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In this note, we report an error in the article by Zhang and Wu [2]. Before
we recall the invalid result in [2, Theorem 2.1], we introduce some notation.
Consider a linear functional differential equation of the form

x(t) = th)

where L:C([—r,0],R") -» R" is a bounded linear map, x; € C([—r,0],R")
defined as x,(0) = x(¢ + 60), 6 € [-r,0] and C([—r, 0], R") is the Banach space
of continuous functions ¢ : [-r,0] —» R" with norm ||¢|| = supge_, o [P(0)].
Denote the Cy-semigroup generated by the linear functional differential
equation by {T(¢)},>,-

In [2] the authors claimed that for any u € R there exist constants y, >
y; >0 and K, K can be chosen independent of y, such that

IT(OP-|| <K 7Y, >0,
IT(—t)Ps]| <Ke W0 £>0,

where P, is the eigenprojection associated with the spectral set {Ae
o(4): Reizp}, P~.=1—P, and 4 is the generator of {T(f)},~(, see
Theorem 2.1 in [2]. We call this family of exponential dichotomies as
uniform exponential dichotomies since constant K is independent of u. In
what follows, we show that this claim is false, i.e. there are no uniform
exponential dichotomies for delay equations.

Set C_ = P_C([—,0],R"). We claim that there exists a function ¢, € C_
such that ||¢,|| = 1 and |¢(—a*)| = 1 for some a* € [0,7/2]. In fact, consider
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a sequence {¢,} c C([—r,0], R") with the properties that ||¢,|| = 1, supp (¢;)

c —r/2,0] for k=1,2,..., and supp(¢;) nsupp(¢,) =0 whenever k+#/.

Since C_ is of finite codimension, there is no loss of generality in assuming

that P.¢, » g for some ge C; =P.C(—r0],R"). Hence ¢, — ¢, =

cre + gis, Where ¢y € C_, giy € Cy and ||gi/|| — 0 as k,/ — oo. It is readily

seen that ¢, can be chosen for ¢y /|lcik/|| (k#7), k,¢ sufficiently large.
From the inequalities

=19 =70 = @G (NISITE = @l = ITC = )P
< |IT(r — a*)P_|| < Ket 72" < gehlr—a®),

it follows that K >e #~2, for u<0; i.e., K cannot be chosen independent of
WUas u — —oo.

The proof of Theorem 2.1 in [2] contains two mistakes. First, the norms of
P, and P_ are estimated by 1, see (2.8) on p. 417, and the continuity of K>(s),
see (2.12) on p. 418, is used at s =0 where it is not continuous. The
discontinuity of K;(s) can be easily seen from the above construction. Let us
study the estimates of the norms of the spectral projections in some detail.

Consider the following scalar delay differential equation:

Xx(t) = ax(t) + bx(t — 1),

where b#0. Since b#0, we know that there are infinitely many
characteristic roots such that Re4A;>Red,>---, Re4; - —00 as j — oo.
Let us switch to the complexification of C([—1,0],R) and the semigroup
{T(£)},=0. Denote the eigenprojection associated with the spectral set {4;} by
P;. It is known, see [l], that projections P; have explicit matrix
representations. Note that at most one characteristic root is not simple.
Thus if j is large then Py = a;¢;, where ¢(0) = €, 0 € [~1,0] and a; =
¥ (0)¢(0) + bf Y (t + D(r) dr. Here y,(0) = cje 400 e[0,1] and (via
an elementary calculation) ¢; = lb—’ From the representation of a; we see
that for all ¢ small enough we can choose a function ¢,, ||¢.|| = 1, ¢.(0) = 1,
such that g = la)(90) > v — o Thus [P =118 1> oy e >
(W ¢)e Re%_ Since ¢ was arbitrary we get that ||Pj]|>
as j — oo.

Concerning the upper bounds, the following question arises: Is there a
constant M such that ||P, || <M for all u € R? We admit that we do not know
the answer in general but for equations with complete system of (general-
ized) eigenfunctions of the generator (for definition see [1, Section 7.8]) the
existence of the uniform bound for the norms of the eigenprojections implies
convergent series expansion for all ¢ € C. Indeed, it is known that Z;V:l P
¢ — ¢ in C for all ¢ € D(4*). Since D(4°) is dense in C and the norms of

—Re /,/ 1
e 1
l+|h\ —Re 2 1]
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the projections (P, =) Zjv: , P; have a uniform bound it follows that Zjvzl
Pi¢ — ¢ in C for all ¢ e C. This motivates our expectation that the answer
is negative.

The aim of paper [2] was to show that the homoclinic solution x(¢) =
(sh 1)(ch 7)~" of x(r) = (ch 1)(sh 1)"'x(¢) — (sh 1)~ '(1 + x2(£))x( — 1) lies on a
finite-dimensional invariant manifold. Since Theorem 2.1 is false the whole
proof of the main result (Theorem 5.1) breaks down as well where the
uniformity was used to control the cut-off regions. Thus, it is still not known
whether the homoclinic orbit lies on a finite-dimensional invariant manifold.
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