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This work combines closed-form and computational analyses to elucidate the dynamic properties,
termed signatures, of waves propagating through solids defined by the theory of elasticity with micro-
structure and the potential of such properties to identify microstructure evolution over a material’s life-
time. First, the study presents analytical dispersion relations and frequency-dependent velocities of
waves propagating in microelastic solids. A detailed parametric analysis of the results show that elastic
solids with microstructure recover traditional gradient elasticity under certain conditions but demon-
strate a higher degree of flexibility in adapting to observed wave forms across a wide frequency spectrum.
In addition, a set of simulations demonstrates the ability of the model to quantify the presence of damage,
just another type of microstructure, through fitting of the model parameters, especially the one associ-
ated with the characteristic length scale of the underlying microstructure, to an explicit geometric rep-
resentation of voids in different damage states.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

This research aims to promulgate deeper understanding of un-
ique wave propagation signatures and their ability to identify
microstructural states in solids using computational microelastici-
ty (Gonella et al., 2011) (ME) with a corresponding set of dynamic
simulations. Thus, the focus of the study is on the parameters in
the model and their effect on primarily the speed, but also the
shape of propagating waves within a homogeneous, or undamaged,
microelastic continuum. We reveal these signatures through de-
tailed presentation of analytically derived dispersion relations (fre-
quency-wavenumber xðkÞ) in one dimension (1D), which then
serve as validation for numerical implementation. Dispersion is
the situation when waves propagate with nonlinear dependence
between their frequency x and wavenumber k, thus producing
non-constant phase and group velocities cp and cg as functions of
frequency.

Undamaged, however, is somewhat of a misnomer since the
growth of locally damaged regions in solids may be interpreted
as the transition of one type of microstructure to another with a
certain void size, property degradation, and morphology as shown
in Fig. 1. This natural connection between damage and normal
ll rights reserved.
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microstructure allows us to foresee implications of computational
microelasticity for damage identification within the broad context
of non-destructive evaluation (NDE).

As pointed out in a review of quantitative NDE methods (Achen-
bach, 2000), the progress of NDE depends on the measurement
models with which to interpret input/output signals from the sen-
sor network. Many such models employ equations of elastic wave
propagation in solids (Achenbach, 1973) to estimate the condition
of the structure of interest. The problem is a challenging one:
reconstruct the state of the microstructure using only an input sig-
nal and any number of output signals at strategically placed sen-
sors. While statistical learning methods (Yuan et al., 2005) are
commonplace in modern NDE, the focus here is on the potential
of computational ME (Gonella et al., 2011) to provide a more pow-
erful physics-based analysis tool for signals tainted by some form
of damage, and more broadly to explore the capability of ME to
model microstructure states in heterogeneous solids.

The mathematical theory employed is that of elasticity with
microstructure (Mindlin, 1964) wherein it is assumed material
points are themselves continuum particles whose deformability
is described by 9 additional degrees of freedom. Such theories
are broadly referred to as generalized continuum theories, and
detailed descriptions of these theories abound (Mindlin, 1964;
Germain, 1973; Eringen, 1999; Vernerey et al., 2007). It is well
know that equations of classical elasticity (CE) can not produce
dispersive waves without direct numerical simulation (DNS) of
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Fig. 1. Concept of microstructure transition as damage occurs. The figure on the left shows an initial state of the solid where the microstructure exists at some length scale
but is intact. The right figure shows a hypothetical later damage state where voids have coalesced between microstructural features. Such voids have different properties and
length scales than the initial microstructure, thus serving to change the characteristics of propagating elastic waves.

M. Steven Greene et al. / International Journal of Solids and Structures 49 (2012) 3148–3157 3149
microstructure and/or defects, yet wave dispersion is experimen-
tally observed in a multitude of materials, for instance fiber-rein-
forced composites (Tauchert and Guzelsu, 1972), concrete
(Philippidis and Aggelis, 2005), human bone (Droin et al., 1998),
and geomaterials like sand (Lai et al., 2002) and rock (Stavropoulou
et al., 2003). Since CE does not capture this behavior, we use com-
putational ME as a way to model the microstructure’s effect on
propagating elastic waves without its explicit geometric definition.

Studying wave propagation with theories of generalized con-
tinua is itself not new as Mindlin (1964) himself motivated his
model with wave propagation and likened the wave dispersion it
produces to that observed in neutron scattering experiments. The
results presented herein point out far more detail of the model
than the conceptual sketches previously presented. Other applica-
tions have been found with one commonality: as the structural
features, either microstructure or macroscopic geometry, appro-
ache the wavelength of excitation, waves undergo a transition to
dispersive behavior. On the geometric side, recent interest has fo-
cused on propagating waves in carbon nanotubes (Yoon et al.,
2003; Wang, 2005; Askes and Aifantis, 2009; Song et al., 2010)
with a suite of generalized continuum models used to capture
the observed dispersive phenomena, though most of these are tai-
lored to the nanotube application. High frequency geometry-in-
duced dispersion in thin films has also been of interest (Ma and
Maris, 2010). Of specific import to the present study are the theo-
retical developments in gradient elasticity (GE) derived from dis-
crete lattice models and variational calculus (Metrikine and
Askes, 2002; Askes and Metrikine, 2002; Metrikine and Askes,
2006; Gonella and Ruzzene, 2008; Polyzos and Fotiadis, 2012).
The recent derivation of Polyzos and Fotiadis (2012) has exactly
reproduced Mindlin’s original model of gradient elasticity, which
itself is a long wavelength reduction of the theory of elasticity with
microstructure (Mindlin, 1964). Other studies have also focused on
the numerical properties of GE within the context of both the finite
element (Askes et al., 2007;Askes et al., 2008b) and boundary ele-
ment (Polyzos et al., 2005; Vavva et al., 2009; Papacharalampopo-
ulos et al., 2011) methods; the ability of GE to computationally
produce wave dispersion is explicitly discussed by Bennett and
Askes (2009). Of note is the work of Askes et al. (2008a); Papargy-
ri-Beskou et al. (2009) who analytically explored the dispersive
properties of waves propagating in gradient elastic continua; their
results serve as both a motivator and benchmark of the analytical
derivations contained herein.

Such studies demonstrate the promise felt by the solid mechan-
ics community in utilizing high-order theories to explain disper-
sive wave propagation signatures that have consistently been
observed experimentally in solids, though they also demonstrate
that no consensus exists about which model is best. Recently, the
authors of the present work studied the ability of ME in two spatial
dimensions to produce positive pressure and shear wave disper-
sion whose presence becomes most pronounced when the wave-
length of excitation of the solid overlaps the microstructural
length parameter in the constitutive law (Gonella et al., 2011). This
work improves the understanding of ME by adding to it the capa-
bility to capture negative dispersion, a phenomenon not broached
in the past work but important for elastic wave propagation; we
also corroborate previous arguments through the analysis process.
By positive and negative dispersion, following the language of Erof-
eyev (2003), we mean a group wave velocity at finite frequencies
that is greater and smaller, respectively, in magnitude than that
in the low-frequency limit.

Unlike the models of GE (Metrikine and Askes, 2006), elasticity
with microstructure posits an additional kinematic field to de-
scribe the deformability of microstructural unit cells which we ex-
pect to be of some use in characterizing microstructures and their
anomalies or degradation over time. Further, the model is not re-
stricted to rotational degrees of freedom (Suiker et al., 2001)
describing the underlying microstructure, nor is it specific to an
application of interest like nanowires (Song et al., 2010) where
the additional degrees of freedom describe radial and angular
strain in an idealized cylindrical structure. As described by Eringen
(1999), the full geometric description of an elastic body’s micro-
structure includes 3 independent directors for 9 total additional
degrees of freedom that produce micro-longitudinal, micro-trans-
verse, and micro-rotational wave propagation modes.

With such flexibility and generality, however, comes a greater
degree of complexity in transient numerical implementation of
the theory, definition of the additional material parameters in
the constitutive law, and interpretation of the resulting wave
fields, especially those of the additional kinematic variables. One
attempt used physical phonon-dispersion relations of crystals to
calibrate micromorphic constants (Chen and Lee, 2003), but this
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method still did not provide physical meaning or general guide-
lines to the impact of micromorphic parameters on macroscopic
behavior. Such challenges motivate our continued study of compu-
tational ME in an effort to both better understand the signatures of
propagating waves in solids described by this model and to discuss
implications such signatures have for microstructure identification
in the context of NDE.

To do so, we adopt a two-step process. First, analytically derived
dispersion relations for the 1D model and their sensitivity to ME
parameters are studied in detail with focus given to mode shapes,
wave velocities, asymptotic behavior of the same, and positive ver-
sus negative dispersion. The 1D ME equations are then imple-
mented numerically and compared to CE DNS of two damage
states, represented by deterioration of randomly populated ele-
ment properties, at different frequencies. A numerical method for
extraction of approximate phase and group velocities is also
shown, and special attention here is given to the ultrasound fre-
quency spectrum. The results show that ME surpasses GE in flexi-
bility of capturing different propagation signatures and, we
believe, offer great potential for the use of computational ME in
non-destructive evaluation. This paper presents the ME equations,
1D analytical study, 1D numerical study with implications for
identifying microstructural evolution, and conclusion in sequence.

2. Computational microelasticity: theory and numerics

For notational convenience, all italicized bold quantities indi-
cate continuous field variables, for instance vðx; tÞ, Einstein nota-
tion is used only where convenient with the standard sum on
repeated indices, and the notation v;i � @v=@xi. The equations gov-
erning a microelastic continuum are derived from the assumption
that each point P in the macroscopic body is a particle containing
internal deformability, recall Fig. 1. To model this internal defor-
mability, an additional macroscopic 2nd order tensor field arises
in the kinematic description of the solid from a linear Taylor series
expansion of micro-displacements about the centroid of X1, re-
ferred to hereafter as the microstrain e1. As described by Germain
(1973), such a description permits 3 contributions to the internal
power of the solid from the standard macroscopic strain
eij ¼ ð1=2Þðui;j þ uj;iÞ, the relative deformation e� e1, and the micro-
strain gradient e1r. These contributions all have energy conjugate
stresses referred to as the macroscopic stress r, the relative stress
s, and the double stress l.

From the statement of virtual work, summarized in (Gonella
et al., 2011), we here take the 12 governing equations as (ignoring
body forces):

rþ sð Þ � r
(

¼ q €u in X ð1aÞ

l � r
(

þs ¼ c1 � I1 in X ð1bÞ

with the 12 boundary conditions

rþ sð Þ � n ¼ t on Ct; ð1cÞ

l � n ¼ T on Ct; ð1dÞ

where the undefined quantities are the density q, second moment
of micro-density I1, micro-acceleration c1, surface normal n, surface
traction t, surface couple T, and domain definition X and C as shown
in Fig. 1. For the remainder of the paper the micro-scale quantities
contributing to the kinetic energy of the microelastic continuum
will be defined following (Gonella et al., 2011; Vernerey et al.,
2007):

c1 ¼ €e1; I1 ¼ 1
X1

Z
X1

aqy1 � y1 dV1 ¼ Kaq1; ð2Þ
where the micro-density q1 � aq and a 2 ½0;1� is a parameter relat-
ing the micro to macro density. Further, we assume the underlying
micro-domain is a cube so that K � ð1=12Þl2

m, where lm is the micro-
scopic length parameter which, in Mindlin’s theory, may be physi-
cally explained as the size of the underlying microstructural
averaging domain as shown in Fig. 1, though the requisite size of
this domain is in general unknown. 1 is the 2nd order identity tensor
and � the dyadic product v i � v j ¼ v iv j.

Multiplying the strong form equations Eq. (1a) and Eq. (1b) by
test function du and de1, respectively, then integrating over the
equation domains and applying the divergence theorem results
in the weak formZ

X
dur

(
� �

: rþ sð ÞdV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dWint

þ
Z

X
du � q€udV|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

dWkin

þ
Z

Ct

du � tdS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
dWext

¼ 0; ð3aÞ

Z
X

de1r
(

� �
..
.
ldV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dWint

þ
Z

X
de1 : sþ c1 � I1

� �
dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dWint ;dWkin

�
Z

Ct

de1 : T1 dS|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
dWext

¼ 0:ð3bÞ

Here, d means variation and Wint ;Wkin, and Wext are the internal, ki-
netic, and external energy whose sum must be zero by d’Alembert’s
principle of virtual power (Germain, 1973). The weak form is used
for finite element discretization.

To complete the full model, the constitutive law for an isotropic
material is generalized from (Gonella et al., 2011) as:

r

s

l

2
64

3
75 ¼ C cC 0

cC bC 0
0 0 KbC� 1

2
64

3
75

e

e� e1

e1r
(

2
64

3
75; ð4Þ

where C � �k1� 1þ 2GI is the usual macroscopic linear elastic stiff-
ness matrix for isotropic materials with Lamé parameters �k and G; I
is the 4th order identity tensor. The parameters b and c define the
stiffness due to the relative deformation at the macro and micro-
scales and the coupling of the macroscopic and relative deforma-
tion, respectively. The lower-right entry of the constitutive matrix
arises from the same averaging operation in the high-order inertia
term of Eq. (2)

C11 ¼ 1

X1

Z
X1

bC� y1 � y1 dV1 ¼ KbC� 1; ð5Þ

again assuming the underlying domain is a cube. We apply the
restriction b 2 ½0;1�, and there is a natural positive definiteness con-
dition on the microelastic tangent matrix @R=@D in Eq. (4), where
R � ½r; s;l� and D ¼ ½e; e� e1; e1r�. This condition is given for the
1D case later and discussed in detail for the full model elsewhere
(Mindlin, 1964).

To tailor ME to describe dynamic loading scenarios, we here re-
late the underlying length parameter lm to the wavelength of exci-
tation k ¼ 2p=k by another parameter d such that
lm � k=d; d 2 ð0;1Þ, which is a measure of how many microstruc-
tural averaging domains there are per wavelength. As shown pre-
viously (Gonella et al., 2011), when d� 1 the effect of the
additional field e1 is negligible on propagating waves; this situa-
tion’s physical meaning is that the underlying microstructural fea-
tures vary on far smaller a scale than the wavelength so that the
input signal does not detect their presence.

We here take care to note the full dynamic implementation of
computational ME, under the present assumptions, is described
by 7 parameters: 3 at the macroscale fq; �k;Gg, and 4 at the micro-
scale fa; b; c; dg. This description is chosen so that we may later
write analytical quantities pertinent to microelastic solids in ratios
to terms familiar to classical continua. Plugging the constitutive
law Eq. (4) into the governing equations Eqs. (1a), and (1b)
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produces the following coupled linear PDE’s, assuming minor sym-
metry on the constitutive matrix that accompanies isotropy:

1þ 2cþ bð ÞCijmnum;nj � ðcþ bÞCijmne1
mn;j ¼ q1ijuj;tt ð6aÞ

ðKbÞCijmn1abe1
ab;nj þ ðcþ bÞCimjnun;j � bð ÞCimjne1

jn ¼ ðKaÞq1ije1
mj;tt; ð6bÞ

The immediate takeaway from this result is that CE is recovered if
b ¼ c ¼ a ¼ 0 or if d!1 (lm ! 0) from the constitutive law in Eq.
(4) and strong form Eq. (1). In addition, these equations draw sev-
eral parallels with GE as studied in (Papargyri-Beskou et al., 2009;
Askes and Metrikine, 2002). Namely, though GE does not have addi-
tional degrees of freedom, it does introduce a length scale through a
parameter g attached to the higher order displacement derivative
and separate length parameter h preceding the higher order inertia
term. Here, Kb and Ka are direct analogues of these quantities.
However, the ME model also contains coupling terms involving
both b and c connecting the equations at the macroscale to those
at the microscale. These terms, as will be shown, provide added
flexibility in ME to capture low-frequency wave dispersion in heter-
ogeneous solids.

The microelastic equations may be discretized for numerical
solution through the weak form Eq. (3) with the standard Galerkin
finite element method (Belytschko et al., 2000) using linear La-
grange interpolants. This method approximates a general vector
function v iðx; tÞ ¼ NJðxÞvJiðtÞ, where vJi are the nodal values in an
element and NJ are the nodal shape functions, J ¼ 1;2; . . . ;ne with
ne nodes per element. Using the Galerkin projection the discretized
finite element equations for the microelastic solid may be written
as (Gonella et al., 2011):

M€dþ Kd ¼ fC; ð7Þ

where M and K are the generalized, global mass and stiffness matri-
ces, d the degree of freedom vector (in general 12 per node), and fC

the external force vector. The steps taken between Eqs. (3) and (7)
involve the standard discretization procedure and are given in de-
tail in the authors’ previous study (Gonella et al., 2011) as well as
a study of static ME (Zervos, 2008) neglecting inertia. In the ensuing
numerical calculations, time integration is performed with a New-
mark-b scheme (Belytschko et al., 2000) with parameters
bNB ¼ 1=4; cNB ¼ 1=2, which is equivalent to an undamped trapezoi-
dal rule. Although the scheme is unconditionally stable, we have en-
sured 30 elements per signal wavelength were used and the
Courant number cfl ¼ ðDt=DxÞc < 0:5, with c the wave velocity. This
fine space-time mesh was used to ensure negligible discretization
errors, especially numerical dispersion that would conflict with
our examination of model-induced dispersion.

3. Wave propagation signatures in microelastic solids

The complex model in Eq. (6) is degenerated to the 1D case and
written it in matrix form as

K0
@v2

@2x
þ K1

@v
@x
þ K2v ¼M

@v2

@2t
; ð8Þ

where v ¼ ½u11; e1
11�

T is the solution vector and

K0 ¼ E
1þ 2cþ b 0

0 Kb

� �
;

K1 ¼ E
0 � cþ bð Þ

cþ bð Þ 0

� �
;

K2 ¼ E
0 0

0 �b

� �
; M ¼ q

1 0

0 Ka

� �
:

ð9Þ

The sufficient and necessary condition for positive-definiteness of
the microelastic tangent matrix in this system is
c2 < b: ð10Þ

To find the dispersion relation for the hyperbolic system in Eq. (8),
let the solution be a harmonic waveform given by

v ¼ /eıðkxþxtÞ; ð11Þ

where ı �
ffiffiffiffiffiffiffi
�1
p

; k is the wavenumber, and x is the angular fre-
quency of the propagating wave. The goal is to find the dispersion
relation xðkÞ in terms of the model parameters. Plugging Eq. (11)
into Eq. (8) produces the eigenvalue problem

k2K0 � ıkK1 � K2

� �
�x2M

h i
/ ¼ 0; ð12Þ

which is solved by setting the determinant of the matrix in brackets
equal to zero upon plugging in the matrices given in Eq. (9). The
problem for the two modes x1;2 may be written as a quadratic
equation for - � x2 as in the standard -2 þ b-þ c ¼ 0 form, with
the solution

-1;2 ¼ x2
1;2

¼ 1
2

�c2 r2
b þ r2

a

� �
k2 þ 1

K
r2
a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
b � r2

a

� �2
k4 þ Dk2 þ 1

K
r2
a

� �2
s2

4
3
5;
ð13Þ

where �c ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
is the macroscopic, homogenized wave velocity, ra

and rb high wavenumber asymptotic wave velocity ratios, and D a
function of the model parameters: 1.5

ra ¼
ffiffiffi
b
a

r
ð14aÞ

rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bþ c

p
ð14bÞ

D ¼ 2
K

r2
a r2

a 1þ að Þ þ 3c 1þ 2c
3b

� �� �
: ð14cÞ

The high wavenumber velocity asymptotes k!1 of the acoustic
mode are given as

a P b; c k!1ð Þ ¼ ra�c

a < b; c k!1ð Þ ¼ rb�c



; ð15Þ

where c is the wave speed with no distinction between phase and
group necessary because of the asymptotic wavenumber. This result
proves for ME in the high wavenumber limit what was shown for
GE (Papargyri-Beskou et al., 2009) (provided c > 0): positive disper-
sion exists when the length parameter attached to the higher order
spatial derivative is larger than that attached to the higher order
inertia. Since ra < 1, the microelastic solid undergoes negative dis-
persion in the high wavenumber limit for a > b. On the other hand,
rb > 1 so that high wavenumbers correspond to positive dispersion
when more weight is attributed to the high-gradient length param-
eter through b. Special attention is paid to the ratio a=b in the ensu-
ing analysis of the model, which acts as a natural partition of the
dynamic behavior of the microelastic solid and indicates a key sig-
nature of its physical characteristics, i.e. wave-guide behavior or
wave-reflect behavior (Murakami and Hegemier, 1986) that corre-
spond to positive and negative dispersion, respectively. At the long
wavelength limit (k! 0) for c ¼ 0, the model’s acoustic mode
recovers CE with x2 ¼ ðE=qÞk2, verified in Fig. 2(a). As will be seen
shortly c–0 produces different long wavelength behavior.

The acoustic and optical mode dispersion relations with c ¼ 0
are plotted in Fig. 2 for a bar with macroscopic magnesium alloy
material properties E ¼ 49 (GPa) and q ¼ 1800 (kg/m3) so that
�c ¼ 5000 (m/s). Based on these properties, constant normalization
factors of x0 ¼ 10 (MHz) and k0 ¼ 2000 (/m) are used throughout
the results section. In elasticity with microstructure, a second
mode due to the added microstrain field exists with its own prop-
agation signatures. The same type of optical modes exist in GE



Fig. 2. Analytical quantities (a) displacement, the acoustic mode, and (b) microstrain, the optical model from solving 1D microelastic strong form with harmonic solution.
Fixed quantities are lm ¼ 2p=k0 and c ¼ 0.
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models that contain 4th order time derivatives (see Askes et al.,
2008a, Fig. 2 therein). Looking at the asymptotic behavior, as the
wavenumber k! 0, the acoustic mode frequency x1 converges
to zero whereas the optical mode frequency x2 converges to a fi-
nite value given by
x2 k ¼ 0ð Þ ¼ ra�c

ffiffiffiffi
1
K

r
¼

ffiffiffiffiffi
E1

I1

s
; ð16Þ
where I1 ¼ Kaq comes from the low-right entry of the matrix M in
Eq. (9) and E1 ¼ bE has been defined as the central entry of the con-
stitutive matrix in Eq. (4) in one dimension. This effect is shown
clearly in the x-intercept of Fig. 2(b) and and draws an interesting
analogy with the classical elastic wave speed being the square root
of micro stiffness over micro density divided by the length parame-
ter introduced into the microelastic theory. The two modes shown
in Fig. 2 compare well in both their shape and asymptotic behavior
with those for GE ‘‘model 2’’ from Askes et al. (2008a). The markers
in Fig. 2 are shown to indicate a curve that is the same between sep-
arate plots; these markers do not indicate data points, but the mark-
ers will carry to future plots to indicate the same parameter
combinations.

Group velocities corresponding to the dispersion relation in
Fig. 2(a) are plotted in Fig. 3(a) against frequency and against the
ratio a=b in Fig. 3(b). The velocity values reported throughout this
document are normalized by the CE solution �c ¼ 5000 (m/s) to eas-
ily identify positive and negative dispersion. The group velocity is
the tangent of the dispersion relation cgðkÞ ¼ @xðkÞ=@k and physi-
cally represents the velocity of an entire traveling wave packet. The
secant of the dispersion relation is known as the phase velocity
which corresponds to the speed of a reference point in the signal.
Fig. 3. Group velocity dependence on (a) frequency for iso-parameter a; b curves and (b
Shown in this figure, and provable with algebra, is that when
a = b, which indicates the length parameters for the higher order
inertia and stiffnesses are equivalent, and c ¼ 0, CE is recovered
in the acoustic mode. This recovery is consistent with studies of
GE (Mindlin, 1964; Papargyri-Beskou et al., 2009), though in gen-
eral this is not true for ME if c–0 except in the high wavenumber
limit k!1. Fig. 3(b) shows that the degree of dispersion magni-
fies with frequency and j1� a=bj.

To expand comments on the model capability, Fig. 4 explores
propagating wave signatures related to variation of the coupling
parameter c broken down into a=b < 1 and a=b > 1. In Fig. 4(a)
the ratio a=b ¼ 2 so that the asymptotic high frequency velocities
are fixed at cðx!1Þ ¼ ra�c. In Fig. 4(b), however, the high fre-
quency velocity limits depend on c as shown in Eq. (14b) since
a=b < 1. This high frequency c independence and dependence of
the group velocity is shown in Fig. 4(c) for the 10x0 curves which
correspond to the high wavenumber limit. Furthermore, the cou-
pling parameter is the only one to produce a positive-negative dis-
persion transition at finite frequencies. Increasing c across all
scenarios in Fig. 4 translates the low frequency x! 0 velocities
downward relative to the CE solution.

Such an observation warrants further examination as it appears
the effect on propagating waves of c is non-physical. The high sen-
sitivity of the model at low frequencies to c, however, may suggest
its use in characterization of damage for structures since damage
may work to soften a heterogeneous material by, as illustrated in
Fig. 1, creating a soft voided network in the material. Such a de-
crease in apparent stiffness would work to effectively change the
material, in a hyper-damaged state, creating lower wave velocities
in the low frequency regime, an effect captured in ME by the cou-
pling parameter c but impossible to capture in GE which converges
to CE unconditionally in the long wavelength limit.
) the ratio a=b for iso-frequency curves. Fixed quantities are lm ¼ 2p=k0 and c ¼ 0.



Fig. 4. Group velocity dependence on (a) frequency for iso-parameter c curves with the ratio a=b ¼ 2 > 1, (b) frequency for iso-parameter c curves with a=b ¼ 0:5 < 1, and (c)
parameter c for iso-frequency curves. Fixed quantities is lm ¼ 2p=k0.
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If the values of c are taken as negative, an increasing translation
of long wavelength wave speeds is observed of the same form as
shown in Fig. 4 but mirrored about the classical solution. This
observation warrants further comment. The equations solved here
are Eq. (1), a set of coupled equations for the 1D harmonic problem
in Eq. (9). However, recent derivations of N-scale micromorphic
theory by (Vernerey et al., 2007) use a subtraction operation be-
tween r and s in Eq. (1a) and between l � r and s in Eq. (1b), as
well as a flipped sign in the relative kinematic measure in the con-
stitutive law of Eq. (4). The end result is that to recover the elastic
equations of Vernerey (Vernerey et al., 2007) using the equations
herein, we require c < 0, which would lead to the aforementioned
positive translation of wave speeds to higher values at low fre-
quency. It is not, therefore, necessarily non-physical that this
material constant be negative. The only restriction on c is that gi-
ven in Eq. (10).

In addition to the dispersion induced by constitutive parame-
ters b and c, and inertia parameter a, the effect of the microscopic
length parameter lm � k=d was also explored in Fig. 5 through a
sweep of d. Of note here is that for both cases a=b > 1; a=b < 1,
decreasing the parameter d, meaning the microstructural feature
approaches and surpasses the wavelength in magnitude, exacer-
bates the observations of the previous discussions. This result is
intuitive since lm magnifies the absolute difference in length values
attached to the high-order stiffness and inertia terms, Kja� bj, in
Eq. (6). In fact, as d! 0, the velocities converge to their asymptotic
values far faster, though this parameter does not translate the low
frequency-limit wave propagation speed as does c. This interesting
Fig. 5. Group velocity dependence on (a) frequency for iso-parameter d ¼ f2;1;1=2;1=4g
parameter d for iso-frequency curves presented with normalized lm values on the abscis
feature allows for preservation of static equilibrium properties of
solids while altering their dynamic character even at low frequen-
cies. Of further interest is that the length parameter lm is connected
to the statistical characteristics of the underlying microstructure of
the microelastic continuum, so that as microstructural features and
structural anomalies evolve under deformation histories, these
changes may be modeled with changes to lm.
4. Numerical analysis and implications for microstructure
identification

To discuss the model’s implications for microstructure identifi-
cation, we consider the bar shown in Fig. 6(a) for two scenarios: di-
rect numerical simulation (DNS) of a damaged bar and an
equivalent ME continuum. In subsection 4.1 we first describe the
geometry, boundary condition, and mesh of the DNS simulation,
second the quantities measured for comparison between DNS
and ME, and third the code verification. Section 4.2 discusses the
results of the computational ME simulations.
4.1. Problem setups and measured quantities

DNS is implemented by idealizing a damaged 1D domain as one
with pseudo-randomly distributed imperfections in the bar mate-
rial properties through the parameters w;v f 2 ½0;1�. w defines dam-
age to the macroscopic material properties as ED ¼ wE, where ED

are the damaged properties and E the macroscopic axial modulus
(k ¼ 2p=k0 ¼ 2p�c=x0) curves, recall lm ¼ k=d with k a reference wavelength, and (b)
sa. Fixed quantities are a=b ¼ 0:5;2:0 and c ¼ 0.
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used in Section 3. v f is the volume fraction of voids representing
the damage state. The problem setup is shown in Fig. 6(a), with
LDNS ¼ 20 (cm) and the damaged region 4 (cm). As discussed in
the introduction, the presence of damage may be thought of as a
specific instance of general microstructural evolution processes.
The goal of DNS is to measure the difference from the undamaged
classical continuum, taken as the reference state, in transmitted
signals through the 1D medium by both their shape change due
to scattering phenomena and change in wave speed. These DNS
simulations will be the benchmark by which to compare computa-
tional ME studies. In both, virtual sensors s1 and s2 with fixed spa-
tial locations collect time history data of the propagating waveform
which, by subsequent post processing, is compared among cases.
The sensor locations are shown in Fig. 6(a).

The time-dependent loading signals are shown in Fig. 6(b). To
analyze the frequency-dependent behavior of microelastic solids,
we introduce a chirp signal AðtÞ modulated by a Hann window gi-
ven as a wide band signal containing frequency content described
by

x� 6 x 6 xþ; ð17Þ

where x is the angular frequency of the exciting force applied to the
domain. As x� ! xþ, the signal converges to a Dirac-d function in
frequency space, though this is numerically unachievable. We
approximate this condition with a narrow band burst given in the
right of Fig. 6(b). The total time taken for one signal to pass is pro-
portional to the inverse of the frequency content in the signal such
that tB; tC 	 1=x.

A trade-off between required spatial/temporal resolution and
amount of frequency space which can be probed via one simula-
tion exists between the chirp and burst signals. For wide band
chirps, the coarseness of the space-time discretization is limited
by the shortest wavelength to be resolved with the finite elements
since waves at the tail end of the signal are traveling faster and
have far shorter wavelengths than those at the front end. This
means low-frequency content in the chirp is over resolved and
computational resource wasted. At the same time, the more fre-
quency content contained in the chirp excitation force allows a
wider probe of frequency space, reducing the number of transient
simulations to run to reconstruct dispersion curves numerically
when compared to the burst signal.

For DNS the domain size two volume fractions of ‘‘voids’’
v f ¼ f10;20g% were explored with voids having modulus reduc-
tion of / ¼ 0:5. The DNS domain was set by numerical experiments
to be large enough to capture the full transmitted signal in sensor
s2 while avoiding boundary reflections. The size of the imperfec-
tions were taken as 2 finite elements for v f ¼ 10% at the center
of the bar and each cluster increased to 4 elements for v f ¼ 20%,
see Fig. 6(a) for the illustration. A mesh of 4000 elements produced
void sizes of 100 (lm) and 200 (lm) for the two damage states. For
Fig. 6. 1D problem setup with (a) the simulation domains for direct numerical simulatio
continuum in the bottom bar. In (a), domains sizes ½L
 T�CE and ½L
 T�ME are different s
both damage states, the burst signal was used with amplitude
magnitude F0 ¼ 5 (kN) and DNS run for a total time of
TDNS ¼ 10tBjx¼0:1x0

. Signal quantities are shown in Fig. 6(b). The
number of elements remained constant across all frequencies
and corresponded to 35 elements per wavelength at the smallest
wavelength.

For comparison between DNS and ME, two quantities are mea-
sured. The first is Dcg , defined as the percent difference between
the group velocity in the undamaged simulation with CE and either
DNS or ME. The second quantity is DA, a measure of the percent
change of the maximum signal amplitude as the wave travels from
sensor s1 to sensor s2. DA attempts to measure distortion as the
wave propagates through a damaged material. We take care to
note that DA does not measure attenuation as all energy is con-
served in microelasticity. In addition, the computational ME simu-
lations do not capture the backscattering responsible for the wave
amplitude reduction in the DNS simulations. While this is an
inconsistency, we stress that the objective of this study is to cap-
ture global behavior – measured by Dcg and DA – observed in
microstructured solids without explicitly modeling the microstruc-
ture. Since group wave speeds are one quantity of interest, further
mention must be made of the approach to numerically measure
them. To extract estimated group velocities ĉg in the space-time
domain, we fix virtual sensor locations and record time histories.
With the sensor locations xs1 and xs2 known and the centroid of
the time history of the signal given by

�t ¼
PNT

j¼1tjuðtjÞ2PNT
j¼1uðtjÞ2

; ð18Þ

where there are NT discrete points on the time history of the signal
uðtjÞ and j is a time step index, the group velocity ĉg is measured as

ĉg ¼
Dxs

D�t
¼ xs2 � xs1

�ts2 � �ts1
; ð19Þ

where �ts1 is the centroid of the time history at sensor s1.
The equivalent microelastic continuum, depicted in the bottom

of Fig. 6(a), has the same macroscopic material properties E and q
as the undamaged DNS elements and a smaller spatio-temporal do-
main with LME ¼ 10 (cm) and TME ¼ 4tBjx¼0:1x0

. The DNS domain is
larger than the ME one to guarantee a representative damaged
zone in the center of the bar with sensors placed at either side
whose time histories are not polluted by boundary reflections.
The authors recognize a more elegant solution would have been
to implement non-reflecting boundary conditions, but such a step
was not taken here as it would not impact the conclusions. Though
the structure sizes are different, the spacing between sensors s1
and s2, where data collection occurs, are both 4 (cm) to allow for
fair comparison between DNS and ME. Because of these consider-
ations, the ME simulations are cheaper than DNS, a typical trend
n of damage in the orange (shaded) zone of the top bar and equivalent microelastic
izes. (b) Shows the traction boundary condition amplitude time histories.



M. Steven Greene et al. / International Journal of Solids and Structures 49 (2012) 3148–3157 3155
in theories of generalized continua only magnified in higher
dimensional space.

The ME bar is discretized by varying numbers of elements that
depend on the frequency of the burst signal applied, with each sim-
ulation having 40 microelastic elements per wavelength. Fig. 7
shows both space-time and wavenumber-frequency domain meth-
ods for analysis of numerical wave fields and is used to verify the
implementation of computational ME. Space-time data is trans-
formed to Fourier space with the discrete Fourier transform
(DFT) approach, and the numerical field data for the acoustic mode
in Fig. 7(b) is shown to be accurate by its fit to the analytical solu-
tion with the same parameter combination. The parameter choice
is fa; b; c; dg ¼ f0:3;0:9;0:0;10g. This verification was achieved
using the chirp signal in Eq. (17) with x� ¼ x0=10 and
xþ ¼ 8x�. The positive dispersion observed in Fig. 7(b) is consis-
tent with the derivations in Section 3 for b > a, cf. Fig. 2(a).
4.2. Simulation results and discussion

With a simple trial and error procedure, the length parameter lm

was calibrated to approximately fit the DNS group velocity results,
with other ME parameters fixed at a ¼ 0:5; b ¼ 0:2, and c ¼ 0.
Emphasis for calibration on the length parameter lm was chosen
because it has a distinct physical meaning being a length scale re-
lated to microstructure of a material. The other parameters have
found loose physical meaning in GE derivations from discrete lat-
tice models (e.g. Askes and Metrikine, 2002), but always in a phe-
nomenological sense. The manual calibration process only
minimizes error between DNS and ME by inspection. An auto-
mated calibration is not necessary because we only aim to show
that ME captures the observed trends. This calibration led to
lm ¼ 455 (lm) for the first damage state (v f ¼ 10%) and
lm ¼ 769 (lm) for the second (v f ¼ 20%). Since the length
parameter was taken as constant across all frequencies, the
parameter d changed since it is a relation between the microzone
length parameter and the applied signal wavelength d ¼ k=lm. For
damage state 1 d ¼ f11;6:5;3:�6g and for damage state 2 d ¼
f6:5;3:25;2:1�6g. The increase of group velocity reduction observed
here as d decreases is the same trend observed for positive disper-
sion by Gonella et al. (2011) as the signal wavelength overlaps the
microelastic length parameter.

The CE centroid �tCE and the time histories of the receiving sensor
s2 for the three simulation frequencies are shown in Fig. 8 for the
first damage scenario v f ¼ 10%;w ¼ 0:5; lm ¼ 455 (lm). In this
Fig. 7. Numerical data extraction methods in (a) space-time where spatial sensor location
wavenumber-frequency domains. The transformation from (a) to (b) is done with a D
analytical solution for the acoustic mode from Eq. (13). Parameters are a ¼ 0:3; b ¼ 0:9
figure, the CE centroid arrives at s2 before the centroid of the
DNS/ME waves, indicating an expected reduction in the measured
group velocity upon the introduction of damage. The second quan-
tity DA, the reduction in peak amplitude of the signal, may also be
seen in Fig. 8. From the figure, both ME quantities approximately
match the DNS simulation.

Quantitative analysis of the two metrics is catalogued in Table 1.
There, we see quantitatively what may be deduced qualitatively
from Fig. 8: that ME approximately captures the reduction in group
velocity and the peak signal amplitude relative to the undamaged
solid. This is exemplified by the closeness of the Dcg and DA values
for both damage states across DNS and ME. We notice that mis-
match increases at lower frequencies, which is due to the manual
calibration process favoring x ¼ 0:3x0. We believe this error to
be surmountable with a more detailed parametric exploration,
namely changing the quantities a and b in addition to the micro-
scopic length parameter, to match the measured quantities across
a wider frequency spectrum. Here, only the parameter lm was used
for calibration. From the analysis in Section 3, it is apparent that
parameter combinations that match the apparent group velocity
reduction are not unique. For instance, increasing the ratio a=b will
also drop the group velocity (see Fig. 3 or Fig. 5) so that a different
value of lm could match the DNS values reported here. The unique
identification of these parameters is a topic of future research. Of
note is that the parameter d, a measure of the microzone length
relative to the input wavelength, is that as d! 1 (a condition
achieved by increasing the input signal frequency) the transmitted
wave changes more dramatically in both shape and speed. Since
a > b for these simulations, the group velocity reduction numeri-
cally observed is consistent with the analytical derivations in
Section 3.

These results show the potential of ME to act as a physics-based
measurement model to identify a particular damage state in solids
within the context of NDE. Specifically, the pitch-catch scenario
modeled herein, where one sensor sends a signal and another re-
ceives it, creates a situation where the time history of the receiving
signal undergoes frequency-dependent changes in both shape and
speed for different damage states. To understand this claim, con-
sider using CE as a measurement model to detect damage. One
may monitor CE modulus E and density q over time that match a
particular pitch-catch transmission speed, but any one combina-
tion of CE parameters produces one frequency independent wave
speed �c ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
. This means that the calibration of E and q from

sent and received signals will change for different frequencies,
s are fixed and time histories superimposed on the wave field are measured and (b)
FT approach, and the finite element approximation in (b) is shown to match the
; c ¼ 0; d � 10; v f ¼ 0, and w ¼ 1:0 (undamaged).



Fig. 8. Receiving sensor s2 time histories in Fig. 6 for DNS and ME for (a) x ¼ 0:1x0, (b) x ¼ 0:2x0, and (c) x ¼ 0:3x0. On each subfigure the time range is identical for DNS
and ME simulations, and the CE wave signal centroids are shown with dotted lines. DNS and ME centroids are solid vertical lines. If ME predictions perfectly matched DNS
damage state group velocities, the solid lines in each subfigure would overlap. Noticeable frequency-dependent lag between the undamaged, CE solution and both DNS and
ME is observed.

Table 1
Comparison of DNS and ME simulations. For damage state 1, the DNS void size is
lv ¼ 100(lm) and calibrated ME length parameter lm ¼ 455(lm). For damage state 2,
lv ¼ 200(lm) and lm ¼ 769(lm). All table values are percent change relative to
classical elasticity solution.

x=x0 Damage state 1 Damage state 2

DNS ME DNS ME

(a) Group velocity change Dcg (%)

0.1 �4.9 �0.8 �9.9 �3.7
0.2 �9.0 �5.6 �22.6 �21.1
0.3 �15.8 �16.5 �36.4 �33.2

(b) Peak amplitude change DA(%)
0.1 �2.1 �0.77 �8.4 �4.0
0.2 �22.5 �8.26 �46.1 �38.8
0.3 �49.3 �40.85 �77.4 �67.2
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meaning that no one set of CE parameters could fit multiple input-
output signal combinations even though the material remains un-
changed in its current microstructure state and should thus have
constant apparent stiffness and density. Furthermore, such a meth-
od provides little to no information about the length scale at which
damage occurs or its effect on the macroscopic stiffness of the
material.

Using ME, on the other hand, allows for one combination of
material parameters to approximate a set of signals at different fre-
quencies and is thus more consistent with reality in that boundary
conditions should not affect material properties. As another nicety,
the formulation includes a length parameter which gives insight
onto the scale to which damage has grown over time. As shown
in Table 1, the DNS voids of size lv are roughly 1/4 the size of
parameter lm for damage states 1 and 2. This is physically consis-
tent with the illustration in Fig. 1, as the parameter lm is not meant
to be the void size itself but the size of a mesoscopic averaging do-
main which contains statistical information about geometric vari-
ation and inhomogeneous deformation occurring in the
microstructure. With that picture in mind, lm is necessarily larger
than one single inclusion or imperfection in the solid. The same
concept was described by Gao et al. (1999) in their strain gradient
plasticity formulation wherein one length parameter represents a
domain that captures the interactions of dislocations within a
meso-domain ensemble. Thus, the size of this averaging domain
must increase as internal damage grows in size, since larger do-
mains are required to contain the same amount of statistical infor-
mation. For us, this means that as microstructural damage grows
the microzone length parameter of ME ought to grow with it.
The same would be true of stiff inclusions in a soft matrix, with
the exception that b > a during the calibration process. In that
case, the microstructure length parameter lm would still grow in
size as more microstructure is added as propagating wave would
speed up with increasing inclusion volume fraction. These physical
interpretations of ME are realized numerically in the results of this
section.

As a final point to discuss, we previously remarked that back-
scattering was not captured with the computational ME simula-
tions here. This limitation may be surmounted by giving the ME
parameters fa; b; c; dg a spatial distribution and fitting reflected
signals in addition to transmitted ones. The discontinuity in mate-
rial properties will create some backscattering, yet fitting reflected
waveforms would be a far more complex problem than that stud-
ied here. Adding multiple response calibration would provide some
uniqueness to the calibrated parameter values and include physi-
cally observed backscattering, two items absent from the elemen-
tary numerical examples presented here.

5. Conclusion

This study has presented a combination of analytical and com-
putational results that elucidate the signatures of waves propagat-
ing in microelastic continua, continua described by additional
degrees of freedom representing internal deformability of material
particles. Analytical xðkÞ dispersion relations were presented for
the full 1D microelasticity model and extensive parametric studies
were conducted on the results. These results showed that the ratio
a=b of the high-order inertia to the high-order stiffness divides
propagating wave velocities into positively and negatively disper-
sive regions with different high-frequency asymptotic behavior for
each. The constitutive coupling parameter in the theory of elastic-
ity with microstructure produces low frequency wave speeds that
deviate from the classical elasticity solution. These conclusions
demonstrate improved flexibility of microelasticity over gradient
elasticity, which does not contain additional degrees of freedom,
in predicting an array of wave speed signatures.

With an understanding of the dispersive properties of micro-
elastic waves, we conducted numerical experiments to uncover
the potential of computational microelasticity to identify damage
states – a proxy for microstructure evolution – within heteroge-
neous solids. This was achieved by comparing time history data
from virtual sensors in direct numerical simulation of a damaged
material to those in an equivalent microelastic continuum.
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Through these comparisons it was shown that by calibrating only
the microelastic length parameter lm, global trends of frequency-
dependent and microstructure-dependent wave characteristics
were captured through reductions of group velocity and maximum
wave amplitude. Quantitatively, changes in group wave velocity
more accurately matched DNS than the change in waveform shape.
Matching both is a subject of future work and will require a more
extensive parametric calibration procedure. The physical meaning
of the length parameter in microelasticity is well suited to describe
microstructure evolution in a solid as it was shown here that its
calibrated values were consistent with the size of a statistical aver-
aging domain consisting of an ensemble of voids.

Future work opportunities proliferate given the results of the
current study. On the analytical side, tighter bounds should be de-
rived for the model parameters based on propagation modes being
confined to the real number line. Numerically, only 1D models
were implemented, though there is a great opportunity for model-
ing more complex microstructures in multiple dimensions with
computational microelasticity. In addition, more intelligent use of
chirp signals and conversion of numerically generated microelastic
wave fields to Fourier space is expected to yield more elegant dam-
age identification algorithms that could become practical within
NDE research. The dispersion relation of the optical mode repre-
senting the microstrain was reported, though a detailed numerical
analysis of the microstrain fields was not. And finally, as microelas-
ticity becomes better understood we expect to comparisons with
physical experiments, not just direct numerical simulation of
microstructures, to become more commonplace.
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