conditions of Lemma2.3
leavesT+ unchanged, and affectsT− as follows: CRR becomes the right child of the roo
caret, andCR becomes the left child ofCRR . All other carets remain unchanged.

Proof. Let α be the number of the leftmost leaf in the right subtree of the root ofT−. It
follows from Lemma 2.5 that the exponent ofxα in the normal form ofx is increased by 1
that is, the exponentE(α) of the leafα is increased by 1, which means there is one m
left edge emanating fromCR in T− and terminating atα. Since the numbering of the care
is preserved, because the normal form changes in a single letter, and begins at the fa
the right subtree of the root caret, we see thatCR is now an interior caret. To preserve t

Fig. 4. Left rotation aroundCR induced by applyingx−1
1 .
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numbering of the leaves and carets, the left subtree ofCRR must become the right subtre
of CR , because these carets are numbered higher thanCR but lower thanCRR . This leaves
CRR as the right child of the root caret. All remaining subtrees are left unchanged.✷

Lemma 2.7 (The action ofx1 onT−). The generatorx1 when applied to an elementw ∈ F

represented by a tree pair(T−, T+) satisfying the conditions of Lemma2.3 leavesT+
unchanged, and inT−, causesCRL to become the right child of the root andCR to become
the right child ofCRL. All other carets remain unchanged.

Proof. The normal form ofwx1 is of the form (2) given in Lemma 2.5. From Lemma 2
we know that the indexjl is the number of the leftmost leaf in the left subtree ofCR in T−.
From the change in normal form we see that the exponent ofxjl decreases by 1 and thus
T− the exponentE(jl) decreases by 1. Thus, there is one fewer left edge emanating
CR ending in the leaf numberedjl . Accordingly, the right subtree ofCRL is moved to the
right side ofT−, without changing the numbering of the carets. ThusCRL is now the right
child of the root, andCR is the left child ofCRL. ✷

Notice that in all of the descriptions above, the treeT+ is not affected by the action o
a generator. This is not true in general for reduced tree pair diagrams not satisfyi
conditions of Lemma 2.3. In general,T+ can be affected in exactly three ways:

(1) whenT− has a single left edge, and the generator isx0,
(2) when the left subtree ofCR of T− is empty, and the generator isx1, or
(3) if the generator isα ∈ {x±1

0 , x±1
1 } and the pair of trees corresponding toxα is not

reduced.

We choose the family of words which will provide the counterexamples to almost conv
so that the conditions of Lemma 2.3 are always satisfied.

Fig. 5. Right rotation aroundCR induced by applyingx1.
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3. A special family of elements

We define a familyC(k), with integralk � 2, of elements ofF which we will use to
prove thatF is notAC(2), and thus notAC(n). We first define what the negative treeT−
of an elementw ∈ C(k) must be, and then define the positive treeT+ so thatw is given by
the reduced tree pair(T−, T+).

LetTk be the balanced rooted binary tree with 2k leaves; that is, the tree with every no
on the firstk levels having two children, as in Fig. 6.

Forw = (T−, T+) in the familyC(k), we defineT− to be the treeT4k. Note that this is
a very bushy tree, and has at least 2k carets on the left side. Each of these left carets h
right subtree which is a complete tree with at leastk + 2 levels. Similarly,T− has at leas
2k right carets, each of which has a left subtree which is a complete tree with at leask + 2
levels. There are a total of 24k leaves.

We construct the positive treeT+ to have almost all carets of typeLL andRNI , paired
in a particular way with carets ofT−. Let r = 2k−1 + 2k−2 − 1 be the caret number of th
first caret on the right side ofT−. Now let the treeT+ correspond to the wordxr−2

0 x1xs ,
wheres is 24k − 3. ThenT+ will have 24k leaves, the same number as inT−.

We now check that with these definitions,(T−, T+) forms a reduced tree pair diagra
As pictured in Fig. 7, there are only two carets inT+ with two leaves: one with leave
numbered 1 and 2, and the other with leaves numbereds = 24k − 3 ands + 1 = 24k − 2.
In T−, it is easy to see that because it is a complete tree, caret number 0 has
numbered 0 and 1. Also inT−, the highest numbered caret has leaves numbereds + 1
ands +2. Thus, no reduction of carets occurs, and(T−, T+) is a reduced tree pair diagram

In Section 2.2 above, the action of the generators ofF on a generic element is discusse
We now describe the action of a generator on an elementw of C(k), and more generally
the action of a sequence of generators onw. Let η be a word in the generators ofF which
has length strictly less thank, and letw = (T−, T+) ∈ C(k). We want to make sure thatwη

still satisfies the conditions of Lemma 2.3. Becauseη is not longer thank, it can only affect
a limited number of carets near the root ofT−. For example, ifη is a power ofx1, then each
application ofx1 will rotate at the right childCR of the root. The left subtree ofCR is, by
construction, a complete tree with at leastk + 2 levels. Thus, after performingk clockwise

Fig. 6. The balanced treeT4.
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Fig. 7. Positive tree for a wordw ∈ C(k).

rotations at the right child of the root, the resulting tree still satisfies the conditio
Lemma 2.3.

More generally, no matter what the sequence of generators inη is, the composition o
rotations thatη performs onT− affects carets only within distancek of the root. Becaus
of the fullness of the subtrees near the root ofT−, the resulting tree will still have care
in the appropriate locations to satisfy the conditions of Lemma 2.3. Because the ex
carets inT+ are so far away from the root, we know that no reductions can happen d
the course of applyingη to w. Thus, Lemma 2.3 guarantees that only one caret is affe
by each application of a generator.

In the following chart we summarize the possible change in word length wh
generator ofF acts on an elementwη with |η| < k andw ∈ C(k). The positive treeT+
has been chosen carefully so that a caret inwη affected by a generator is paired with o
of only two possible types of carets inT+, anLL or anRNI .

Generator Original New Change in word Change in word
caret caret length when paired length when paired
type type withLL with RNI

x0 LL RI −1 1
x−1

0 RI LL 1 −1
x1 IR RI −1 −1
x−1

1 RI IR 1 1

We see immediately from this chart thatx0 andx−1
0 will reduce the word length o

w ∈ C(k) because of the caret pairings inw. It is also true from the chart thatx1 will
reduce the length of the original wordw. The two elements we will consider to contrad
almost convexity will bewx0 andwx−1

0 for w ∈ C(k). If the length|w| = n + 1, then the
length ofwx−1

0 andwx0 will each ben. Furthermore, those two elements are distanc
apart since there is an obvious path fromwx0 tow towx−1 of length 2. That path, howeve
0
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does not lie in the ball of radiusn. In the proof of Theorem 1.1, we will show that there
no short path fromwx0 to wx−1

0 which lies in the ball of radiusn.

4. Almost convexity and F

We now prove thatF does not satisfy Cannon’sAC(2) condition, and obtain as
corollary thatF does not satisfyAC(n) for any integraln � 2.

The idea of the proof of Theorem 1.1 is the following. AssumingF satisfies theAC(2)
condition, we would obtain a constantk so that any two points inB(n) at distance 2 from
each other would be connected by a path of length at mostk which remains inB(n). Using
this constantk, consider a pointw = (T−, T+) ∈ C(k + 2). The pointswx0 andwx−1

0 are
both inB(n) for n = |w| − 1 and are distance two apart. Thus, there would be a pathγ of
length at mostk connecting them. We assume this path is oriented to go fromwx0 to wx−1

0
and we follow the position of the root caretR of T− as it moves under the letters in th
pathγ . We know that inwx0 the caretR has moved to the right side of the new negat
tree. The main lemma to the proof of this theorem says that if at any time along the pγ

the caretR becomes a left or an interior caret, then the pathγ leavesB(n) at that point.
Letγ ′ = x0γ x0 denote the loop based atw. The contradiction to almost convexity aris

from the following: Since the wordwx0 hasR as the right child of the root, and the wo
wx−1

0 hasR as the left child of the root, the finalx0 in the pathγ ′ would returnR to the
root position from the left. Thus, at some point alongγ , the caretR would have change
from a right caret to a left or interior caret and at that point, the pathγ would have left the
ball B(n).

We begin with the proof of the necessary lemma.

Lemma 4.1. Letw = (T−, T+) ∈ C(k) with |w| = n+1,andγ ′ = xm
0 γ ′′x0 be a loop based

at w of length at mostk, with m maximal. LetR be the root caret ofT−, andη the shortest
prefix ofγ ′′ so that inwxm

0 η the caretR is not a right caret. Then the elementwxm
0 η is not

in B(n).

Proof. First, note that the negative tree of the elementwxm
0 has exactlym right carets

which are paired withLL carets, and we can number them as we move away from the
asc1, c2, . . . , cm = R, with c1 < c2 < · · · < cm. Since the numbering of the carets does
change when generators are applied, at the first point whereR is not a right caret, the
neither are any of the caretsci .

In the statement of the lemma, we are not distinguishing betweenR becoming a left
caret andR becoming an interior caret. This will not matter either for this proof or for
proof of Theorem 1.1 below.

The idea of the proof is to follow the path of each caretci as it is affected by differen
letters in the wordη, and note the net change in word length. Note that when we ap
generator ofF to a word of the formwχ , whereχ is a word in the generators ofF of
length at mostk, only a single caret in the negative tree ofwχ is affected. In general, ther
are times when this action can also affect a caret in the positive tree, but we have
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the form of elements ofC(k) carefully so that this is not the case, when applying string
generators of length less thank.

Each caretci is originally paired with anLL caret in the positive tree by constructio
and since the positive tree will be unchanged, the positive part of these pairing type
not change. Consider all the letters inη which change the caret type ofci . The last of these
letters is either anx−1

0 changingci from a right caret to a left caret, or anx−1
1 changing

ci from a right caret to an interior caret. According to the chart in Section 3, this is
change in word length of+1.

There are other letters inη which can affect the caretci . However, they must come i
pairs, each pair leavingci as a right caret so that the final letter inη which affects it can
change it to a left or interior caret. These pairs can be in one of two forms:

(1) anx−1
0 which makesci a left caret followed later inη by anx0 making it again a righ

caret, or
(2) anx−1

1 makingci an interior caret and anx1 later inη making it again a right caret.

In either case,ci is always paired with anLL caret, and we see from the chart
Section 3 that the net change to the total word length corresponding to either of
pairs is always 0. Thus, as we consider the letters ofη which change the caret type of allm

of theci ’s, we see that they contribute a total of+m to the overall change in word length
There may be letters inη which affect the types of carets other than theci . Suppose

caretd �= ci is a caret affected by a letter inη. We claim that we must haved < ci for
somei, and thusd is also paired with anLL caret. Ifd > ci for all i, thend would be a
caret which appears afterR. In order forη to affect a caret afterR, the caretR would have
had to have already moved from a right caret to a left or interior caret, contradictin
assumption aboutη. Thus, we have established the claim thatd < ci for somei.

Given the initial form ofw ∈ C(k), we see thatd may begin as an interior caret, and
initially moved to a right caret by an elementx1. From the chart in Section 3 we see th
this changes word length by−1. Sinced < ci for at least one value ofi, and all theci must
be changed from right carets to non-right carets by the end of the pathη, we must also
haved changed from a right caret to a non-right caret. Thus the last letter inη affecting
d is either anx−1

0 which changesd to a left caret or anx−1
1 which changesd back to an

interior caret. From the chart in Section 3 we see that in either case, the change to th
length is+1 making the total contribution of these two letters inη zero.

There may be other letters inη which affect the caretd . They must form the same pai
as listed above of “intermediate” letters which can affect theci , and thus contribute a tota
word length change of zero.

The only other possibility ford is that it begins as a left caret, paired with anLL caret
for the same reasons as above. Then the initial letter inη affectingd must be anx0, making
it a right caret. The final letter inη affectingd again is either anx−1

0 or anx−1
1 . Again,

we see from the chart in Section 3 that the net change in word length coming from
two elements is 0. There can also again be intermediate pairs of elements affectingd of the
same forms as given above, which also contribute 0 to the net change in word lengt

Since every letter ofη affects a single caret ofw, each letter ofη is one of the
types listed above. So the total change in word length fromwx0 to wxmη is m. Given
0
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the initial form of w, it is easy to see from the chart that|wxm
0 | = |w| − m. Thus

|wxm
0 η| = |w| − m + m = |w| = n + 1 andwxm

0 η is not inB(n). ✷
We are now ready to prove Theorem 1.1 using Lemma 4.1.

Proof of Theorem 1.1. Assume thatF satisfies theAC(2) condition with respect to th
generating set{x0, x1}. Then there would be a constantk so that for every two point
x, y ∈ B(n) with d(x, y) = 2, there would a be a path between them of length at mok

lying completely insideB(n).
Consider a pointw = (T−, T+) ∈ C(k + 2) with |w| = n + 1. By construction,|wx0| =

|wx−1
0 | = n and d(wx0,wx−1

0 ) = 2. The assumption of almost convexity guarantee
pathγ from wx0 to wx−1

0 which remains insideB(n) whose length is bounded byk. Let
γ ′ = x0γ x0 be the loop based atw containing the pathγ .

Let R be the root caret inT−. The wordwx0 hasR as the right child of the root, so th
initial x0 in the pathγ ′ movesR to a right caret. The wordwx−1

0 hasR as the left child of
the root, so the finalx0 in the pathγ ′ must returnR to the root position from the left. Thus
at some point along the pathγ , the caretR must change from being a right caret to a l
caret. So there is a minimal prefixη of γ so that inwx0η, the caretR is not a right caret. I
then follows from Lemma 4.1 thatwx0η is not inB(n), contradicting the assumption th
F is AC(2). ✷

We immediately obtain the proof of Corollary 1.2.
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