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Abstract

We propose an effective theory which governs pomeron dynamics in QCD at high energy, in the leading logarithmic
imation, and in the limit whereNc, the number of colors, is large. In spite of its remarkably simple structure, this effe
theory generates precisely the evolution equations for scattering amplitudes that have been recently deduced from a
plete microscopic analysis. It accounts for the BFKL evolution of the pomerons together with their interactions: diss
(one pomeron splitting into two) and recombination (two pomerons merging into one). It is constructed by exploiting a
principle relating the evolutions in the target and the projectile, more precisely, splitting and merging processes, or flu
in the dilute regime and saturation effects in the dense regime. The simplest pomeron loop calculated with the effecti
is free of both ultraviolet or infrared singularities.
 2005 Elsevier B.V.

There has been recently significant progress in our understanding of high energy hadronic scattering
particular of the processes occurring at large parton densities and which are believed to be responsibl
unitarization of the scattering amplitudes and the saturation of the parton distributions. Non-linear evolutio
tions have been derived which describe the approach towards saturation and the unitarity limit, and which
structure of stochastic evolution equations. However, it has been very recently recognized[1] that the equation
which were considered as the most complete, namely the Balitsky–JIMWLK (Jalilian-Marian–Iancu–McL
Weigert–Leonidov–Kovner) equations[2–5], are in fact incomplete. This is manifest in the statistical languag
the presence of fluctuations at high momenta[6,7] which are not well accounted for by the JIMWLK evolution
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the target wavefunction[1]. In the language of pomerons, the JIMWLK equation contains pomeron mergin
not also pomeron splitting.2

Following this observation, two of us (E.I. and D.T.) have constructed a hierarchy of non-linear evolution
tions for the dipole scattering amplitudes which include both gluon mergings and gluon splittings, and thus g
pomeron loops through iterations[1,8]. These equations have been argued to hold in the limit where the nu
of colorsNc is large (Nc � 1), and indeed it has been checked explicitly in Ref.[8] that the vertices appearing
these equations are the same as the corresponding ‘triple pomeron vertices’ computed in perturbative QC
Nc [9–11]. A complementary approach has been developed by Mueller et al.[12] who proposed a generalization
the JIMWLK equation which includes the effects of pomeron splitting in the dilute regime and for largeNc. These
two approaches follow the same general strategy—namely, they combine the non-linear JIMWLK equation
density with the color dipole picture[13] in the dilute regime—and lead indeed to the same evolution equation
the scattering amplitudes, as demonstrated in Ref.[8]. (See also Refs.[14,15] for related recent developments.)

It is our purpose in this Letter to show that the equations obtained in[1,8,12] can be reformulated in term o
an effective theory for pomerons. By ‘pomeron’ we mean here the color singlet exchange which descr
interaction between an elementary color dipole and the field of a target in a single scattering approximat
which reduces to two gluon exchanges in lowest order perturbation theory. The construction of the effectiv
involves a projection onto restricted degrees of freedom, precisely the pomerons, and is expressed in te
simple Hamiltonian which describes the BFKL evolution of the pomerons together with their splitting and me
By requiring that the evolution should lead to identical results whether it is viewed as the evolution of the
or that of the projectile, one arrives at a duality principle which is used to construct the effective Hami
from the Hamiltonian derived in[12] in the dilute regime. The limitations of the effective theory, and the su
mathematical problems that arises when one attempts to analyze its microscopic content will be briefly d
at the end of this Letter.

Most treatments of high energy scattering rely on an asymmetric approach: typically, the ‘projectile’ is v
as a collection of test particles which probe the color field of the ‘target’. At high energy, the eikonal approxi
is a good approximation, and the scattering of an elementary color charge is described by aWilson lineof the form

(1)V †
x [α] ≡ P exp

(
ig

∫
dx− αa(x−,x)ta

)
,

wherex denotes the transverse coordinate of the particle, which is not affected by its interactions with th
of the targetαa(x−,x), ta are the generators of the SU(3) algebra in the representation appropriate for t
particle, and the symbol P indicates that, in the expansion of the exponential, the color matricesαa(x−,x)ta must
be ordered from right to left in increasing order inx− (we are using light-cone vector notations,x± ≡ (t ± z)/

√
2 ).

For a more complex projectile, viewed as a collection of elementary color charges, theS-matrix is given by a
product of Wilson lines like Eq.(1), one for each elementary color charge.

In a frame in which most of the total rapidityY is carried by the target, the target wavefunction can be desc
as acolor glass condensate[4,16], and the correspondingS-matrix is obtained as:

(2)〈S〉Y =
∫

D[α]WY [α]S[α],

whereα ≡ αa(x−,x) is a classical field randomly distributed withweight functionW [α] (a functional probability
distribution), andS[α] is the projectileS-matrix for a given configuration of this random field. With increasingY ,

2 Note that the opposite terminology for what one means by ‘splitting’ and ‘merging’ would be more natural in relation with Balitsk
tions, which refer to the evolution of the projectile. To avoid confusion on this point, in this Letter we shall systematically use the term
appropriate to target evolution.
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the weight function evolves according to a functional renormalization group equation, of the generic form:

(3)
∂

∂Y
WY [α] = H

[
α,

δ

iδα

]
WY [α],

whereH is a functional differential operator commonly referred to as the ‘Hamiltonian’. Alternatively, one
view the same evolution as a change in the scattering operator, for a fixed weight functionW [α]. To see that, take
a derivative w.r.t.Y in Eq.(2), use Eq.(3), and perform an integration by part in the functional integral:

(4)
∂

∂Y
〈S〉Y =

∫
D[α]WY [α]H †

[
α,

δ

iδα

]
S[α].

This can be interpreted as describing the evolution of the scattering operatorSY [α], with ‘Hamiltonian’ H †:

(5)
∂

∂Y
SY [α] = H †

[
α,

δ

iδα

]
SY [α].

Both points of view, somewhat reminiscent of, respectively, the Schrödinger and the Heisenberg pictures
tum mechanics, will be used in the following discussion (although we shall refrain from introducing exp
rapidity dependent operators). In the Schrödinger picture, one puts emphasis on the evolution of the sta
whose role is played here by the weight functionalWY [α]. In the Heisenberg picture, the state vector is a cons
reference vector involved in the calculation of all expectation values, hereW [α], and one puts all the evolutio
in the operators, here the scattering operatorsSY [α]. The Schrödinger picture corresponds to evolution equat
which aim at providing a detailed microscopic description of the color field in the target, together with its c
cated correlations. This is what the JIMWLK equation does. The Heisenberg picture rather describes how
particles get dressed by color field fluctuations as they are boosted to higher rapidities. In this approach,
plicated color correlations in the target wavefunction are not immediately visible, and indeed the resulting e
of motion are established somewhat more easily. This second approach is essentially the one used by B
obtain his hierarchy of equations.

The test particles that we shall consider are in fact elementary color dipoles, whose scattering amplitud

(6)T (x,y) = 1− 1

Nc

tr
(
V †

x Vy

)
,

for a dipole with the quark leg atx and the antiquark leg aty. Here the Wilson lines are taken in the fundamen
representation. We shall be interested in situations where the dipoles scatter off the color glass in the tw
exchange approximation (weak field limit) and we shall work in a large-Nc limit. In the weak field limit, the
amplitude for a single dipole to scatter is obtained after expanding each of the Wilson lines to second ordeα:

V †
x [α] = 1+ ig

∫
dx− αa(x−,x)ta

(7)− g2

2

∫
dx−

∫
dy− αa(x−,x)αb(y−,x)

[
θ(x− − y−)tatb + θ(y− − x−)tbta

] + · · · .

Note that, to this order, thex−-ordering of the color matrices starts to play a role in Eq.(7). Still, this ordering is
irrelevant for the computation of the dipole amplitude to lowest order, because of the symmetry of the colo
tr(tatb) = 1

2δab = tr(tbta). Namely, one finds:

(8)T (x,y) � T0(x,y) ≡ g2

4Nc

[
αa(x) − αa(y)

]2
,

which involves only the integrated fieldαa(x) ≡ ∫
dx− αa(x−,x). Similarly the amplitude forκ dipoles to scatte

is given, within the same approximation, byT
(κ)

(x ,y , . . . ,x ,y ) = T (x ,y ) · · ·T (x ,y ). In what follows,
0 1 1 κ κ 0 1 1 0 κ κ
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we shall refer to the amplitude(8) describing the single-scattering of an elementary dipole off a given color
as to a ‘pomeron exchange’. Similarly,T

(κ)
0 describes the exchange ofκ pomerons.

At this point we find it useful to digress on the linear evolution equation known as BFKL equation. Thi
allow a few observations which illuminate some of the mathematical subtleties involved in taking the largeNc limit
when constructing our effective theory. Consider first the JIMWLK Hamiltonian. As shown in Ref.[17], when it is
restricted to act on gauge-invariant observables, it can be given the simple form:

(9)HJIMWLK = 1

16π3

∫
u,v,z

M(u,v,z)
(
1+ Ṽ †

u Ṽv − Ṽ †
u Ṽz − Ṽ †

z Ṽv

)ab δ

iδαa
Y (u)

δ

iδαb
Y (v)

,

whereM is the dipole kernel

(10)M(x,y,z) = (x − y)2

(x − z)2(z − y)2
.

Here the Wilson lines are in the adjoint representation. The derivatives can be freely moved across the
form in Wilson lines, because they commute with the latter in the presence of the dipole kernel. That is,HJIMWLK
is Hermitian. The BFKL limit is obtained by expanding the Wilson lines to lowest non-trivial order inα. One gets:

(11)HBFKL = − g2

16π3

∫
u,v,z

M(u,v,z)
[
αa(u) − αa(z)

][
αb(z) − αb(v)

]
f acf f bf d δ

δαc
Y (u)

δ

δαd
Y (v)

,

and it is not difficult to verify thatHBFKL is again Hermitian.
Let us now turn to the ‘large-Nc limit’. This is obtained by (i) restricting the action ofHBFKL to the dipole

operatorsT (κ)
0 mentioned above and (ii) preserving only the dominant terms at largeNc in the action of the Hamil-

tonian on these operators. When acting on the color fields inside a single factorT0 (i.e., on the same dipole), th
two functional derivatives inHBFKL yield a factorδcd , and thenf acf f bf c = −Ncδ

ab produces the expectedNc

enhancement. On the other hand, the action on the color fields within two different factorsT0 (i.e., upon two differ-
ent dipoles) produces no such enhancement. Thus, at largeNc, HBFKL can be equivalently replaced by an effect
Hamiltonian in which the two functional derivatives are traced over color. This Hamiltonian, which we denoH

†
0

for reason which will become clear shortly, is

(12)H
†
0 = 1

2N2
c

ᾱs

2π

∫
u,v,z

M(u,v,z)
[
αa(u) − αa(z)

][
αa(z) − αa(v)

] δ

δαb(u)

δ

δαb(v)
,

whereᾱs = αsNc/π . In the equation above, we have suppressed the subscriptY on the functional derivatives sinc
they now act on functions which depend only upon the color field integrated overx−, so like in Eq.(8). Let us
emphasize that, as obvious from the construction we have given, the two derivatives inH

†
0 are to act onthe same

dipole. Note also that, as opposed to the originalHBFKL, H
†
0 is not Hermitian: in fact, it is readily seen that i

adjoint is ill-defined. This reflects the fact that the construction ofH
†
0 involves a projection on a specific set

degrees of freedom, and once this is done, one looses the possibility to integrate by part as in Eq.(4) in order
to let H0 act on the weight functionalW [α]. These special mathematical properties, restriction of the spac
which the Hamiltonian is acting and loss of hermiticity, are general, and peculiar, mathematical feature
effective theory that we shall present. It is tempting to speculate that in doing the largeNc limit we are renouncing
to follow the evolution of some color correlations (precisely those which are suppressed at largeNc), and that the
corresponding loss of information may be responsible for the simpler Markovian stochastic theory that w
arrive at.

We now return to the main stream of our discussion and establish a useful property. In Ref.[18], a symmetric
description was obtained for the scattering between two color glasses in the regime wherebothsystems are in th
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weak field regime. The final formula reads

(13)〈S〉Y =
∫

D[αR]WY−y[αR]
∫

D[αL]Wy[αL]exp

{
i

∫
d2zρa

L(z)αa
R(z)

}
.

In this expression,ρa
L(x) = −∇2

xαa
L(x) is the classical color charge density of the left-mover, andWY−y[αR]

andWy[αL] are the weight functions for the right-moving and, respectively, left-moving color glass (not
the rapidity of the left-mover is measured positively to the left, so that as we varyy, the total rapidity interva
between projectile and target remains equal toY ). The precise conditions for the validity of Eq.(13) are detailed
in Ref. [18]. Let us emphasize here a non-trivial aspect of this formula. Although it is essentially a wea
formula which assumes that the elementary dipoles interact only once, it contains the possibility that any
of dipoles of the projectile interact with an equivalent number of dipoles in the target. Thus Eq.(13) does accoun
for multiple scattering, albeit in a restrictive way (each dipole interacting only once). These multiple sca
generate unitarity corrections ifY is large enough. At the same time, we require both color glasses to be unsat
This imposes an upper bound onY and also limits the range of variation fory within which Eq.(13) is correct[18].

Lorentz invariance implies that, while〈S〉Y may depend on the total rapidity intervalY , within the range of
validity of Eq. (13) it cannot depend upon the rapidityy used to separate the system into a ‘projectile’ an
‘target’, or equivalently on the frame which we choose to describe the collision. This implies (see also R[19]
for a similar argument):

0= ∂〈S〉Y
∂y

=
∫

D[αR]
∫

D[αL]exp

{
i

∫
d2zρa

L(z)αa
R(z)

}

(14)×
{(

∂

∂y
WY−y[αR]

)
Wy[αL] + WY−y[αR]

(
∂

∂y
Wy[αL]

)}
.

The evolution of both weight functions are given by:

(15)

∂

∂y
WY−y[αR] = − ∂

∂Y
WY−y[αR] = −H

[
αR,

δ

iδαR

]
WY−y[αR], ∂

∂y
Wy[αL] = H

[
αL,

δ

iδαL

]
Wy[αL].

We shall keep the evolution of the left-mover as shown in the above equation, but perform an integration
in the functional integral overαR in Eq.(14). Next, we note that

(16)H †
[
αR,

δ

iδαR

]
exp

{
i

∫
d2zρa

L(z)αa
R(z)

}
= H

[
δ

iδρL

,ρL

]
exp

{
i

∫
d2zρa

L(z)αa
R(z)

}
.

Using this identity in Eq.(14) and performing a further integration by parts, now w.r.t.αL (recall thatρa
L(x) =

−∇2
xαa

L(x)), one is left with a differential operator acting onWy[αL] ≡ Wy[ρL] (with a slight abuse in the notation

(17)H †
[

δ

iδρL

,ρL

]
Wy[ρL].

For Eq. (14) to be satisfied, the contribution above should cancel against the term in Eq.(15) describing the
evolution of the left-mover. This condition leads to the ‘self-duality’ condition:

(18)H

[
αL,

δ

iδαL

]
Wy[αL] = H †

[
δ

iδρL

,ρL

]
Wy[ρL].

The same relation holds obviously for the ‘right’ variablesαR,ρR .
Going back to Eq.(16), one sees that what is involved in the duality operation3 is a matching of splitting

processes in the left-movers, encoded by terms in the Hamiltonian of the formρ2 δn/δρn, into merging proces

3 To our knowledge, the duality between the roles of the operatorsρ2 δn/δρn andαn δ2/δα2 has been first recognized by L. McLerran.



226 J.-P. Blaizot et al. / Physics Letters B 615 (2005) 221–230

e
as a splitting

ed
terms

actor-
mics
at has

ds to
be

r large
Fig. 1. An illustration of the relation(16). ρ denotes the color charge of the left-mover (L) andα is the color field of the right-mover (R). Th
same physical process can be represented by either of the two diagrams in the middle, and can be viewed either as a merging in R, or

in L. The first interpretation is natural when the diagram is produced by acting on the eikonal line with the HamiltonianH
†
1→2 ∼ ρ2 δ4/δρ4 for

L (cf. Eq. (19)). The second interpretation rather corresponds to the action ofH
†
2→1 ∼ α4 δ2/δα2 for R (cf. Eq.(24)).

in the right-movers, corresponding to terms of the formαn δ2/δα2. An example of such a matching is illustrat
in Fig. 1. Splitting terms dominate in the dilute regime where they control the fluctuations, while merging
become essential in the saturation regime where parton densities are large. Thisfluctuation–saturation dualityis
turned into a constraint on the evolution Hamiltonian of either the projectile or the target in Eq.(18).

The self-duality constraint, which we expect to hold within the limited range of energies in which the f
ization(13) is valid4 [18], will be used now to construct a simple Hamiltonian describing the pomeron dyna
in the dilute regime, starting from the known, dominant, contribution containing only splitting processes th
been constructed by Mueller et al.[12]. Quite remarkably, and somewhat unexpectedly, this Hamiltonian lea
equations of motion which reproduces the exact ones at largeNc [1,8], that is the effective theory appears to
valid beyond the dilute limit where it is established. The Hamiltonian constructed in[12] reads

H1→2 = − g2

16N3
c

ᾱs

2π

∫
M(u,v,z)G(u1|u,z)G(v1|u,z)G(u2|z,v)G(v2|z,v)

(19)× δ

δαa(u1)

δ

δαa(v1)

δ

δαb(u2)

δ

δαb(v2)
∇2

u∇2
vαc(u)αc(v).

In Eq.(19), the integration goes over all the transverse coordinatesu, v, z, u1, v1, u2, v2. The functionG(u1|u,z)

is, up to a factorgta , the classical field created atu1 by the elementary dipole(u,z), and reads

(20)G(u1|u,z) = 1

4π
ln

(u1 − z)2

(u1 − u)2
.

It is easy to understand (and was explicitly shown in[8]) that this Hamiltonian generatespomeron splittings. More
precisely, the result of the operation ofH

†
1→2 on the two-pomeron exchange amplitudeT

(2)
0 is proportional toT0,

and thus generates the following,fluctuation, term in the evolution equation forT (2)
0 (x1,y1;x2,y2):

(21)H
†
1→2T

(2)
0 =

(
αs

2π

)2
ᾱs

2π

∫
u,v,w

M(u,v,w)A0(x1,y1|u,w)A0(x2,y2|w,v)∇2
u∇2

vT0(u,v),

whereα2
sA0 is the amplitude for dipole–dipole scattering in the two-gluon exchange approximation and fo

Nc:

(22)A0(x,y|u,v) = 1

8

[
ln

(x − v)2(y − u)2

(x − u)2(y − v)2

]2

.

4 The self-duality condition(18) has recently been claimed to hold in a much broader context[19].
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Clearly, this process corresponds to the splitting of one pomeron into two. In general, the HamiltonianH1→2
can describe the transitionn → n + 1, in which casen − 1 of the pomerons are simply “spectators”. Note t
H1→2 is non-Hermitian, which we interpret as reflecting again the large-Nc approximation implicitly involved in
its derivation.

To apply the duality transformation, it is convenient to reexpressH1→2 in terms of the sourcesρa(x) of the
color fieldαa(x), by usingρa(x) = −∇2

xαa(x). Then we obtain

(23)H1→2 = − g2

16N3
c

ᾱs

2π

∫
u,v,z

M(u,v,z)

[
δ

δρa(u)
− δ

δρa(z)

]2[
δ

δρb(z)
− δ

δρb(v)

]2

ρc(u)ρc(v).

At this point we force the Hamiltonian to be self-dual. This is done by adding toH1→2[δ/iδρ,ρ] its dual
H

†
1→2[α, δ/iδα] ≡ H2→1 (this new notation will be justified shortly). The Hermitian conjugate ofH2→1 reads

(24)H
†
2→1 = g2

16N3
c

ᾱs

2π

∫
u,v,z

M(u,v,z)
[
αa(u) − αa(z)

]2[
αb(z) − αb(v)

]2 δ

δαc(u)

δ

δαc(v)
,

and the action ofH †
2→1 on the dipole scattering amplitude is

H
†
2→1T0(x,y) = ᾱs

2π

∫
z

M(x,y,z)
g4

16N2
c

[
αa(x) − αa(z)

]2[
αb(z) − αb(y)

]2

(25)= ᾱs

2π

∫
z

M(x,y,z)T
(2)
0 (x,z;z,y).

ThusH2→1 generates the non-linear term in the first Balitsky equation. Similarly, it is obvious to show th
operation onT (κ)

0 (x1,y1, . . . ,xκ ,yκ), will generate correctly the non-linear terms ofκ—the Balitsky equation in
the large-Nc limit (this is trivial; only one amplitude is “active”, and we need to take into account all the pos
permutations). Therefore, the Hamiltonian in Eq.(24) generates in an effective waypomeron mergings(hence the
notationH2→1); one has a transition of the formn + 1→ n where, again,n − 1 of the pomerons are spectators

Note also that the BFKL pieceH †
0 [α, δ/iδα] of the Hamiltonian is self-dual. Indeed, the dual conjugate

Eq.(12) is H0[δ/iδρ,ρ] with

(26)H0 = 1

2N2
c

ᾱs

2π

∫
u,v,z

M(u,v,z)

[
δ

δρa(u)
− δ

δρa(z)

][
δ

δρa(z)
− δ

δρa(v)

]
ρb(u)ρb(v).

While H0 is not identical toH
†
0 in Eq. (12), both Hamiltonians are equivalent, as we show now. To this

we use Eq.(26) to deduce the evolution equation for the bilocal operatorn(x,y) ≡ ρa(x)ρa(y), which, up to a
normalization factor, can be identified with thedipole number densityin the target wavefunction[1,18] (see also
the discussion towards the end of this Letter). One then finds thatn(x,y) obeys the BFKL equation in dipole form
that is, Eq. (5.7) in Ref.[1]. Thus, the Hamiltonian(26) describes the BFKL evolution of a system of dipoles, a
in that sense is equivalent toH †

0 , Eq.(12).
Thus the total Hamiltonian of our pomeron effective theory reads

(27)H † = H
†
0 + H

†
1→2 + H

†
2→1.

The HamiltonianH †
0 , describing the BFKL evolution, plays here the role of the free pomeron Hamiltonian

other two piecesH †
2→1 andH

†
1→2 correspond, respectively, to pomeron merging and splitting, and will natu

generatepomeron loopsin the course of the evolution. The minimal pomeron loop, which is simply the one
correction to the scattering amplitude〈T (x,y)〉 , can be isolated by the successive operation of these two pa
Y
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the Hamiltonian, namelyPL = H
†
1→2H

†
2→1T0. The explicit results reads

(28)PL = −
(

ᾱs

2π

)2(
αs

2π

)2 ∫
u,v,z,w

M(x,y,z)M(u,v,w)A0(x,z|u,w)A0(z,y|w,v)∇2
u∇2

v

〈
T0(u,v)

〉
Y
.

Note that this result is free of any (ultraviolet or infrared) divergences. For instance, the pole in the dipole k
z = x is harmless because ofA0(x,z = x|u,w) = 0.

A simple physical picture of this result is obtained by assuming that this pomeron loop has been genera
the first two steps in the evolution starting with a target which is itself an elementary dipole(x0,y0). Then, Eq.(28)
simplifies to:

(29)PL
0 = −2

(
ᾱs

2π

)2

α4
s

∫
z,w

M(x,y,z)M(x0,y0,w)A0(x,z|x0,w)A0(z,y|w,y0).

This result has a clear physical interpretation: both original dipoles—in the projectile and the target—sp
new dipoles, processes which are represented by the two dipole kernels timesᾱ2

s . Then, the child dipoles from th
two systems scatter with each other, by exchanging two pairs of gluons; this yields the two factorsA0 timesα4

s .
Finally, note that this contribution is negative, as expected, leading to a decrease in the amplitude in the c
the evolution.

As we have already emphasized, the Hamiltonian(27) reproduces the complete equations of motion establis
in [1,8,12]. One may gain some insight on how this works by analyzing how the merging processes in the e
Hamiltonian compare to those deduced from correct microscopic dynamics as described by JIMWLK. Th
of HJIMWLK , Eq.(9), on the full dipole scattering amplitudeT (x,y), Eq.(6), is

(30)
δ

δαa
Y (u)

δ

δαb
Y (v)

T (x,y) = g2

Nc

(δyv − δxv)
[
δux tr

(
tbtaV †

x Vy

) − δuy tr
(
tatbV †

x Vy

)]
.

Simple algebra then easily yields the first Balitsky equation:

(31)HJIMWLKT (x,y) = ᾱs

2π

∫
z

M(x,y,z)
[−T (x,y) + T (x,z) + T (z,y) − T (x,z)T (z,y)

]
.

Then, after expanding the dipole operatorT in the weak-field limit, and keeping terms up to the quartic order w
respect to gauge fieldα, one finds an evolution equation which contains not only the BFKL dynamics, but als
lowest order mergings (four gluons merging into two).

Consider now the action of the JIMWLK Hamiltonian onT0(x,y). Since:

(32)
δ

δαa
Y (u)

δ

δαb
Y (v)

T0(x,y) = g2

2Nc

δab(δxu − δyu)(δxv − δyv),

we have:

(33)HJIMWLKT0(x,y) = g2

2N2
c

ᾱs

2π

∫
z

M(x,y,z)Tr
(
1+ Ṽ †

x Ṽy − Ṽ †
x Ṽz − Ṽ †

z Ṽy

)
.

When expanding the Wilson lines in powers ofα, one obtains quadratic terms describing the BFKL evolution
T0(x,y) plus higher order terms which describen → 2 gluon mergings. But at this level, it is easy to see that
4 → 2 terms generated by this expansion are not the same as those in the r.h.s. of Eq.(25). For instance, while
the merging term in Eq.(25) includes a piece containing three different transverse positions (i.e.,αa

xαa
zαb

zαb
y ), the

corresponding JIMWLK result in Eq.(33)cannot generate such terms.
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Thus the actual, microscopic, dynamics of gluon merging in QCD is considerably more complicated tha
simple effective theory: cancellations occur in the action ofHJIMWLK on Wilson lines, leaving a simple Hamiltonia
acting on elementary pomerons. We interpret these cancellations as reflecting the fact that the dressing of
by multiple scattering effects plays no role in their effective dynamics.

This brings us to comment on the nature of the dynamics described by the effective theory. This theory g
evolution equations for the pomeron operatorsT

(κ)
0 which are formally identical to the equations satisfied by

complete dipole scattering operatorsT (κ) in QCD at largeNc. This means in particular that the solutions to
equations for〈T (κ)

0 〉Y will appear to saturate the unitarity (or ‘black disk’) limitT0 = 1 in the high energy limit,
in spite of the fact that the respective operators describe single scatterings only! This indicates that one
extremely careful in the physical interpretation of the effective theory.

Let us then have a closer look at themicroscopicdynamics that it describes. Effectively, the evolution of
target reduces to that of a system ofdipolessubjected to a dynamics of areaction–diffusiontype: the dipoles
undergo BFKL dynamics, they can split (one dipole into two dipoles), and they can also recombine wit
other (two dipoles into one). The dynamics of such a system of dipoles is entirely coded in thek-body densities
n

(k)
Y (see Section 5 in Ref.[1] for a precise definition). Although we shall not work this out explicitly here

is not hard, by using the results of Ref.[18] to relate these dipole densities to colorless correlation function
the color charge densityρa . For instance, thedipole number operatorn(x,y) can be identified with the biloca
operatorρa(x)ρa(y) of the effective theory. With such identifications, and by using the Hamiltonian in Eq.(27), it
is straightforward to construct the evolution equations satisfied by the dipole densities. One thus finds thatnY (x,y)

obeys the BFKL equation supplemented by a negative term proportional ton
(2)
Y , which is generated by the mergin

pieceH
†
2→1 of the Hamiltonian. Furthermore, the r.h.s. of the equation for∂n

(2)
Y /∂Y includes the standard BFK

terms describing the individual evolutions of the two dipoles(x1,y1) and(x2,y2), but also a positive,fluctuation
term, proportional tonY —this is generated by the splitting pieceH

†
1→2 of the Hamiltonian, and is the same as t

corresponding term deduced from the dipole picture in Refs.[1,8]—and, finally, a negative,recombination, term
proportional ton(3)

Y . We thus obtain an infinite hierarchy, which describes a dipole reaction–diffusion dynam
anticipated, and predicts the saturation of the dipole density at a value of order 1/α2

s .
Now, it is clear that this is only aneffective dynamicssince, as well known, dipoles in real QCD do not si

ply recombine with each other: the interaction between two dipoles inside the target wavefunction goes
the large-Nc approximation and leads to more complicated color configurations, involving higher color mult
[13]. The reason why it has been possible tosimulatethe non-linear effects responsible for unitarity correction
the equations for the scattering amplitudes through simple ‘dipole recombination’ processes in the target w
tion is because the same non-linear effects can be interpreted asprojectileevolution, in which case they describ
the splitting of a dipole in the projectile. Then, the 1→ 2 dipole splitting vertex from the projectile is simp
reinterpreted, within the effective theory, as a 2→ 1 ‘dipole merging’ vertex in the target. Note finally that a si
ilar dipole model including splitting and recombination has been recently used in Ref.[14] to generate evolution
equations with pomeron loops. The present work shows how thiseffectivedynamics may indeed emerge from t
actual target dynamics in QCD, and points to numerous subtleties involved in this precise connection.
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