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Abstract

We propose an effective theory which governs pomeron dynamics in QCD at high energy, in the leading logarithmic approx-
imation, and in the limit wher&v., the number of colors, is large. In spite of its remarkably simple structure, this effective
theory generates precisely the evolution equations for scattering amplitudes that have been recently deduced from a more com:
plete microscopic analysis. It accounts for the BFKL evolution of the pomerons together with their interactions: dissociation
(one pomeron splitting into two) and recombination (two pomerons merging into one). It is constructed by exploiting a duality
principle relating the evolutions in the target and the projectile, more precisely, splitting and merging processes, or fluctuations
in the dilute regime and saturation effects in the dense regime. The simplest pomeron loop calculated with the effective theory
is free of both ultraviolet or infrared singularities.

0 2005 Elsevier B.V. Open access under CC BY license,

There has been recently significant progress in our understanding of high energy hadronic scattering, and in
particular of the processes occurring at large parton densities and which are believed to be responsible for the
unitarization of the scattering amplitudes and the saturation of the parton distributions. Non-linear evolution equa-
tions have been derived which describe the approach towards saturation and the unitarity limit, and which have the
structure of stochastic evolution equations. However, it has been very recently recog@hitteat the equations
which were considered as the most complete, namely the Balitsky—JIMWLK (Jalilian-Marian—lancu—McLerran—
Weigert-Leonidov—Kovner) equatiofd-5], are in fact incomplete. This is manifest in the statistical language by
the presence of fluctuations at high momgt&] which are not well accounted for by the JIMWLK evolution of
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the target wavefunctiofi]. In the language of pomerons, the JIMWLK equation contains pomeron merging but
not also pomeron splitting.

Following this observation, two of us (E.I. and D.T.) have constructed a hierarchy of non-linear evolution equa-
tions for the dipole scattering amplitudes which include both gluon mergings and gluon splittings, and thus generate
pomeron loops through iteratiofik,8]. These equations have been argued to hold in the limit where the number
of colors NV, is large (V. > 1), and indeed it has been checked explicitly in R&f.that the vertices appearing in
these equations are the same as the corresponding ‘triple pomeron vertices’ computed in perturbative QCD at large
N, [9-11]. A complementary approach has been developed by Mueller[@Rhlvho proposed a generalization of
the JIMWLK equation which includes the effects of pomeron splitting in the dilute regime and forNargénese
two approaches follow the same general strategy—namely, they combine the non-linear JIMWLK equation at high
density with the color dipole pictuf@3] in the dilute regime—and lead indeed to the same evolution equations for
the scattering amplitudes, as demonstrated in [Bgf(See also Ref§14,15]for related recent developments.)

It is our purpose in this Letter to show that the equations obtaing¢tl, 812] can be reformulated in term of
an effective theory for pomerons. By ‘pomeron’ we mean here the color singlet exchange which describes the
interaction between an elementary color dipole and the field of a target in a single scattering approximation, and
which reduces to two gluon exchanges in lowest order perturbation theory. The construction of the effective theory
involves a projection onto restricted degrees of freedom, precisely the pomerons, and is expressed in terms of a
simple Hamiltonian which describes the BFKL evolution of the pomerons together with their splitting and merging.
By requiring that the evolution should lead to identical results whether it is viewed as the evolution of the target
or that of the projectile, one arrives at a duality principle which is used to construct the effective Hamiltonian
from the Hamiltonian derived ifiL2] in the dilute regime. The limitations of the effective theory, and the subtle
mathematical problems that arises when one attempts to analyze its microscopic content will be briefly discussed
at the end of this Letter.

Most treatments of high energy scattering rely on an asymmetric approach: typically, the ‘projectile’ is viewed
as a collection of test particles which probe the color field of the ‘target’. At high energy, the eikonal approximation
is a good approximation, and the scattering of an elementary color charge is describafldnndineof the form

VxT[O!] = Pexr(ig/dx_a“(x_,x)t“>, (1)

wherex denotes the transverse coordinate of the patrticle, which is not affected by its interactions with the field
of the targetw”(x~, x), t* are the generators of the SU(3) algebra in the representation appropriate for the test
particle, and the symbol P indicates that, in the expansion of the exponential, the color mét¢icesr)r* must
be ordered from right to left in increasing ordendn (we are using light-cone vector notations, = (1 +z)/v/2).
For a more complex projectile, viewed as a collection of elementary color charge$;niarix is given by a
product of Wilson lines like Eq(1), one for each elementary color charge.

In a frame in which most of the total rapidityis carried by the target, the target wavefunction can be described
as acolor glass condensafé,16], and the correspondin§rmatrix is obtained as:

(S)Y=/D[Ot]Wy[Ot]S[Ot], @

wherea = a?(x 7, x) is a classical field randomly distributed witkeight functionW [«] (a functional probability
distribution), andS[«] is the projectileS-matrix for a given configuration of this random field. With increasinhg

2 Note that the opposite terminology for what one means by ‘splitting’ and ‘merging’ would be more natural in relation with Balitsky equa-
tions, which refer to the evolution of the projectile. To avoid confusion on this point, in this Letter we shall systematically use the terminology
appropriate to target evolution.
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the weight function evolves according to a functional renormalization group equation, of the generic form:

i Wylal=H ° Wylo] (3)
A AT Mt

where H is a functional differential operator commonly referred to as the ‘Hamiltonian’. Alternatively, one can
view the same evolution as a change in the scattering operator, for a fixed weight ful¢tipnTo see that, take

a derivative w.r.tY in Eq.(2), use Eq(3), and perform an integration by part in the functional integral:

d

8
a—y(S)Y:/D[a]Wy[a]HT[a, %]S[a]. (4)

This can be interpreted as describing the evolution of the scattering op&y#adr with ‘Hamiltonian’ H™:

B%SY [o] = HT[a, %}SY []. (5)
Both points of view, somewhat reminiscent of, respectively, the Schrédinger and the Heisenberg pictures of quan-
tum mechanics, will be used in the following discussion (although we shall refrain from introducing explicitly
rapidity dependent operators). In the Schrédinger picture, one puts emphasis on the evolution of the state vector,
whose role is played here by the weight functioigl[«]. In the Heisenberg picture, the state vector is a constant
reference vector involved in the calculation of all expectation values, Wgeg, and one puts all the evolution
in the operators, here the scattering operasgfise]. The Schrodinger picture corresponds to evolution equations
which aim at providing a detailed microscopic description of the color field in the target, together with its compli-
cated correlations. This is what the JIMWLK equation does. The Heisenberg picture rather describes how the test
particles get dressed by color field fluctuations as they are boosted to higher rapidities. In this approach, the com-
plicated color correlations in the target wavefunction are notimmediately visible, and indeed the resulting equation
of motion are established somewhat more easily. This second approach is essentially the one used by Balitsky to
obtain his hierarchy of equations.

The test particles that we shall consider are in fact elementary color dipoles, whose scattering amplitude reads:

Tx,y)=1— Nitr(vjvy), (6)

for a dipole with the quark leg at and the antiquark leg at. Here the Wilson lines are taken in the fundamental
representation. We shall be interested in situations where the dipoles scatter off the color glass in the two-gluon
exchange approximation (weak field limit) and we shall work in a la¥gdimit. In the weak field limit, the
amplitude for a single dipole to scatter is obtained after expanding each of the Wilson lines to secondarder in

VxT[O!] =1+ ig/dx_oz“(x_, x)t
g2
— ?/dxi/d)fa“(xf,x)ab(yf,x)[e(xf —yOP oy —xf)tbt“] +ee ©)
Note that, to this order, the™-ordering of the color matrices starts to play a role in &j. Still, this ordering is

irrelevant for the computation of the dipole amplitude to lowest order, because of the symmetry of the color trace:
tr(t94) = 8% =tr(¢*+*). Namely, one finds:

g2 >
T(x,y)~To(x,y) = W["‘“(") —a*n]° (8)

which involves only the integrated field' (x) = [ dx~ a“(x~, x). Similarly the amplitude fok dipoles to scatter
is given, within the same approximation, W)(xl, Yoo Xk Yio) = To(x1, y1) - - - To(xk, y,.)- In what follows,
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we shall refer to the amplitud@) describing the single-scattering of an elementary dipole off a given color field
as to a ‘pomeron exchange'. Similarl&é") describes the exchangeopomerons.
At this point we find it useful to digress on the linear evolution equation known as BFKL equation. This will
allow a few observations which illuminate some of the mathematical subtleties involved in taking th¥ Jdimé
when constructing our effective theory. Consider first the JIMWLK Hamiltonian. As shown ifRéfwhen it is
restricted to act on gauge—invariant observables, it can be given the simple form:
) )

/ M, v, 2) (L4 VT, — V1, — iyt 0 0 ©)

Hymwrk = - ,
isay (u) isab (v)

16713

u,v,z2

where M is the dipole kernel

(x — y)?
(x —2)%(z - y)?
Here the Wilson lines are in the adjoint representation. The derivatives can be freely moved across the bilinear

form in Wilson lines, because they commute with the latter in the presence of the dipole kernel. Fhakig.x
is Hermitian. The BFKL limit is obtained by expanding the Wilson lines to lowest non-trivial order @ne gets:

M(x,y,2)= (10)

) 5

HppkL = 16]'[3 / M@, v, Z)[Ol (u)—a (Z)][ b(z)—ab(v)]faCffbfd (11)

and it is not difficult to verify thatgrk. is again Hermitian.

Let us now turn to the ‘large¥. limit'. This is obtained by (i) restricting the action digek. to the dipole
operatorsTg’() mentioned above and (ii) preserving only the dominant terms at ld¢ge the action of the Hamil-
tonian on these operators. When acting on the color fields inside a single Tadia., on the same dipole), the
two functional derivatives irHgrk, Yyield a factors?, and thenfe</ fbfc = —N.8%% produces the expectetd,
enhancement. On the other hand, the action on the color fields within two different fag{oes, upon two differ-
ent dipoles) produces no such enhancement. Thus, atMrgdsrk. can be equivalently replaced by an effective
Hamiltonian in which the two functional derivatives are traced over color. This Hamiltonian, which we dé&lote
for reason which will become clear shortly, is

8

St (w) Sab (v)’ (12

HJ = chzg—; f M@, v, 2)[a @) — a®(2)][a(z) —a® ()]
u,v,z

wherea; = oy N /7. In the equation above, we have suppressed the sub¥ooipthe functional derivatives since
they now act on functions which depend only upon the color field integratedxoveso like in Eq.(8). Let us
emphasize that, as obvious from the construction we have given, the two derivatHésaime to act orthe same
dipole Note also that, as opposed to the origifkdrx , H, g is not Hermitian: in fact, it is readily seen that its

adjoint is ill-defined. This reflects the fact that the construcuorHéflnvoIves a projection on a specific set of
degrees of freedom, and once this is done, one looses the possibility to integrate by part agnrEqrder
to let Hp act on the weight functionalV [«]. These special mathematical properties, restriction of the space on
which the Hamiltonian is acting and loss of hermiticity, are general, and peculiar, mathematical features of the
effective theory that we shall present. It is tempting to speculate that in doing theMafgeit we are renouncing
to follow the evolution of some color correlations (precisely those which are suppressed atJargad that the
corresponding loss of information may be responsible for the simpler Markovian stochastic theory that we shall
arrive at.

We now return to the main stream of our discussion and establish a useful property. |h8Red. symmetric
description was obtained for the scattering between two color glasses in the regiméatiergstems are in the
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weak field regime. The final formula reads
(5} = [ DlecetWyfarel [ D[aL]Wy[aL]exp{i / dzzpﬁz)a;a(z)}. (19)

In this expressionp{ (x) = —Vfai(x) is the classical color charge density of the left-mover, &ind ,[or]

and W, [« ] are the weight functions for the right-moving and, respectively, left-moving color glass (note that

the rapidity of the left-mover is measured positively to the left, so that as weyathye total rapidity interval

between projectile and target remains equat JoThe precise conditions for the validity of E(].3) are detailed

in Ref. [18]. Let us emphasize here a non-trivial aspect of this formula. Although it is essentially a weak field

formula which assumes that the elementary dipoles interact only once, it contains the possibility that any number

of dipoles of the projectile interact with an equivalent number of dipoles in the target. This3does account

for multiple scattering, albeit in a restrictive way (each dipole interacting only once). These multiple scattering

generate unitarity correctionsiifis large enough. At the same time, we require both color glasses to be unsaturated.

This imposes an upper bound Brand also limits the range of variation feiwithin which Eq.(13)is correc{18].
Lorentz invariance implies that, whiles)y may depend on the total rapidity intervé| within the range of

validity of Eq. (13) it cannot depend upon the rapidifyused to separate the system into a ‘projectile’ and a

‘target’, or equivalently on the frame which we choose to describe the collision. This implies (see alfORef.

for a similar argument):

a(s
0= <8y>y =fD[om]/D[aL]exp{i/dzzpi(z)a?‘e(z)}

X { (%WY—y[aR]> Wylar]l+ Wy_ylag] (%Wy [OtL]> } (14)
The evolution of both weight functions are given by:
iWY—y[OlR] = _iWY—y[OlR] = —H|:0lR, Li| Wy _ylagl, iWy[OtL] = H|:OlL, L:| Wylar].
ay aY idog ay idar | - (15)

We shall keep the evolution of the left-mover as shown in the above equation, but perform an integration by parts
in the functional integral ovearg in Eq.(14). Next, we note that

HT|:aR, :|exp{i/d2z pi(z)oz%(z)} = H[%, pL:| EXp{i/dzz pZ(z)oz%(z)}. (16)
L

Using this identity in Eq(14) and performing a further integration by parts, now wa. (recall thatp{ (x) =
—Vfozz (%)), one is left with a differential operator acting &[] = W, [p. ] (with a slight abuse in the notation):

8
i(SOlR

1)
H*[m, pL} WylpLl. (17)

For Eq.(14) to be satisfied, the contribution above should cancel against the term ifl&describing the
evolution of the left-mover. This condition leads to the ‘self-duality’ condition:

1) 1)
H|:aLaE}Wy[aL]ZHT[@apL}Wy[PLL (18)

The same relation holds obviously for the ‘right’ variabégs or.
Going back to Eq(16), one sees that what is involved in the duality operatisna matching of splitting
processes in the left-movers, encoded by terms in the Hamiltonian of theg®8fysp”, into merging process

3 To our knowledge, the duality between the roles of the operai%ﬁé /8p™ anda” 52/aa2 has been first recognized by L. McLerran.
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Fig. 1. An illustration of the relatioi16). o denotes the color charge of the left-mover (L) ani$ the color field of the right-mover (R). The
same physical process can be represented by either of the two diagrams in the middle, and can be viewed either as a merging in R, or as a splitting
in L. The first interpretation is natural when the diagram is produced by acting on the eikonal line with the Hamﬂi%gignv 02 54/5p4 for

L (cf. Eq. (19)). The second interpretation rather corresponds to the actidﬁljr Qfy ~ o482 /&x2 for R (cf. Eq.(24)).

in the right-movers, corresponding to terms of the farfrs?/sa2. An example of such a matching is illustrated

in Fig. 1 Splitting terms dominate in the dilute regime where they control the fluctuations, while merging terms
become essential in the saturation regime where parton densities are largéudthegtion—saturation dualitys
turned into a constraint on the evolution Hamiltonian of either the projectile or the target {hdq.

The self-duality constraint, which we expect to hold within the limited range of energies in which the factor-
ization (13) is valid* [18], will be used now to construct a simple Hamiltonian describing the pomeron dynamics
in the dilute regime, starting from the known, dominant, contribution containing only splitting processes that has
been constructed by Mueller et §l2]. Quite remarkably, and somewhat unexpectedly, this Hamiltonian leads to
equations of mation which reproduces the exact ones at lslrgé,8], that is the effective theory appears to be
valid beyond the dilute limit where it is established. The Hamiltonian constructd®]jmeads

Hio= /M(u v,2)G(u1lu, 2)G(vilu, 2)G 2|z, V)G (v2lz, v)

) 3 ) 8
X
Sa®(uy) Sad(v1) Sab (uz) sab(v2)
In Eqg. (19), the integration goes over all the transverse coordinatesz, u1, v1, uz, v2. The functionG (u1|u, z)
is,uptoa factorgt“ the classical field created &f by the elementary dipolé:, z), and reads

16N3 21

V2V2a¢ (u)a (v). (19)

G —2)?
" —w?
Itis easy to understand (and was explicitly showf8i) that this Hamiltonian generatesmeron splittingsMore
precisely, the result of the operation Hf_)z on the two-pomeron exchange amplituq]@) is proportional to7p,
and thus generates the followirfctuation term in the evolution equation fdf’o(z) (x1,y1; X2, y2):

Guilu,z) = (20)

2 _
(07 U
H TP = (é) EA / M@, v, w)Ao(x1, y1|u, w)Ao(x2, yolw, v)VEV2To(u, v), (21)
u,o,w

whereaSZAo is the amplitude for dipole—dipole scattering in the two-gluon exchange approximation and for large
N¢:

292
(x —0)%(y —u) ]

Aol ylu, v) = [ & —u)2(y — )2

(22)

4 The self-duality conditiorf18) has recently been claimed to hold in a much broader cofit&kt
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Clearly, this process corresponds to the splitting of one pomeron into two. In general, the Hamiknian
can describe the transition— n + 1, in which case: — 1 of the pomerons are simply “spectators”. Note that
Hi_, > is non-Hermitian, which we interpret as reflecting again the lavgepproximation implicitly involved in
its derivation.

To apply the duality transformation, it is convenient to reexpiss » in terms of the sourceg®(x) of the
color fielda(x), by usingp®(x) = —V2a“(x). Then we obtain

PP Gy Y LRy L NS LYY (23)
1*2—‘FN§§/ (“"”Z)[Spa(ufapa(z)} [6pb(z>_apb(v>} o

At this point we force the Hamiltonian to be self-dual. This is done by addindg/ta»[§/idp, p] its dual
Hf_)z[a, 8/isa] = Ho_,1 (this new notation will be justified shortly). The Hermitian conjugatddef, ; reads

+ 1)
%%IWZ/M“WW@“@”%>””wwWw )
and the action oHJr _.1 On the dipole scatterlng amplitude is
HY 1 Tox, y) = / Mx,y.2) 302 o) — o @ P @ — ot )]
= Zs/M(x,y,z)Téz)(x,z;z,y). (25)

Thus H»_,1 generates the non-linear term in the first Balitsky equation. Similarly, it is obvious to show that the
operation oriTé")(xl, Y1, ---5 Xk, ¥,), Will generate correctly the non-linear termswef-the Balitsky equation in
the largeaV, limit (this is trivial, only one amplitude is “active”, and we need to take into account all the possible
permutations). Therefore, the Hamiltonian in E24) generates in an effective w@pmeron mergingéhence the
notationH»_,1); one has a transition of the form+ 1 — n where, againg — 1 of the pomerons are spectators.

Note also that the BFKL piecélg[a,S/iSa] of the Hamiltonian is self-dual. Indeed, the dual conjugate of
Eq.(12)is Hol8/isp, p] with

_ 1% 5 8 58 T
0= oN2 on / M(u’v’Z)[&)“(u) Sp“(z)][ap“(z) (Sp“(v):|p @)p"(v). (26)
u,v,z

While Hp is not identical toHc;r in Eq. (12), both Hamiltonians are equivalent, as we show now. To this aim
we use Eq(26) to deduce the evolution equation for the bilocal operatar, y) = p%(x)p“(y), which, up to a
normalization factor, can be identified with thgole number densitin the target wavefunctiofi, 18] (see also
the discussion towards the end of this Letter). One then findg{ltaly) obeys the BFKL equation in dipole form,
that is, Eq. (5.7) in Ref1]. Thus, the Hamiltoniaf26) describes the BFKL evolution of a system of dipoles, and
in that sense is equivalent feSOT Eq.(12).

Thus the total Hamiltonian of our pomeron effective theory reads

H' =Hl+H] ,+H 27)

The HamiltonianHO, describing the BFKL evolution, plays here the role of the free pomeron Hamiltonian. The

other two plece§712_>1 andH. _)2 correspond, respectively, to pomeron merging and splitting, and will naturally
generatgpomeron loopsn the course of the evolution. The minimal pomeron loop, which is simply the one-loop
correction to the scattering amplitudE(x, y))y, can be isolated by the successive operation of these two parts of
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the Hamiltonian, namelPL = HLZHZLlTO. The explicit results reads

- \2 2
PL = —(‘Zx—n) (%) / Mx, y, DM, v, w)Ao(x, zlu, w) Ao(z, ylw, V) VEVTo(u, v)),. (28)
u,v,z,w

Note that this result is free of any (ultraviolet or infrared) divergences. For instance, the pole in the dipole kernel at
z =x is harmless because dfy(x, z = x|u, w) =

A simple physical picture of this result is obtained by assuming that this pomeron loop has been generated after
the first two steps in the evolution starting with a target which is itself an elementary digple,). Then, Eq(28)
simplifies to:

PL ——2( ) /M(x ¥, )M (x0, yo, w)Ao(x, z|x0, w).Ao(z, y|w, yg). (29)

This result has a clear physical interpretation: both original dipoles—in the projectile and the target—split into
new dipoles, processes which are represented by the two dipole kernel@ﬁn‘l’émn, the child dipoles from the
two systems scatter with each other, by exchanging two pairs of gluons; this yields the two fagtoresa?.
Finally, note that this contribution is negative, as expected, leading to a decrease in the amplitude in the course of
the evolution.

As we have already emphasized, the Hamiltor{##) reproduces the complete equations of motion established
in [1,8,12] One may gain some insight on how this works by analyzing how the merging processes in the effective
Hamiltonian compare to those deduced from correct microscopic dynamics as described by JIMWLK. The action
of Hymwik , EQ.(9), on the full dipole scattering amplitud®&(x, y), Eq.(6), is

8 J g bayt byt
T(x,y)="-(8yp — Ox0)|0ux tr(t’t* V> Vy,) — 8y, tr(t?t° V. V,)|. 30
80!‘}(u) 50(?,(v) (x,y) c( yv xv)[ ux ( X y) uy ( . y)] (30)

Simple algebra then easily yields the first Balitsky equation:

HJ|MWLKT(xv y) = ;_:[/M(x’ ys Z)[_T(xv J’) + T(xv Z) + T(Zs )’) - T(xs Z)T(Zs .Y)] (31)

Then, after expanding the dipole operalbin the weak-field limit, and keeping terms up to the quartic order with
respect to gauge field, one finds an evolution equation which contains not only the BFKL dynamics, but also the
lowest order mergings (four gluons merging into two).

Consider now the action of the JIMWLK Hamiltonian @p(x, y). Since:

8

- = 3“” Sxu — Syu) (Bxv — Syv), 32

Sa‘;(u) 50[1;( ) To(x, y) = N (Oxu yu) (Oxv o) (32)
we have:

Hymwik To(x, y) = 2N22 /M(x y, ) Tr(1+ VIV, - viv, - vv,). (33)

When expanding the Wilson lines in powersogfone obtains quadratic terms describing the BFKL evolution of
To(x, y) plus higher order terms which describe-> 2 gluon mergings. But at this level, it is easy to see that the
4 — 2 terms generated by this expansion are not the same as those in the r.h.s(2%)Bepr instance, while
the merging term in Eg25) includes a piece containing three different transverse positionw@@gafaﬁ), the
corresponding JIMWLK result in E¢33) cannot generate such terms.
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Thus the actual, microscopic, dynamics of gluon merging in QCD is considerably more complicated than in the
simple effective theory: cancellations occur in the actioBgfawLk on Wilson lines, leaving a simple Hamiltonian
acting on elementary pomerons. We interpret these cancellations as reflecting the fact that the dressing of pomeron:
by multiple scattering effects plays no role in their effective dynamics.

This brings us to comment on the nature of the dynamics described by the effective theory. This theory generates
evolution equations for the pomeron operamg? which are formally identical to the equations satisfied by the
complete dipole scattering operatd&” in QCD at largeN,.. This means in particular that the solutions to the
equations for(TO(’())y will appear to saturate the unitarity (or ‘black disk’) lin#iy = 1 in the high energy limit,
in spite of the fact that the respective operators describe single scatterings only! This indicates that one must be
extremely careful in the physical interpretation of the effective theory.

Let us then have a closer look at thecroscopicdynamics that it describes. Effectively, the evolution of the
target reduces to that of a systemdipolessubjected to a dynamics of raeaction—diffusiontype: the dipoles
undergo BFKL dynamics, they can split (one dipole into two dipoles), and they can also recombine with each
other (two dipoles into one). The dynamics of such a system of dipoles is entirely codedkibdity densities
n(yk) (see Section 5 in Refl] for a precise definition). Although we shall not work this out explicitly here, it
is not hard, by using the results of R§E8] to relate these dipole densities to colorless correlation functions of
the color charge density?. For instance, théipole number operaton(x, y) can be identified with the bilocal
operatorp?(x)p?(y) of the effective theory. With such identifications, and by using the Hamiltonian i2&9j.it
is straightforward to construct the evolution equations satisfied by the dipole densities. One thus findacthat
obeys the BFKL equation supplemented by a negative term proportiomg? tovhich is generated by the merging

pieceHZL1 of the Hamiltonian. Furthermore, the r.h.s. of the equatiori)hﬁf)/aY includes the standard BFKL
terms describing the individual evolutions of the two dipales, y;) and(x2, y,), but also a positivefjuctuation
term, proportional tony—this is generated by the splitting pieﬁl{r_)2 of the Hamiltonian, and is the same as the
corresponding term deduced from the dipole picture in H&f8]—and, finally, a negativagcombinationterm
proportional tcnf). We thus obtain an infinite hierarchy, which describes a dipole reaction—diffusion dynamics, as
anticipated, and predicts the saturation of the dipole density at a value of quer 1

Now, it is clear that this is only aaeffective dynamicsince, as well known, dipoles in real QCD do not sim-
ply recombine with each other: the interaction between two dipoles inside the target wavefunction goes beyond
the largeN, approximation and leads to more complicated color configurations, involving higher color multipoles
[13]. The reason why it has been possiblsitoulatethe non-linear effects responsible for unitarity corrections in
the equations for the scattering amplitudes through simple ‘dipole recombination’ processes in the target wavefunc-
tion is because the same non-linear effects can be interpref@djastile evolution, in which case they describe
the splitting of a dipole in the projectile. Then, the-% 2 dipole splitting vertex from the projectile is simply
reinterpreted, within the effective theory, as a21 ‘dipole merging’ vertex in the target. Note finally that a sim-
ilar dipole model including splitting and recombination has been recently used ifilRgfo generate evolution
equations with pomeron loops. The present work shows hoveffestivedynamics may indeed emerge from the
actual target dynamics in QCD, and points to numerous subtleties involved in this precise connection.
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