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ABSTRACT

For Banach lattices E and F, #(E,F) is the space of all continuous linear operators E—F,
Y'(E, F) is the vector space of all regular continuous linear operators E—F which is endowed with
the r-norm. This paper concerns the problems: (1) is every continuous linear operator E— F regular?
(2) if the answer to (1) is ““yes’’, there is a further problem: is its operator norm in A, F) equal
to its r-norm in #’(E, F)? A series of conclusions is obtained for cases in which each of E and F
is one of Banach lattices , (1 =p<), Iy, ¢g, ¢, C[0,1] and C(X).

INTRODUCTION

For Banach lattices E and F, AE, F) is the space of all continuous linear
operators E—F, Y1(EF) is the set of all positive elements of AE,F). In
general, #(E, F) possibly is not a vector lattice. Let ¥'(FE, F) denote the vector
space of all regular operators E—F (i.e., every element T of ¥'(E, F) possesses
a decomposition T=7,— 7, where T| and T, are positive and continuous) in
which the r-norm |- |, is defined (cf. IV. § 1 of [S]) by

[IT{|,=1nf {H Tl+ TZM: T= Tl— TZ’ ]-}Gy+(E,F) (l=1,2)}

Equivalently, | T|,=inf {|2T,~T|: Tye ¥ *(E,F) with T\=T}. It is easy to
see: for every Te Y(E,F), (1) |T|=|T|,; 2) if Ty=T and To= — T then
|Tol =|T|,. (Indeed, since T=3[(To+T)—(Ty—T)} and T,+T, T,—Te
€ Y*(E,F), we have |T|,=<|3[(Ty+ T)+ (Ty— T)]| = | T,|.) The r-norm makes
Y"(E,F) into an ordered Banach space (cf. IV. Exerc. 3 of [S]). If F is order

* The research work was done at the Catholic University in Nijmegen, the Netherlands.
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complete, then |T'|,=||7|| and in this case ¥'(E,F) is an order complete
Banach lattice (cf. IV. 1.4 of [S]).

When studying the relationship between #(E,F) and ¢'(E,F), two basic
problems come to us: for Banach lattices E and F, is every continuous linear
operator E—F regular? and if the answer to this problem is ‘‘yes’’, there is a
further problem: is its operator norm in #(E,F) equal to its r-norm in
Y'(E,F)? (or, whether or not AE, F)= %"(E, F) and whether or not A&, F)=
= ¥'(E, F) where the meanings of ‘““="" and ‘="’ will be explained below.) So
far, the two problems are still far from their solutions. An essential theorem
concerning the problems is Theorem 1.5 of Chap. IV of [S] which will be
quoted in Section 1. In this paper we consider the problem, taking for £ and
F certain classical Banach lattices, that is, each of E and F is one of Banach
lattices /, (1=p<®), Iy, ¢, ¢, C[0,1] and C(X). Most of these cases we can
settle in Section 2.

While considering the classical Banach lattices, we find that some special
observations can be extended to general situations. As necessary preparations
for Section 2 we put them into Section 1.

The basic terminology and elementary facts can be found, for instance, in
[S]. By AE, F)= %'(E, F) we mean that every element of #(E, F) is regular. By
HE, F)+ ¥'(E, F) we mean that there exists an element of #(E, F)) which is not
regular. By A(E, F)= ¥'(E, F) we mean that AE, F)=¢"(E,F) and |T|=|T|,
for every Te AE,F).

In this paper, X and Y are always compact Hausdorff spaces and they
are always infinite. (If a compact Hausdorff space X is finite, it is clear
that, for every Banach lattice F, AC(X),F)= ¥ (C(X),F) and AF,C(X))=
= ¥Y'(F, C(X)).) We define

X;: ={xeX: there exist x;,X,,... in X with x;#x; ({#j) and lim x,=x}.

The cardinal of X; is denoted by Card X;. If X; is infinite, we denote simply
Card X;=oc. When we say ‘‘a nontrivial sequence {x,},.,’’ we always
assume that x; #x; ({+#/). If a nontrivial sequence {x,}, .\ converges to x,,, we
assume that x,#X, (n€N).

The characteristic function of a subset A of X is denoted by 1,.

I wish to thank Prof. A. van Rooij for his helpful talks while preparing this

paper.

1. NECESSARY THEOREMS AND LEMMAS

Before starting our discussion, we mention an essential theorem (cf. Theorem
1.5 of Chap. IV of [S]) as follows.

THEOREM 1.0. Let E, F be Banach lattices. Then AE, F)y= ¥'(E,F) whenever

at least one of the following conditions is satisfied:

(1) F is an order complete AM-space with unit.

(2) E is an AL-space, and there exists a positive contractive projection
P:F**—>F,
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For Te AE,F), T*.F*>E* is the adjoint operator. We know that if T is
regular then T* is also regular, but the map 7T—T7* need not preserve the
r-norm. If F is reflexive, the situation can be improved much.

THEOREM 1.1. Let E be a Banach lattice and F a reflexive Banach lattice.

(1) For any Qe Y(F* E*), there exists a Te AE,F) such that T*=2, i.e.
AFXE*)={T*:Te HE,F)}.

Q) AEF)=Y(E,F) if and only if AF* E*)=%"(F*E*).

() AE,F)=¥"(E,F) if and only if AF*\E*)=Y"(F*E*).

PROOF. (1). For Qe AF*E*), set T: =Q*. Then Te AE,F) and T*=Q.
(2) and (3) are not difficult to prove; we leave the proofs to reader. [

THEOREM 1.2. Let E,E, and F be Banach lattices. Suppose there exist
@, e AE E,) and &y AE, E) such that ©,®, is the identity map of E|.
Then

() if ®1=0 and AE,, F)= Y (E,F), then AE,F)=¥"(E\,F);

Q) if 8,20, |®,]-|®,] =1 and AE,, F) = '(E,, F) then L(E,,F)= Z"(E,, F);
(3) if ©,20 and AF,Ey) = Y'(F,Ey), then AF,Ey)= &'(F,E,);

@) if 8,20, |®,]-| ;| =1 and AF, Ey) = '(F, E;) then AF,E,)=L"(F,Ey).

The proof is direct without difficulty. We omit it.

COROLLARY 1.3. Let F be a Banach lattice and X a cbmpact Hausdorff
space. Suppose there exists a nontrivial convergent sequence in X. Then

(1) if ACX),F)=%(CX),F), then ¥(c,F)=%'(c,F);

) if ACX),F)= L (C(X),F), then #c,Fy= (¢, F);

(3) if AF, C(X))=Z'(F,C(X)), then /F,c)=2"(F,c);

@ if AF, CX))=Y"(F,C(X)), then AF,c)=Z'(F,c).

PROOF. Let {t,},<n be a nontrivial convergent sequence in X. We construct
pairwise disjoint open sets U, (ne€ N) such that 7, € U,, and choose 4, € C(X)
(neN) such that 0<h,<l1, h,(t,)=1 and 4h,=0 outside U,. For all
a=(ap,0y...)€c (On: =lim, ., @), since the series Y~ (a,~Qx)h, is
uniformly convergent, we can define @, € #(c, C(X)) by

Dia=0,lxy+ ¥ (0,—a)h,.
n=1
Obviously @, =0. Now we define &,¢e ¥ *(C(X),c) by

D, f=(f(t1), f(t2), -..) for all fe C(X).

Then &,®, is the identity map of ¢ and |®;| = |P,| =1. By Theorem 1.2, the
conclusion follows immediately. [

COROLLARY 1.4. Let F be a Banach lattice.
(1) If ACI0,11, F)=2(C[0,1], F), then Y(c,F)=¥"(c,F).
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@) If #AC[0,1],F)=2'(C[0, 1], F), then Hc,F)=4"(c,F).
@) If AF,CI0, 1) = Z"(F, CI0, 1]), then A(F,c)=Z"(F,0).
(@) If AF,CI0,1])=2"(F,CI0, 1)), then AF,c)=Z"(F,0).

The converses of (1) and (2) of Corollary 1.4 are not true. For instance, we
shall see below that ¢, ¢)=¥'(c,c) (Theorem 2.13), but AC[0,1],¢c)#
# Z'(C[0, 1], ¢) (Theorem 2.12). We do not know whether the converses of (3)
and (4) of Corollary 1.4 are true or false.

Applying Theorem 1.2, we take ¢y as E; and ¢ as E, while the map &, is the
identity map from c; into ¢ and the map @,:c—¢; is defined by

Dyx = (x(1) — x(0), Xx(2) — x(0),...) (x€,x(o0): = lim x(n)).

Then we have a corollary as follows.

COROLLARY 1.5. Let F be a Banach lattice. If #(c,F)=%"(c,F) then
Ky F)= £ (co, F).

The converse is not true. For instance, we shall see below that #(cy, co)=
= ¥"(cy, ¢p) (Theorem 2.2), but #(c,cy) %= ¥'(c, ¢y) (Theorem 2.8).

As preparations for the next section, we make some observations about a
compact Hausdorff space X.

THEOREM 1.6. Let X be a compact Hausdorff space. If there exists a
sequence in X which has no convergent subsequence, then there exist a regular
Borel measure yu and Borel measurable functions g, g,, ... on X such that (a)
uX)=1, (b) g=1x, (©) |g,()|=1 u-almost everywhere, (d) § g.8mdu=0
(n#m).

PROOF. Let {¥,},on be a sequence in X which has no convergent sub-
sequence. We may assume that {y,},., is nontrivial. Set X,:=X. By
compactness we can find two distinct accumulation points a and b of the
sequence in X,. It follows that there exist compact neighborhoods X3 and X,
of a and b, respectively, with X;NX,= . Obviously, each of X; and X
contains infinitely many points of {¥,},<n. Applying the same argument to
X; and X}, respectively, we obtain compact subsets X, X5 of X; and X, Xj
of X, such that XsNXg=o, X;NXg=¢ and each of X5, Xz, X;7 and X
contains infinitely many points of {y,},n. Continuing the method we can
obtain compact sets X, X3, Xy, X, ... in which each X; contains infinitely
many points of {y,},., and contains two disjoint sets, X,;_; and X5;.
We now construct a regular Borel measure ¢ on X such that

*) ,,(X,.)=2%_Iif ie{2m141,...,2", neN.
To this end, we take x;e X; (i=2,3,...) and for fe C(X) define
1
¢n(f)='2'7:—f fOepn-10 ) + .. +f(xz0)), neN.
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Let D: ={fe C(X):lim,_, ., ¢,(f) exists}. Obviously, D is a linear subspace of
C(X) and 1ye€ D. Define ¢:D—R by

¢(f)= lim ¢,(f) for all feD.

It is easy to see that ¢ € D* with ¢(1x)=1 and |¢| =1. Use the Hahn-Banach
Theorem to extend ¢ to &€ C(X)*, so @(1x)=1 and |@|=1. Thus, & corre-
sponds to a regular Borel measure u. To show that the measure u satisfies (*),
for neN and ie {2""!+1,...,2"} we take ge C(X) such that g=1 on X; and
g=0on Xp-1,,U...UX;_[UX;;U...UX;.. Thus, g=1x on the support of
u. It is easy to see that

1

F=¢n(g)=¢n+l(g)=¢n+2(g)=... .

Consequently, ge D and

=i im 0)()= 9(e)= Ble) =1 gdu={ L du=p(Xp).

Make Borel measurable functions g, g, ... on X such that
g,=(—=Don X;if ie{2" '+1,...,2"}, neN.

It is easy to check that gy, g5, ... are as desired. []

In the above proof, let Y;: =X5+1_; (feN). We can prove easily the
following corollary.

COROLLARY 1.7. Let X be a compact Hausdorff space. If there exists a
sequence {X,},cn in X which has no convergent subsequence, then there exist
compact subsets Y, Y,, ... of X and mutually disjoint open subsets U, U,, ...
of X such that each of Y, contains infinitely many points of {x,},en and
Y;CU; (ieN).

2. ABOUT SOME CLASSICAL BANACH LATTICES

In this section, we shall answer the problems: whether or not AE,F)=
= Y"(E,F) and whether or not AE,F)=¥"(E,F) for some classical Banach
lattices, that is, each of E and Fis one of the Banach lattices /, (1 sp= ), [/,
¢y, ¢, C[0,1] and C(X).

In/,, l., ¢y and ¢, we denote e;: =(1,0,0,0,...), &;: =(0,1,0,0, ...), ... and
e:=(1,1,1,...).

THEOREM 2.1. A, F)= ¥'(I;, F) for every Banach lattice F.

PROOF. Suppose Se Al, F). For every x=(x(1),x(2),...) €/}, in the sense of
norm convergence, x= Y-, X(i)e;, and hence Sx= Y7 x(i)Se;. As

L xlSe]|= ¥ ) 1ed=( 5 kOIS <,

271



we can define 7:/,—F by
Tx= Y x(i)|Se; for all xel,.
i=1

Obviously, Te A, F) with T=0, T=S and |T| <|S|. Hence, Se ¥'(/,,F).
Since T=S and T=-S, we claim |S|,<|T|=|S|. Consequently,
Isi=1si.. O '

A positive element of a Riesz space E is said to be discrete if every ge E
satisfying 0<g=<f'is a scalar multiple of f, i.e., there is a A € R such that g=Af.
If fi, ..., f, are discrete and linearly independent in E, it is clear that f;Af;=0
(i+#j). If Fis an AM-space (e.g. C(Y), C[0,1], ¢, ¢p) and E is one of /,
(1=p< o) and ¢y, s0 e, e,,... are discrete in E and the linear hull of ¢, e,, ...
is norm dense in E, we can conclude AE, F)=%"(E,F). In fact, there is a
more general theorem as follows.

THEOREM 2.2. Let E be a Banach lattice and F an AM-space. If the linear
hull E, of all discrete elements of E is norm dense in. E, then YE,F)=
= Y"(E,F).

PROOF. Suppose Se AE,F). For every feEy, f=1Y! | Aif; where fi,..., f,
are discrete and linearly independent in E and ;€ R (i=1,...,n), we define
TO:EO_’F by

Tof= T hiSA
By the orthogonality of f, ..., f, it is easy to see that
| ';1 gAifi| = _;1 [Ailfi= ,; Aifi| for gie{~1,1} (i=1,...,n).

Hence, since F is an AM-space,

I Toflr=1 E] |A:SfF=1 , sup 3 I_gl &A:SfilF

=|s| sup | L eidifile=1S]- 171z

----- e€{-11}

For every g€ E, since E, is norm dense in E there are gy, g5, ... € E; such that
lim, - &, =g (in this proof, every convergence means norm convergence) and
we define T: E—F by

Tg= lim Tyg,.

n—oo

Then T is an extension of T, and |7,| =|T|=<|S]|. Since 7,=0 on E, and
feE, implies |f| e E,, for g=0 if g=lim,. g, (g,€ E;) we have

Tg=Tlg|=Tlim |g,|= lim Tylg,|=0.
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That is, T=0. For the same reason, it follows from 7,> +S on E, that
T= +S. Therefore, Se ¢'(E,F) and |S|,<|T|<|S|, so |S|,=]S]. The proof
is complete. O

THEOREM 2.3. If l<p<o, 1=g<o and ++1/q—1/p>0, then Al 1) #
* (1)
PROOF. Define by, b,, b5, ... €, by

b,=271%1,1,0,0,...),

b,=27%1, -1,0,0,...),

 by=47%0,0,1,1,1,1,0,0,...),

b,=47%0,0,1, - 1,1, —=1,0,0,...),

bs=47%0,0,1,1, - 1, - 1,0,0,...),

bs=4"%0,0,1, -1, - 1,1,0,0,...),

b,;=87%0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0, ...),

Then {b,},cn is an orthonormal basis in /,. In this proof the symbol (-,-)
represents the inner product in /,.

(1) Letp (1<p=2)and g (1=g<2) be given.

Let g; be determined by the formula 1/g;++=1/q. Then g¢<gq,. Since
t+1/q-1/p—1/q,=4+1/g=1/p-(1/g—$)=1-1/p>0, or $+1/q—1/p>
>1/q,, we can choose a number a (g<a<gq;) so close to g, that +1/g—
—1/p>1/a>1/q,. Let A(n): =n""% (neN). Then A=) AQ2),...)el, .
Define Se #(},1,) by

Sx=(AQ), by), AQ2)(X, by), ...) for all xel,.

In particular, we have
Se,| = (25)740, ..., 0,42 = 1), ..., A(2F+1 = 2),0,0, ...)
if ne{2f-1,...,2*1 -2}, keN.

Let I be the identity map of /, into /, and &: =SI. Then &€ (1, 1,).

Now, we prove that @ is not regular. Suppose @ is regular. Then there is a
Te #*(,l,) with T=®. Set Ty:=T—~®. Then (T+T))e,=|Pe,| =|Se,|.
(Indeed, (T+T)e,=Te,=®e, and (T+T))e,zTe,=(T— D)e,= —Pe,.)
Hence

2kl 5 2k+i_g
Yy I+ Tl)en2 ) |Sen| =
n=2%-1 n=2-1

=29%0,...,0,A2%-1),...,A2**1=2),0,0,...).
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Thus, for ke N, since A(1)=A(2)=... we have
2k+1_2
IT+T@5'7P=| ¥ (T+Te,l,

n=2%—1
z(zk)%(2k1(2k+l)q)l/q=(2k)%+1/q(2k+l)—l/a.
We notice that ++1/¢—1/p-1/a>0, so
” T+ T1 H Zz—l/a(zk)%+1/q—1/a—1/p_,°° (as k—-)oo),

This contradicts the fact T+ T € £, /,).

(2) Let p(1<p=<2) and g (2=g< ) be given such that p and g satisfy
1+1/9g-1/p>0.

In the proof of Part (1), we consider g2 and a—o, so that
A=(,1,1,...)el,. Define Se Al,, ;) by

Sx=((x, b)), (x, by),...) for all xel,.

Let 1 be the identity map of /, into /, and &: =SI. Then &€ 1, 1,) (since
,Cl,). Suppose there exists a Te ¥ *(l,1,) with T=&. Set T:=T-.
Continuing as in the proof of Part (1), we can obtain a contradiction:

|7+ Ty 2 @514 P> 00 (as k).

Therefore, @ is not regular in £(/,, 1,).

(3) Let p 2=p<) and g 2=<g<x) be given.

We know from Part (1) and (2) that £(/,, ) # 2'(l,,[,) (1<p=2, 1<g=2).
By Theorem 1.1, 2/, 1) # £ (I, ;) 2 <p < o0, 2< g < ) follows immediately.

(4) Let p 2<p< o) and g (1=g<2) be given.

Let the number g, be determined by the formula 1/g, +1=1/g. Then g, >q.
We can choose a number o such that g<e<g,. Let A(n): =n~V* (neN).
Then A =(A(1),A(2),...) e/,

Let the number p; be determined by the formula 1/p;+1/p=1. It is clear
that p;>2. For the chosen a, since 1/g—1/a>0, we can choose a number
(2<B<p;) so close to p; that 1/g—1/a>1/8+1/p—+4>0. Hence, we obtain
++1/g-1/a-1/-1/p>0.

Let 6(n): =n~'# (ne N). Then 6=(6(1),0(2),...) €1, .

For x €1, the symbol <6, x) is defined by <8, x) = (O(1)x(1), 6(2)x(2), ...). It is
clear that the operator x—<6,x) is a linear continuous operator from /, into /,.
Now, we define Se #(,,/,) by

Sx=(A(1)({0, x>, by), A(2)({ 6, x), by), ...) for all xel,.
In particular, we have
Se,| = 2¥)~10(n)(0, ...,0, A2¥ ~ 1), ..., A(2¥*1 =2),0,0, ...)
if ne {2~1,...,2¥"1-2}, keN.
We proceed to prove that S is not regular. Suppose S is regular. Then there

isa T'e #%(l,,1,) with T=S. Set T;: =T—8. Then (T+ T\)e,=|Se,| (neN).
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Also since #(1)=6(2)=..., we have

9kl _y 2K+l _y
Z (T+ Tl)enZ Z |Sen|
n=2k-1 n=2%~1

= (202510, ...,0,AQ% = 1), ..., 121 =2),0,0, ...).

Thus, for ke N, since A(1)=A(2)=... we have
k+l_o

IT+ T @9YP=] L (T+T)el,

n=2%_1

> (2k)%9(2k+ 1)(2/(}((2/{4— I)Q)l/q - (Zk)%ﬁ— l/q(2k+ I)— 1/8— l/tx‘

We notice that ++1/g—-1/a-1/8—-1/p>0, so
" T+ Tl “ 22—1/ﬂ~1/a(2k)%+l/q—l/a—l//i’—l/p_,,oo (as k— OO)

This contradicts the fact T+ Ty e Z(I,,1;). [
REMARK. We still do not know what happens to the relationship between
Al 1,) and £7(l,, 1) if p and q satisfy the condition: 1<p=2, 2<g<o and
1+1/g—1/p=<0. We put it here as an open question.
LEMMA 2.4. o, ) # Ll ly) (129<2).

PROOF. Let a number a be chosen such that 1<1/0¢<1/q. Then

(n" M7= and ¥ (n7V%)’< o,
1 n=1

aok:]

n

By Dvoretzky-Rogers’ theorem (cf. Theorem 1.c.2 of [LT]), there is an un-
conditionally convergent series ¥~ | x, in /, such that |x,] ,q=n‘1/ ® for every
n. Define S:lm—»lq by

Sy= ;1 y(n)x, for all y=(y(1),y(2),...)€l,.
Then Se,=x, (neN) and Se L(/,/,;) (cf. p. 16 of [LT]).
Suppose S is regular. Then there exists a Te £ (I, lg) with T=S. Set
Ty: =T-S. Then (T+ T))e,=|Se,| and

N o N
|7+ Ty 7= [(T+ T1)( }:31 en)|?= Py ,.gl ((T+ Ty)e,)(0))?

@ N N
> T L [(T+T)e)d= ¥ [(T+Tel"
> 3 | Sen|?= g (n*)?> o0 (as N> ).

n=1 n=1

This contradicts the fact T+ T € #(/, ;). Therefore, S is not regular. [
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COROLLARY 2.5. HAcl)#(cly), Hcpl)# 4 (coly) and for every
(infinite) compact Hausdorff space X, Y(C(X),l)# £ (C(X), 1) (1=¢<2).

PROOF. In the proof of Lemma 2.4, replacing /., by ¢ and ¢, respectively, we
can prove 4(c,1,)# £'(c, 1) and Ly, ) # L (o, l;) (1=g<2).

It remains to prove L(C(X),1,) # £ (C(X),1,) (1=g<2). Since the compact
Hausdorff space X is infinite we can construct a nontrivial sequence {#,},cn
and mutually disjoint open sets U, (n e N) such that #, e U, (ne N). Thus, for
each neN we choose h,e C(X) such that 0<h,<1, h,(¢,)=1 and h,=0
outside U,. In the proof of Lemma 2.4, we only need to change the definition
of S into

Sf= El F(t,)%, for all fe C(X).

Then Sk, =x, (neN) and S € AC(X),[,). Now, we can complete the proof in
the same way as the proof of Lemma 2.4. O

We know from Theorem 2.3 that 4/, 0)# %' (/) (1<p<o). By
Theorem 1.1 it follows that #(c, lq);&Z’(co, /) (1<g<o). Combining this
result with Corollary 2.5 we obtain

COROLLARY 2.6.  H(co, ) # (¢, y) (1=g<0).
COROLLARY 2.7. ¢ l)+ % (c,l) 1=g<x).
PROOF. Corollary 1.5 and Corollary 2.6. [

THEOREM 2.8. For every (infinite) compact Hausdorff space X, X(C(X), ¢y) #
# Z(C(X), ¢p).

PROOF. Case 1. There exists a nontrivial convergent sequence {x,},¢n in X.
Suppose {x,},cn converges to x;. Define Se AC(X), cy) by

Sf=(f(x1) —f (o), f(x2) —f(x), -..) for all fe C(X).

We proceed to prove that S is not regular. Suppose S is regular. Then there is
a Te 1 (C(X),cy) with T=S. It is clear that for each couple of x, and x,
there exists a function f,€ C(X) such that 0<f,<1, f,(x,)=1 and f,{x) =0.
Now, for every ne N, we have

(TL)(n) = (TFa) () = (Sf,) () =S (%) —Su(x0) = 1.

But T1yec,. Contradiction.
Case II. There exists a sequence in X which has no convergent subsequence.
By Theorem 1.6, there exist a regular Borel measure 4 and Borel measurable
functions gy, ... on X such that (a) u(X)=1, (b) g,=14, (© lg, ()| =1
u-almost everywhere, (d) § g,8,du=0 (n£m). Thus, g,8,, ... is an ortho-
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normal sequence in L%(u). Hence, for every fe L), so for every Sfe C(X),
lim, ., | fg,du=0. We define Se AC(X),c,) by

Sf=({ fe1du, | fe2du, ...) for all fe C(X).

(Actually, it is obvious that Sfe/, and Se AC(X),,).) It is easy to chéck that
|S|=1. We proceed to prove that S is not regular. Since C(X) is dense in
L*u), for ne N there exists an h,e C(X) with |, —g,|2<+. Set

hy(x) if —1<h,()<1
By(x): = 1 if B () > 1
~1 if ()< —1.

Then £,e C(X), |h,|<1 and |A,—g,|;2<%. By (a) and (c),
1 _5 Engnd,u=g (gnhﬁn)gndlus Hgn-ﬁn”Llngn”Lzs%-

Setting f,,: =1y + A, by (b) and (d) we obtain § f,g,du=1 h,g,du=4. Now, if
S is regular, then there exists a 7€ ¢ (C(X), ¢;) with T=S. For every ne N,
we have

AT1x)(m) = (TF) ) = (Sf) ) = | frgduz 5.

But T1y€cy. Contradiction. [

THEOREM 2.9.  For every (infinite) compact Hausdorff space X, A(C(X),1,) #
*# 4(C(X), 1) (1=g<x).

PROOF. (1) If there is a nontrivial convergent sequence in X, by Corollary 1.3
and Corollary 2.7 the conclusion holds.

(2) If there is a sequence in X which has no convergent subsequence and
2=<g< o, we have shown that S, which is defined in Case II of the proof of
Theorem 2.8 and is not regular in AC(X),cy), is actually an element of
ACX), ), s0 Se AC(X),1,;) 2=<g< ). Now, it is easy to see that this § is
not regular in A(C(X), ;).

Combining (1), (2) and Corollary 2.5, we complete the proof. [

Now, we turn to observe the relationship between AC(X), ¢) and £ (C(X), c),
and the relationship between #(C(X), C[0, 1]) and #"(C(X), C[0, 1]). We need
some lemmas first.

LEMMA 2.10. Let X be a compact Hausdorff space. If there exists a sequence
in X which has no convergent subsequence, then #(C(X),c)+# L (C(X),c).

PROOF. Let {x,},on be a sequence in X which has no convergent subse-
quence. By Corollary 1.7 there exist compact subsets Y, Y5, ... and mutually

disjoint open subsets Uj, U,,... of X such that each Y; contains infinitely
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many points of {x,},cn and Y;CU; (ie N). Hence, for each ieN, there
exists an #;€ C(X) such that 0<#;<1, #;=1 on Y; and A;=0 on X\ U;. We
can see from the proof of Theorem 2.8 that for each ieN there exists an
S; e AC(Y}), ¢p) with the properties:

@ |Si]=1
(b) there exist fi1, fi,... in C(Y;) such that O0<f,<1 and (S,f,,}n) =1+
(neN).

Since every compact set Y; is C*embedded in X (cf. 6.9(b) of [GI]), we
assume that each f;, extends to fi?,e C(X) with 0=< figsl (,neN).
Define S: C(X)—cy by

EHR12 - D)=1/iS(flx ) G,jeN) for all fe C(X)

Le., §/=((Si(fly)D), #S2(f1,))D), (i y)2); H(S:(flp)D), (S1(f]r,)3),
HS(f1x))@), ($1(fly @), HSa(f Iy (D), -..).

Observe that | S| <1. Hence S e AC(X),cy), 50 Se€ AC(X),c). We proceed
to prove that S is not regular in AC(X), ¢). Suppose S is regular. Then there
is a Te #*(C(X),c) with T=S. Take ie N. We have Th;> T(foh )>S(f°h s
(jeMN). Since foh |y, =fi; and f°h 1y, =0 (k#i; j,keN) and by (b)

ThR™ Q- D)= 1/i(S: f;)) = 1/i+ 4,
s0 Th;(o): =lim,, ., (Th;)(n)=1/i-+. Hence,
(T1x)(eo): = 'lgg (T1)m)=(T(hy + ... + h))()

=(Th))(©)+...+(Th;)(ee)=+1 +... + 1/i),
50 (T1y)(o0) =00, Contradiction. [

LEMMA 2.11. Let X be a compact Hausdorff space. Then
1) if ACX),c)= 2 (C(X),c), then X, is finite (i.e., Card X< ),
(2) if ACX), )= Z'(C(X), c), then X, has only one element (i.e., Card X;=1).

PROOF. (1) Since AC(X),c)=£"(C(X),c) and we know |-|<]|-|,, the
identity map of #7(C(X),¢) into AC(X),c) is closed, hence there exists an
m>0 such that, for every @ € AC(X),c), |®|,<m|®| (by the closed-graph
theorem).

Suppose X; is infinite. For an arbitrary Ne N, take Xjq, ..., Xne €X; and
X;= {Xios Xi1, X35 ... } such that {x;,},cn is a nontrivial sequence which con-
verges to X;, and X;NX;=0if i#j (,j=1,...,N). Define @ € AC(X),c) by,
for all fe C(X), ‘

Df = (1) =S (Kro0)s -5 SOON) — XN )s
Jx12) =f(X100)s oo SON2) = o), -+ )s

ie. DF((J—DN+i)=f(x;)—f(¥w) ((€{],...,N}, jeN). Obviously, |®]=2
and (&f)(0): = lim,_,., (Df)(n) =0.
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Take an arbitrary e £ (C(X),c) with ¥= & (the condition AC(X),c)=
= ¢"(C(X), ¢) guarantees the existence of ¥). Define ¥, Wy, ¥, ... € C(X)**
by, for all fe C(X),

v () =(FF)m) (neN) and yo(f) =(Ff)(e) (: = lim (F7)(n)).

Thus, Pf= (), w2(f),...) and y(f)=lim,., w,(f). For xeX, define
5, eC(X)** by

J(f) =f(x) for all fe C(X).

Obviously, d,19, if x#y. Since, for each i, w;_yn4+;=0 and y_pyn4i=
20, —dy,,, we have y/U_l)NH-Z(JXU—éxi&)‘L =0y, Now, for every fe cx)",

Vo(f)= lim (s ()= lim &, (f) = Lim f0x;) =F(Xie0) = Iy, (f)-
bimacd Joee Jo®
Hence, =0, for each i. Furthermore, W= d,,_+... +9,, . It follows that

[QY = D) fHe) = 20/0(f) = 02 2(/ (X100) + ... + S (KNeo))s

50 [(2¥— D)1 x1(o0)=2N. This implies |2%¥ — @ | =2N. Therefore, |P|,=2N=
=N|®|. By the arbitrariness of N, the conclusion |®]|,=N|®| and the
conclusion |®@|,<m|®| are contradictory.

(2) If X; is infinite, by (1), ACX),c)# L (C(X),c). If X, is finite
and Card X;=N=2, we know from the proof of (1) that there exists a
de ACX),c) such that |®|,=N|®|>|®|. This is a contradiction to
ACX), )= ¥ (C(X),c). U

THEOREM 2.12. Let X be a compact Hausdorff space. Then the following

assertions are equivalent.

(1) Every sequence in X has a convergent subsequence and Card X,=n where
n is a positive integer.

(2) X is a compactification of a discrete space A such that A is a dense subspace
of X and Card (X \ A)=n for some neN. :

(3) There are open and compact subspaces Xi,...,X, of X such that
X= U,'.’=1 X; and each X; is the one-point compactification of a discrete
space.

(4) For every compact Hausdorff space Z, AC(X), C(Z))= Z(C(X), C(Z)).

(5) ACX), Clo, 1)) =2 (C(X), CI0,1]).

6) AC(X),c)=F(C(X),c).

THEOREM 2.13. Let X be a compact Hausdorff space. Then the following
assertions are equivalent.

(1) Every sequence has a convergent subsequence and Card X;=1.

(ii) X is the one-point compactification of a discrete space.
(iii) For every compact Hausdorff space Z, H(C(X), C(Z))= ¢"(C(X), C(Z)).
@iv) ACX), Clo, 1)) = £ (C(X), C[0,1]).

) AC(X),0)=2(C(X), ¢).
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PROOF OF THEOREM 2.12 AND 2.13.  (1)=(2). It is enough to prove that {x} is
an open set for every xe X \ X;. As X is finite, X'\ X, is an open set. Hence,
for xe X \ X there exists an open set V with xe VCVC X\ X,. By (1), V is
finite. Then 7\ {x} is finite, hence closed, and {x} =V\ (¥\ {x}) is open.

(2)=(3) and (3)=(1) are easy to prove.

(i) & (ii). It is a-special case of (1) (3).

()= (iii). Assume X;={xp}. For fe C(X), it is clear that the closed set
{xeX:|f(x)—f(xp)|=1/n} is finite, s0 A: = {xe X f(x) #f(x)} is countable.
Make a countably infinite set Ay={xp,Xs,Xys,...} which contains A.
Obviously, lim;_,. Xx; =X, and A, is compact. Suppose S € LC(X), C(Y)). For
Sfe C(X), in the sense of norm convergence

f= ¥ (FO)—fOoD gy +S(x0)lx-

xeA;
For each point ye Y and each Ne N, take ge C(X) such that |g|<1 and
glxy)=1if ie{l,...,N} and Sl{xif}(y)zo
g =—1if ie{l,...,N} and 81y, () <0

N
gx)=11if xe As \ {xip, ..., Xnr} and Sly(y)~ _;1 Sl{xif}(y)zo

N
gx)= —1if xe Ay \ {xi7, ..., Xnr} and S1y(y)— ;1 Sl 300 <0.

Then

112 15¢1 =500 = T (£) - 50Dl ey + 8IS 11 ()

= T IS 0N+ Sk - § 10l
As N— oo, in the sense of pointwise convergence, we obtain
(a) IS[1y= XEZA, STy +1S1x - ng, Sliyl.
Furthermore, in the sense of pointwise convergence,
(b) (Sl +[S[1y)=S1x+ XZEAf (Slyg)™

© $(S1x+[Sl1y)= L (S1gp) ™.
X€A,

Thus, by (a) we can define T:C(X)—C(Y) by
Tf= Y (fO)—feo)Slpy) ™ + 3 () S1x+ |S]1y), (fe C(X)).

xeA, .

By (b) and (c), it is easy to verify that 7=S8 and T=0, so T € AC(X), C(Y ).
Hence, Se ¢ (C(X), C(Y)). It remains to prove |S|=|S|,. For any fe C(X)
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with |f] =1, setting h: =4(S1x+ |S|1y), we have

IeT-5)f1 =
= sup | T fOIS1q0)+F0a)2h0) = S1x0)~ %, IS0

<flsup| % IS0 +2h0)=S1x0) = L [S10)) |
= sup 12h(y) - S1x(")|=]5].

Hence, |S],=<|2T- S| <|S|. Consequently, |S]|=]S|,.

()=(4). Assume X;={x,...,x,}. Since (3) holds, there are open and
compact subspaces X,..., X, such that X= U?:I X; and each X; is the one-
point compactification of a discrete space. For every ge C(X;), we define
g*e C(X) by

g*x)=g(x) if xe X;
g¥)=0 ifxeX\X;.

Thus, every fe C(X) can be expressed by f=(f|x)*+... + (flx)*
For Se #/(C(X), C(Y)), define S;e AC(X;), C(Y)) by

S;g=Sg* for all ge C(X)) (i=1,...,n).

By (i)= (iii), for each i there is a T;e ¥ (C(X;), C(Y)) with T;=S;. Now, we
define Te £ *(C(X), C(Y)) by

Tf= Tl(f|Xl)+...+T,,(f[Xn) for all fe C(X).
For every fe C(X)™,
Tf=T\(flx)+ ... + T,(flx) 2 S (flx) + ... + Su(flx)
=S(f!Xx)*+...+S(f|Xn)*=Sf,

we obtain 7=S. Consequently, Se ¥ (C(X), C(Y)).
(4)=(5) and (iii)= (iv) are trivial.
(5)=(6) and (iv)=(v) by Corollary 1.4.
(6)=(1) and (v)=(i) by Lemma 2.10 and Lemma 2.11. []

By Theorem 2.12, we have A(CI0,1},¢)# £ (C[0,1],¢) and Hl,,c)+
# %"(l,, ¢). Furthermore, using Corollary 1.4, respectively, we obtain

COROLLARY 2.14.  #(CI0, 1], C[0, 1]) = #(CI0, 1], C[0, 11) and ¥, CI0, 1}) #
# £ (1, C[0, 17).

About the relationship between AC(X), C(Y)) and ¥ (C(X), C(Y)) we only
have a partial result as follows.

THEOREM 2.15. Let X and Y be compact Hausdorff spaces. Suppose there
exists a nontrivial convergent sequence in Y. Then the following assertion (7)
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is equivalent with the assertions (1) to (6) of Theorem 2.12 and the following
assertion (vi) is equivalent with the assertions (i) to (v) of Theorem 2.13.

(7) ACX), A(Y))= £(C(X), C(Y)).

(vi) ACX), C(Y))=2"(C(X), C(Y)).

PROOF. (4)=(7) is trivial. (7)=(6) by Corollary 1.3.
(iii) = (vi) is trivial. (vi)=(v) by Corollary 1.3. O

It is interesting that, in case that there exists a nontrivial convergent sequence
in Y, the relationship between AC(X),C(Y)) and £ (C(X), C(Y)) depends
only on X and not on any further properties of Y. Thus, we have

COROLLARY 2.16. Let Y be a compact Hausdorff space in which there exists
a nontrivial convergent sequence. Then X(,.,C(Y)+¥(,C(Y)) and
ACI0, 1], C(Y)) # £'(CI0, 1], C(Y)).

But, in case that there is no nontrivial convergent sequence in Y, and X does
not satisfy (1) of Theorem 2.12, we still do not know what happens between
ACX), C(Y)) and £ (C(X), C(Y)) except for the following special case. If Y
is extremally disconnected (so, C(Y) is an order complete AM-space with unit),
by Theorem 1.5 of Chap. iv of [S], AC(X), C(Y))= ¥ (C(X), C(Y)).

As the end of this paper, we put a table below about what we have discussed.

Ll=g<w) I, c c clo, 1] o)
L =,Th.21 =,Th. 1.0 =,Th21 =,Th.21 =,Th.21 =, Th 2.1
L(1<p<o) Th.23 =,Th.1.0 =,Th.22 =,Th.22 =,Th.22 =, Th 22
o #,Cor.2.6 =,Th.1.0 =,Th.22 =,Th.22 =,Th.22 =, Th. 22
c #,Cor.2.7 =,Th.1.0 #,Th.2.8 =,Th. 213 =,Th.2.13 =, Th.2.13
L #,Th.29 =,Th.1.0 #,Th.2.8 =#,Th.2.12 #,Th.2.12 Cor. 2.16
Cl0,1] #,Th.29 =,Th. 1.0 #,Th. 28 +#,Th.2.12 #,Th.2.12 Cor. 2.16
cx) #,Th.2.9 =,Th. 1.0 #,Th 2.8 Th.2.12,2.13 Th.2.12,2.13 Th. 2.15
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