Journal of Differential Equations **182**, 266–268 (2002) doi:10.1006/jdeq.2001.4156

LETTER TO THE EDITOR

Nonexistence of Uniform Exponential Dichotomies for Delay Equations

Gyula Farkas[†]

Department of Mathematics, István Széchenyi University of Applied Sciences, H-9026 Győr, Hédervári u. 3., Hungary E-mail: gyfarkas@math.ist.utl.pt; gyfarkas@math.bme.hu

Received September 24, 2001

In this note, we report an error in the article by Zhang and Wu [2]. Before we recall the invalid result in [2, Theorem 2.1], we introduce some notation. Consider a linear functional differential equation of the form

$$\dot{\mathbf{x}}(t) = L \mathbf{x}_t,$$

where $L: C([-r, 0], \mathbf{R}^n) \to \mathbf{R}^n$ is a bounded linear map, $x_t \in C([-r, 0], \mathbf{R}^n)$ defined as $x_t(\theta) = x(t + \theta), \ \theta \in [-r, 0]$ and $C([-r, 0], \mathbf{R}^n)$ is the Banach space of continuous functions $\phi : [-r, 0] \to \mathbf{R}^n$ with norm $||\phi|| = \sup_{\theta \in [-r, 0]} |\phi(\theta)|$. Denote the C_0 -semigroup generated by the linear functional differential equation by $\{T(t)\}_{t \ge 0}$.

In [2] the authors claimed that for any $\mu \in \mathbf{R}$ there exist constants $\gamma_2 > \gamma_1 > 0$ and *K*, *K* can be chosen independent of μ , such that

$$||T(t)P_{-}|| \leq Ke^{(\mu-\gamma_{2})t}, \qquad t \ge 0,$$
$$||T(-t)P_{+}|| \leq Ke^{-(\mu-\gamma_{1})t}, \qquad t \ge 0,$$

where P_+ is the eigenprojection associated with the spectral set $\{\lambda \in \sigma(A) : \operatorname{Re} \lambda \ge \mu\}$, $P_- = I - P_+$ and A is the generator of $\{T(t)\}_{t\ge 0}$, see Theorem 2.1 in [2]. We call this family of exponential dichotomies as uniform exponential dichotomies since constant K is independent of μ . In what follows, we show that this claim is false, i.e. there are no uniform exponential dichotomies for delay equations.

Set $C_- = P_-C([-r, 0], \mathbf{R}^n)$. We claim that there exists a function $\phi_* \in C_-$ such that $||\phi_*|| = 1$ and $|\phi_*(-a^*)| = 1$ for some $a^* \in [0, r/2]$. In fact, consider

[†]Gyula Farkas (1972–2002) died in a car accident on February 27, 2002.

0022-0396/02 \$35.00 © 2002 Elsevier Science (USA) All rights reserved.

a sequence $\{\phi_k\} \subset C([-r, 0], \mathbf{R}^n)$ with the properties that $||\phi_k|| = 1$, supp $(\phi_k) \subset -r/2, 0]$ for k = 1, 2, ..., and $\operatorname{supp}(\phi_k) \cap \operatorname{supp}(\phi_\ell) = \emptyset$ whenever $k \neq \ell$. Since C_{-} is of finite codimension, there is no loss of generality in assuming that $P_+\phi_k \to g$ for some $g \in C_+ = P_+C([-r, 0], \mathbf{R}^n)$. Hence $\phi_k - \phi_\ell = c_{k\ell} + g_{k\ell}$, where $c_{k\ell} \in C_-$, $g_{k\ell} \in C_+$ and $||g_{k\ell}|| \to 0$ as $k, \ell \to \infty$. It is readily seen that ϕ_* can be chosen for $c_{k\ell}/||c_{k\ell}||$ $(k \neq \ell)$, k, ℓ sufficiently large.

From the inequalities

$$1 = |\phi_*(-a^*)| = |[T(r-a^*)\phi_*](-r)| \le ||T(r-a^*)\phi_*|| = ||T(r-a^*)P_-\phi_*||$$

$$\le ||T(r-a^*)P_-|| \le Ke^{(\mu-\gamma_2)(r-a^*)} \le Ke^{\mu(r-a^*)},$$

it follows that $K \ge e^{-\mu r-2}$, for $\mu \le 0$; i.e., *K* cannot be chosen independent of μ as $\mu \to -\infty$.

The proof of Theorem 2.1 in [2] contains two mistakes. First, the norms of P_+ and P_- are estimated by 1, see (2.8) on p. 417, and the continuity of $K_2(s)$, see (2.12) on p. 418, is used at s = 0 where it is not continuous. The discontinuity of $K_2(s)$ can be easily seen from the above construction. Let us study the estimates of the norms of the spectral projections in some detail.

Consider the following scalar delay differential equation:

$$\dot{x}(t) = ax(t) + bx(t-1),$$

where $b \neq 0$. Since $b \neq 0$, we know that there are infinitely many characteristic roots such that $\operatorname{Re} \lambda_1 \ge \operatorname{Re} \lambda_2 \ge \cdots$, $\operatorname{Re} \lambda_j \to -\infty$ as $j \to \infty$. Let us switch to the complexification of $C([-1, 0], \mathbf{R})$ and the semigroup $\{T(t)\}_{t\ge 0}$. Denote the eigenprojection associated with the spectral set $\{\lambda_j\}$ by P_j . It is known, see [1], that projections P_j have explicit matrix representations. Note that at most one characteristic root is not simple. Thus if j is large then $P_j\phi = a_j\phi_j$, where $\phi_j(\theta) = e^{\lambda_j\theta}$, $\theta \in [-1, 0]$ and $a_j = \psi_j(0)\phi(0) + b \int_{-1}^0 \psi_j(\tau+1)\phi(\tau) d\tau$. Here $\psi_j(\theta) = c_j e^{-\lambda_j\theta}$, $\theta \in [0, 1]$ and (via an elementary calculation) $c_j = \frac{1}{1+be^{-\lambda_j}}$. From the representation of a_j we see that for all ε small enough we can choose a function ϕ_{ε} , $\|\phi_{\varepsilon}\| = 1$, $\phi_{\varepsilon}(0) = 1$, such that $|a_j| = |a_j(\phi_{\varepsilon})| \ge \frac{1}{1+|b|e^{-\operatorname{Re}\lambda_j}} - \varepsilon$. Thus $\|P_j\| \ge \|P_j\phi_{\varepsilon}\| \ge |a_j(\phi_{\varepsilon})|e^{-\operatorname{Re}\lambda_j} \ge \frac{1}{1+|b|e^{-\operatorname{Re}\lambda_j}} \to \frac{1}{|b|}$ as $j \to \infty$.

Concerning the upper bounds, the following question arises: Is there a constant *M* such that $||P_+|| \leq M$ for all $\mu \in \mathbb{R}$? We admit that we do not know the answer in general but for equations with complete system of (generalized) eigenfunctions of the generator (for definition see [1, Section 7.8]) the existence of the uniform bound for the norms of the eigenprojections implies convergent series expansion for all $\phi \in C$. Indeed, it is known that $\sum_{j=1}^{N} P_j$ $\phi \to \phi$ in *C* for all $\phi \in D(A^{\infty})$. Since $D(A^{\infty})$ is dense in *C* and the norms of

the projections $(P_+ =) \sum_{j=1}^{N} P_j$ have a uniform bound it follows that $\sum_{j=1}^{N} P_j \phi \rightarrow \phi$ in *C* for all $\phi \in C$. This motivates our expectation that the answer is negative.

The aim of paper [2] was to show that the homoclinic solution $x(t) = (\sinh 1)(\cosh t)^{-1}$ of $\dot{x}(t) = (\cosh 1)(\sinh 1)^{-1}x(t) - (\sinh 1)^{-1}(1 + x^2(t))x(t - 1)$ lies on a finite-dimensional invariant manifold. Since Theorem 2.1 is false the whole proof of the main result (Theorem 5.1) breaks down as well where the uniformity was used to control the cut-off regions. Thus, it is still not known whether the homoclinic orbit lies on a finite-dimensional invariant manifold.

REFERENCES

- J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations," Springer, New York, 1993.
- 2. W. Zhang and J. Wu, Homoclinic orbits on invariant manifolds of a functional differential equation, *J. Differential Equations* **165** (2000), 414–429.