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INTRODUCTION 

Free boundary problems in the theory of elliptic and parabolic equations 
often can be reformulated as variational inequalities or, more generally, as 
quasi-variational inequalities. For examples of the later we refer to Baiocchi 
[l, 21. In this paper we consider the following free boundary value problem. 
Find functions U(X, t) and s(t) such that 

-u,, + Ut = 0 for 0 < x < s(t), O<t<T, 
td=h for x = s(t), O<t<T, 

u, = 0 for x = s(t), O<t<T, (1) 
u(x, 0) = %)(x) for 0 < x < S, , 

u(0, t) = h(t) for 0 < t < T, 

where A(x, t), U,,(X), and h(t) are given functions and s,, , T are given positive 
numbers. This problem will be reformulated as a new type of quasi-variational 
inequality, namely: Find functions w(x, t) and s(t) such that w(x, t) > 0 
and 

and 
{(x, t): w(x, t) > 0} = {(x, t): 0 < x < s(t), 0 < t < T), (2) 

-w,, + wt z AX, t; s(t)> for 0 < x < R, 0 < t < T, 
= f(x, t; s(t)) for 0 < x < s(t), 0 -C t < T, 

w(x, 0) = g(x) for 0 <x <R, 
w&A t> = $(t) for 0 < t < T, 
w(R, t) = 0 for 0 < t < T. (2’) 
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The function f depends on the boundary of the set where w(x, t) > 0 in a 
certain specified manner, and g and $ depend on the given u,, and h. Herein 
lies the novelty and the quasi-variational nature of our problem. First of all, 
the function f depends on the solution w to (2’) by (2). Since this dependence 
is not smooth, the conditions (2), (2’) d o not determine a variational ine- 
quality in the usual sense. However its solution may be found by approxima- 
tion with solutions of variational inequalities (cf. Sect. 3), and for this reason 
we call our problem a quasi-variational inequality. The usual quasi-variational 
inequality entails a convex set of competing functions which may depend on 
the possible solution. The problem at hand will differ from this because the 
convex set will be fixed, but instead the inhomogenous termf will depend on 
the possible solution. 

We prove that there exist minimal and maximal solutions for (2). A 
uniqueness theorem is also proved. As a by-product of the existence proof 
we establish that the free boundary, for any solution of (2’), is continuous 
and monotone increasing. 

Problem (1) can also be reduced to a “Stefan type” problem for the func- 
tion v = -u, . One can easily check that 

-VX, +v,=o for 0 < x < s(t), O<t<T, 

v=o for x = s(t), O<t<T, 

vu, = ---A$ - At for x = s(t), O<t<T, (3) 
0(x, 0) = -uo’(x) for 0 < x < s, , 

v&O, t) = -h’(t) for O<t<T. 

When X, > 0, this problem has a unique local classical solution; it can be 
constructed by transforming the problem into a nonlinear integral equation 
for s (see, for instance, [5,7, 81). We shall assume later on that X, > 0, X, < 0. 
If also 

u,‘(x) d 0, h’(t) 2 0, (4) 

then there exists a unique classical global solution. Indeed, since in this case 
v > 0 if 0 < x < s(t), it follows that U$ < 0 on x = s(t), and the a priori 
estimates (as in [5’j) for v,(x, t) can be established. We shall not assume 
however the conditions in (4). Consequently the usual methods (such as in 
[5, 7, 81) for establishing the existence of a global solution cannot be applied. 

The methods of this paper apply also to problems other than (1). For 
example (see Sect. 6), they apply to the problem obtained from (1) upon 
replacing the condition u = h by 

u(s(t), t) = 1 + j-‘&b)) dT (g > 0, gx < 0). (5) 
0 
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Notice that if we set v = -u, , then v satisfies the condition in (3) with the 
exception of v, = -A> - A,, which is replaced by 

this is a “Stefan type” problem with zero latent heat. 
Krugkov [6] has studied a free boundary problem similar to (I), but 

with u = h replaced by 

s t dr 
u=l--or ___ 

0 1 - 44 
on x = s(t) (a > 0). 

He proved a uniqueness theorem for smooth solutions. This particular 
problem arises when a viscoplastic rod hits a rigid obstacle [3]. 

1. FORMULATION IN VARIATIONAL TERMS 

Let h(x, t), uo(x), and h(t) b e g iven smooth functions for 0 < x 6 R and 
0 < t < T, and let so E (0, R). With D = {(x, t): 0 < x < R, 0 < t < T), 
consider the free boundary value problem classically stated. 

PROBLEM 1. To find a curve l? x = s(t), 0 < t < T, and a function 
U(X, t) which satisfy 

-%%I! +u,=o for 0 < x < s(t), O<t<T, 
ld=h for (x, t) E r, 

24, = 0 for (x, t) E r, 
u(x, 0) = uo(x) for 0 < x < so, 
u(0, t) = h(t) for 0 < t < T. 

The above may be reformulated as a variational problem for the function 

wo(% t> = J‘” MC, t> - h(5‘, 9) d5, (x, t) E D, U-1) 
z 

where it is understood here that s(t) < R if 0 < t < T and that U(X, t) is 
extended to be h(x, t) in the set s(t) < x < R, 0 < t < T. So w(x, t) = 0 if 
s(t) < x < R, 0 < t < T. We define D = {(x, t): 0 < x -=z s(t), 0 < t < T). 
We may now compute that, for (x, t) E 52, 

wt(x, t> = JR (utk‘, t) - Ut, t>> d5 z s(t) s(t) F.z s u&?, 4 dt - s &(5> t) d5 
= z&t), t) - u&c, t) “_ /““’ A,(,$, t) d[ 

= -u&x, t) - /“‘“’ A,([, t;df. 
J: 
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Also, for (x, t) E Q, 

Therefore 

where 

for (x, t) E Q, (14 

f(% t> = --h,(% t) - JJt) &(5, t) d!T if (x, t) Es2 

= 4,(x, t) if (x, t) E D\Q. (1.3) 

The definition of f(x, t) for (x, t) in D\Q is made for technical convenience. 
We turn now to the boundary conditions asked of w. Assume that 

h(X) > qx, 0) for 0 < x < sa and u(so,O) =h(s,,O). (1.4) 

Now define 

g(x) = s:” M5) - $5 ON 45 if O<x,<s, 

= 0 if sa <x <R, (1.5) 

so that w(x, 0) = g(x). Observe that g’(x) < 0 by (1.4). Insisting that @a(x) > 
X(x, O)in(O, a) 11 s wi ensure that the free boundary I’ “starts” at so . Set 

3L(t) = --h(t) + w, 6, O<t<T. (1.6) 

Then 
w,(O, t) = v!(t), O<t<T. (1.7) 

We assume that 

*w G 0 for 0 < t < T. 

An important feature of this problem is the equation satisfied by eo, in Sz. 
Differentiating with respect to x in (1.2) shows that 

-%2X i-W& =,f* = ---h,,+b in Q. 

Imposing the condition 

--x,, + At d 0 in D W) 

and recalling that w2(x, t) = h(x, t) - 11(x, t) = 0 for (x, t) E r, we obtain 

-%t% + wO,t < 0 in Q, 

w, < 0 on as, 
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where 8Q denotes the parabolic boundary of a. Therefore, assuming w, to 
be continuous in A?, the maximum principle implies w, < 0 in Q. After an 
integration with respect to x, w(x, t) > w(s(t), t) = 0 in Q. We state the 
information derived above, albeit partially in a formal manner, about w in 
terms of variational inequalities. For this, set 

K={v~H1(D);v>OinD}. 

Then 

(-w,, + Wt)(V - 4 2 f(v - 4 a.e. in-Q for all ZI E K, 

w>o in Q, (1.9) 
and 

(-w,, + Wt)(V - w) = 0 > fv = f(v - w) a.e. in D\Q for all v E K, 

w=o in D\Q, (1.10) 

under the assumption that f < 0 in D. 
To introduce the problem we shall treat here, we state some conventions 

and summarize our hypotheses about the initial data. For a given bounded 
function a(t), 0 < t < R, o(O) = so, we define 

f (x, t) = f (x, t; o) = --h&x, t) - l;(t) A,([, t) df if 0 < x < a(2), 

O<t<T, 

= -Ar(X, t) if o(t) < x < R, 0 < t < T. 

Let g(x), 0 < x < R, be smooth and satisfy 

g(x) > 0 for 0 < x < s0 , g(x) = 0 for ss < x < R, 

g’(x) < 0 for 0 < x < ss , 

and let s)(t), 0 < t < T, be smooth and satisfy 

W) < 0, f(t) G 0 for 0 < t < T, 

g’(O) = $w). 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

The relations (1.9) and (1.10) lead to the problem below about w. 

PROBLEM (*). To find w E W(D) such that 

WEK: (-wzz+wt)(v-w)>f(v-w) a.e. in D for VEK, 

w(x, 0) = g(x) for 0 <x <R, 

%(Q t> = W) for 0 -=c t -=c T, 
w(R, t) = 0 for O<t<T 
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where f = f (x, t ; s) is defined by (1.11) for 

s(t) = inf{x: w(x, t) = 0}, 0 < t < T, 

andg, 9 satisfy (1.12), (1.13), and (1.14), respectively. 
Since f does not depend in a continuous way on w(x, t), Problem (*) is not 

properly a variational inequality but a form of quasi-variational inequality. 
Our approach is first to study a variational inequality associated to a given 
function s(t). We describe this as 

PROBLEM 2. To find w E H1(D) such that 

w E K: (-w,, + W~)(TJ - w) 3 f(v - w) a.e. in D for 2’ E K, 

w(x, 0) = g(x) for 0 <x <R, 

%P, 4 = (Cl@> for 0 < t < T, 
w(R, t) = 0 for 0 < t < T, 

where f = f (x, t; u(t)) is defined by (1.11) for a given increasing function 
u(t), 0 9 t < T, a(O) = so , and g, $ satisfy (1.12) and (1.13), respectively. 

Under some hypotheses about h, more restrictive than just (1.8) or that 
f < 0, this latter necessary to obtain a variational inequality under any 
circumstances, we shall prove that Problem 2 admits a unique solution w for 
which s(t) = inf{x: w(x, t) = 0) is again an increasing function. Let us 
say, in this situation, that s = Au. To solve Problem (*) we show the existence 
of an s for which s = As. 

2. THE SOLUTION TO A VARIATIONAL INEQUALITY 

Let u(t), 0 < t < T, u(O) = so, be an increasing bounded function 
and define (cf. (1.1 l)), 

f (x, t) = --xc&, t) - j;(i) a, t) a if 0 < x < u(t), 0 < t < T 

= -&.(x, t) 

About f we assume 

if u(t) < x < R, 0 < t Q T. 

(2-l) 

f (x, t) -=c 0 if (x, t) E D, 

ft(x, t) 3 0 if (x, TV D, (2.2) 
f&, 4 < 0 if (x, t) ED, 

and 
f (x, 0) + g”@, 0) 2 0 if O<x<s,. (2.3) 
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The conditions (2.2), (2.3) are abstract and lead to the solution of a variational 
inequality. To understand them in the present context, let us determine their 
implications for the f defined in (2.1). The condition that f be negative means 

i 
o(t) 

- Uf, t) d5 -=c A&, t) for 0 < x < o(t), 0 < t < T, 
c 

and 

0 < &(x9 t) for a(t) < x < R, O<t<T. 

If we further suppose that A, < 0, then both of the above will be satisfied if 

-R 

--I 
Jo 

UE, t) 8 < 44x, t) for (x, t) E D. 

Now we compute 

0 < g (x, t) : 

and 

= - 
/At(u(t), t) u’(t) + &(x, t> + /““’ L(l, t) df/ 

x 

for 0 < x < u(t), 0 < t < T, 

zz -UX? t) for u(t) < x < R, 0 < t < T. 0 < g (x, t) : 

Since U’ may be arbitrary, but never negative, and u E [0, R], that af /at > 0 
amounts to assuming 

and 

It is easy to see that the condition fx < 0 is satisfied if 

b(x, t) < 0 and kc&, 4 3 0. 

Finally, the boundary condition (2.3) means that 

d’(4 - Mx, 0) + j-” W, 0) 4 3 0, 0 < x < s, . 
r 
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Summarizing, f satisfies (2.2) and (2.3) for any increasing a(t), u,(O) 
a(T) < R, provided that 

g"(x) - (Ux, 0) + js’ U&O) d5) B 0, 0 < x < so. 
z 

= 

t 

= so , 

(2.4) 

<T 

(2.5) 

Problem 2 will be studied by means of an appropriate “penalized” problem. 
Select a sequence fe(x, t), 0 < E < 1, of smooth functions which converge 
pointwise to f (x, t) in D with the properties 

--K <fc < 0 in D for a R > 0 (independent of E), 

afst b 0 in D, 

afe d 0 in D, (2.6) 

fdx, 0) + g”(x) 2 0 for 0 < x < so. 

For example, given u(t) we might choose a family u,(t) of smooth increasing 
functions such that 

ueE(t) G u(t) if O<t<T, u,(0)=so, O<t<l, 

and 

hi u,(t) = u(t) if O<t<T 

proceeding to define fJx, t) by (2.1) for u, . In this case, f<(x, 0) = f (x, 0) SO 

the last condition of (2.6) is ensured by (2.5). 
Finally, let j3E(t) E Cm(R1), 0 < E < 1, satisfy 

l%(t) = 0 for t > E, 

A(O) = -1, 

B,‘(t) > 0 for --co < t < 00. 

Consider the initial value problem for given T > 0 and E, 0 < E < 1. 



QUASI-VARIATIONAL INEQUALITIES 403 

PROBLEM 3. To find w,(x, t), 0 < E < 1, satisfying 

-W,,Z + wet + W&E) = fc in D, 

we =g 

W EZ = * 
;; xtIoo’ o”~tx<cT”’ (2.7) 

9 , 

w, = 0 for x = R, 0 < t < T 

where fe satisfies (2.6) andg, + satisfy (1.12), (1.13), and (1.14). The solution 
to this problem is known to exist and to be smooth in D. In particular, recall 
that (1.14) is a continuity condition at (x, t) = (0,O). We now discuss the 
properties of the solution. 

THEOREM 1. Let w, , 0 < E < 1, denotes the solution to Problem 3. Then 

WE, > 0 in D, (2.8) 

w, 3 0 and -1 <P&L) < 0 in D, cw 

w,, < 0 in D, (2.10) 

and 

II w, llH1,“(D) + II w,,, IILzyD) < c, 7 (2.11) 

a constant independent of E, 0 < E < 1, for 1 < p < co. 

Proof of (2.8). L t e v = ;iwJat, and suppress the dependence of the 
various quantities on E. Differentiating (2.7) with respect to t, we obtain that v 
is a solution to the initial value problem 

-v’,, + vt + &vw)v =ft > 0 in D, 

v =f-Wg)+g” if 0 < x < sO, t=O 

= f - W(0) if s, <x <R, t = 0, 

v, = I$’ if x = 0, O<t<T, 

v=o if x = R, O<t<T. 

Since ft > 0 and /Y(w) 3 0 we know from the maximum principle that 

zt(x, t) > min(mina,,v, 0) for (x, t) E D, 

where a’ D denotes the parabolic boundary of D. By (1.13), vu, = I/’ < 0 
where x = 0 so z, does not attain its minimum value when x = 0. By (2.6) 
and (2.7), 

v(x,O) =f+g”-h&) 3f+g” 30 for 0 < x < so 
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whereas /3(O) = -1 and f > --K imply that 

v(x,O) =f+K 20 for s,, < x < R. 

Hence rninafov = 0. 

PYOOf of (2.9). S’ mce wet 2 0 and w,(x, 0) 3 0, w,(x, t) > 0 for (x, t) E D. 
Hence -1 = min+,, PC(~) d &eu,(x, t)> < sup /C(T) = 0. 

Proof of (2.10). Let v = aw,/ax and again suppress the dependence of 
the various quantities on E. Differentiating (2.7) with respect to x, we obtain 
the relations 

-vm + vt + W(w)v =fz < 0 in D, 

v =g’ if O<x<s,, t=O 

=o if sa < x < R, t = 0, 

v=l) if x = 0, O<t<T 

v = awlax < 0 if x = R, O<t<T. 

Here note that w,(R, t) < 0 since w attains its minimum when x = R. 
Because fz < 0, 

v < max(O, maxarDv). 

By (1.12), (1.13), zj < 0 andg’ < 0. Hence v < 0. 

Proof of (2.11). This follows from the standard LP-estimates for the 
solution of the heat equation in view of (2.9)(cf. [9]). 

THEOREM 2. There exists a unique solution w(x, t) E F(D) to Problem 2. 
It enjoys the properties 

w E Hl*p(D) and w,, E Lp(D) for each p, 1 < p < co, 

wt > 0 and wz2 > 0 a.e. in D, and 

inf$ <w, <O a.e. in D. 

With respect to the approximatiorz eu, , 0 < E < 1, w, --+ w uniformly in i3 
and weakly in HQ(D), 1 < p < co, and w,,,-+ w, weakly in Lp(D), 
1<p<m. 

Proof. BY Theorem 1, II wo, Ila~,p(D) + II eo,,, IILP(o) < const. independent 
of E for a fixed p, 2 < p < 00. Hence there is a subsequence w,* such that 
w,, + w weakly in p*“(D) and w,,,, + w,. weakly in LP(D) for a function 
w E p-B(D) with wr2 ELM. By Sobolev’s lemma, w,$ ---f w uniformly in Ii. 
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The w so determined satisfies the boundary conditions w = g for t = 0, 
and w = 0 for x = R. Neglecting the final boundary condition for the 
moment, we show that w is a solution to the variational inequality of 
Problem 2. Let z, E K satisfy v 3 7 > 0 a.e. for an 7 > 0. Then for c = 
cj < 7, fir(v) = 0, whence (-w,,, + %t)(Z’ - WJ - W,(v) - A(w8(v - 
w,) = f(v - w,). Integrating the above over D and recalling that /3 is an in- 
creasing function, namely, 

we see that 

Jl D (-=iz, + wst)(v - zu,) dx dt 2 j-j-J& - w3 dx dt. 

We may pass to the limit as E = 6j + 0, since w,, -+ w uniformly, to obtain 

ss, (-w,, + wJ(v - w) dx dt >, jj.J(v - w) dx dt, v E K, z, >, 7 > 0. 

Since 7 is arbitrary, the above holds for all a E K; hence 

(-%I! + Wt)(V - w) 3 f(v - w) a.e. in D. 

It is clear that wt > 0 and w, < 0 a.e. in D. Moreover, if w > 0, then 
- w?x + wt =f;f< 0, wt > Oimply 

w,, > wt > 0 if w > 0. 

Since otherwise w,, = wt = 0, we have 

w,, 2 wt 3 0 in D. 

Aho, D, = {(x, t): 0 < x < s,, , 0 < t < T) C {(x, t): w(x, t) > 0). There- 
fore w, satisfies the equation 

-w,xx -I- wzt = fz in Do , 

with fz a smooth function. It follows by a simple argument that w,,, + w, 
uniformly in D, n {(x, t): x < s,, - S, t > S}, 6 > 0; hence w,(O, t) = 
4(t), 0 < t < T. 

It is not difficult to see that w is unique. From this it follows that the 
entire family wo, + w weakly in fP’(D). The remaining assertions of the 
theorem now follow easily. Q.E.D. 
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COROLLARY 2.1. Let w denote the solution to Problem 2 and define 

s(t) = inf{x: w(x, t) = 0}, O<t<T. 

Then s(t), 0 < t < T, is a continuous increasing function oft. 

Proof. First we observe that by Theorem 2 and the continuity of w, w(x, t) 
is decreasing in x for fixed t and is increasing in t for fixed X. Hence s(t) is 
well defined and increasing. It is lower semicontinuous since {(x, t): 
w(x, t) = 0} is closed. 

For t given, 0 < t < T, s(7) 6 s(t) for 7 < t. Therefore 

liz sup S(T) < s(t). 
7<t 

By the lower semicontinuity of s, s(t,) = lirnTctO s(7). 
By the monotonicity of s(t), s+ = lim,,,O+ S(T) exists. Suppose sf > s(t,). 

Then w(x, t) satisfies 

-w,,+wt =f in s(t) < x < s+, to < t < T, 

w=o if t = t, , s(tJ < x < s+. 

Now f is not a smooth function, but fx is, so we differentiate this equation with 
respect to x. Consequently, 

-WCC2 + wxt =fi: in s(t) < x < s+, t, < t < T, 

w=o if s(t,) < x < s+, t = t,. 

Now it follows that w,, is smooth in s(t,,) + 6 < x < s+ - 6 t, < t < T 
and w,, = 0 for t = t, . We assumed f < 0; hence 

wt =f-kYm ‘co for s(t,) + 6 < x < s+ - 6, t, < t < t,+ 

for a positive E. Hence wt < 0 on a set of positive measure. This is a contra- 
diction. The argument also shows that 

so = $-$I s(t). Q.E.D. 

COROLLARY 2.2. Let w be a solution to Problem 2 and set 52 = ((x, t: 
w(x, t) > O}. Then w, < 0 in Sz. 

Proof. Since v = w, satisfies 

--VEX +vt =fa GO in L?, v < 0 in IR, 

v cannot assume a maximum in Sz; hence v < 0 in G. 
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3. THE SOLUTION TO PROBLEM (*) 

Given two increasing functions u, u* with a(O) = a*(O) = se we definef,f * 
according to (2.1). Because h,(r, t) < 0 (by (2.4)), it follows that if u(t) < 
u*(t), 0 < t < T, then 

fk 9 G f*(% t) (x, t) E D. 

LEMMA 3.1. Let U, u* be increasing functions with u(O) = u*(O) = s,, 
and let w, w* denote the corresponding solutions to Problem 2. If u ,< u* in 
(0, T), then 

w < w* in D. 

The proof of this lemma is a familiar application of the maximum principle 
and will be omitted. 

Denote by X the set of all increasing functions u(t), 0 < t < T, which 
satisfy 

u(0) = so and u(T) < R. 

Given u E X, we consider the solution w to Problem 2 defined by u and the 
function 

s(t) = inf{x: w(t) = 0}, O<t,cT. 

From Corollary 2.1 we infer that s E X. We say in this circumstance that 

s = Au. 

If u, u* E X and u < u*, then Lemma 3.1 implies that 

Au < Au*. 

Thus A: X -+ X is an increasing function. 

THEOREM 3. Let (2.4), (2.5) and (1.12)-(1.14) hold. Then there exists a 
solution wn to Problem (*) with the property that if w is any solution to Problem 
(*) then 

w ,( wn in D. 

Proof. In this proof we follow Tartar [lo]. First let s,,(t) = s,, . From 
Corollary 2.1, 

s,,(t) = s,, = As,(O) < As,(t). 
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Now let sR(t) = R, 0 < t < T, and ~~(0) = s,, . Then sR E X and As, is a 
function bounded above by R, namely, 

As, < A = sR for 0 < t < T, 

AsR(0) = so = ~(0). 

Set X- = (0 E X : u f Aa}, which contains so, X+ = (U E X : Aa < u}, 
which contains sR , and Y = {u E X, : u’ < a for all u’ E X-}, which contains 
sR * Given a family {ui ; i E I} C Y, 

u = inf ui < ui for each i 

and u is increasing. Hence u E X and 

Au < inf Acri < inf u, = cr. 

Therefore u E X+ . Moreover, for u’ E X7 , 

so 
(2’ < uj for all i, 

U' < inf ui = U. 

Hence u E I’. We have established that every chain in Y has a lower bound; 
hence, by Zorn’s lemma, there are minimal elements in Y, say s. Con- 
sequently, As < s. 

To show As = s, we show that As E Y. Indeed, for any u E X- , u < s 
implies that 

u < Au f As. (3.1) 

Also, A’% < As since As < s. Hence As E X+ and, by (3.1), As E Y. There- 
fore s < As, so As = s. 

In addition, if u is any other element of X for which Au = u, then u is 
necessarily continuous and u E X. Therefore a < s since s E Y. 

If w” denotes the solution to Problem 2 for this s, then w” is a solution to 
Problem (*). The conclusions of Theorem 2 and its corollaries are valid for 
any solution w to Problem (*). Moreover, if w is any solution of Problem (*) 
corresponding, let us say, to a curve a, then a < s so w < w” in D. Q.E.D. 

Similarly, one proves that there exists a solution w’ of Problem (*) with the 
property that w > w’ for any solution w of Problem (*). 

We state the combined result in 

COROLLARY 3.2. Let (2.4), (2.5) and (1.12)-(1.14) hold. Then there exist 
unique minimal and maximal solutions w’ and w” of Problem (*), such that for 
any solution w of Problem (*), w’ < w < w”. 
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EXAMPLE. The conditions (2.4), (2.5) are satisfied if 

Remark. By (2.4), f(x, t; s(t)) < -q for any monotone function s(t), 
0 < s(t) < R, where 7 is a positive constant independent of R. The results 
of [4] then show that any free boundary of Problem 2 remains bounded by a 
positive constant R, independent of R. It follows that the solutions s of 
Problem (*) must satisfy s(t) < R0 and, thus, are independent of R if R 3 R0 . 

4. PROPERTIES OF THE SOLUTION 

In this section we return to the function which corresponds to the solution 
of Problem 1, primarily to ascertain the manner in which it attains boundary 
values on the free curve r : x = s(t), 0 < t < T. Given a solution w(x, t) 
of Problem (*) we set, as usual, Q = ((x, t) : 0 < x < s(t), 0 < t < T} = 
{(x, t) ED : w(x, t) > 0}, and define u(x, t) by the formula, (cf. (1.1 l)), 

u(x, t) = qx, t) - w,(x, t) if (x, t) ED. (4.1) 

So defined, u is bounded in D and, in view of Corollary 2.2, u > h in fin. 
Recall that since 

- WKC -kwt=f in D (4.2) 

and fz = -A,, + A, is smooth, w, is a smooth function in Q. Now differ- 
entiating (4.2) with respect to x reveals that 

-%x + Ut = -?,z + At - (-%,z + %t) = 0 in Q. (4.3) 

It is easy to verify the boundary conditions 

u(x, 0) = %I@) if 0 < x < sa , 
u(0, t) = h(t) if O<t<T, (4.4) 

where 
f%(x) = qx, 0) - g’(x) if 0 < x < sO, 
h(t) = 40, t) - #(t) if O<t<T 

(cf. (1.5) and (1.6)). 

THEOREM 4. Let w be a solution of Problem (*) and let u be defined bJ 
(4.1). Then 

(i) there is a subset 2 C [0, T], meas([O, T]\Z) = 0, such that 
u(s(t) - E, t) + h(s(t), t) as E + 0 uniformly for t in compact subsets of .Z and 
pointwise in Z; 

(ii) limr+m s sn u,(s(t) - E, t) q~(x, t) dx dt = 0 for every p E C,,m(L?). 
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Proof. Since w,, EIP(D), 1 < p < co, u(x, t) is continuous in x, 0 < 
x < R, for almost every t. For such t, 

From Theorem 1, w,, > 0 in Q: hence, 

u, - A, = -w,. < 0 in Q. 

So u - X is decreasing and 

exists for every t E (0, T). Let Z = {t : y(t) = 0}, which, as we have noted 
above, satisfies meas ([0, T]\Z) = 0. H ence the family of continuous functions 
y,(t) = u(s(t) - E, t) - h(s(t) - E, t), t E Z, is decreasing in E and converges 
to 0 as E -+ 0. By Dini’s theorem, y,(t) --+ 0 uniformly for t in compact 
subsets of Z. The result (i) follows from the smoothness assumed of A. 

Since (4.2) is valid in Sz, given 9 E C,m(Q), we may compute that 

j-j- fp, dx dt = [jD (--eo,, + w,)g, dx dt 
n = fs sa (-wmp’ - w~)t) dx dt (4.5) 

= - j- (AZ - u&z dx dt - /j. (j-“‘“’ (u - A) d5) vt dx dt. 
SE R 3 

We consider the second integral in (4.5). Observe that s’(t) EU(O, T) because 
s is monotone. Therefore, 

4 s’(t) h+(t), t) cp(x, t) dx dt. (4.6) 
D 

Similarly, for E > 0 given, 

ss s 
s(t)--E 45 t) &Y CP~(X, 4 dx dt n 0 s(t)+ =- Jj- (1 R z ut(5, t) dS) dx, t> dx dt 
- ss s’(t) u@(t) - E, t) 9(x, t) dx dt 

a 

= - * M4t> JJ - <, t) - u,(x, t)) t&x, t) dx dt 

- 
IT 

s’(t) u@(t) - E, t) 9(x, t) dx dt. 
R 
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Since u(s(t) - E, t) 4 h(s(t), t) a.e. as E -+ 0, 

I I 

s(t) 
45 t) d5 cpt(x, 4 dx dt 

a I 

= - !‘T fs, u&(t) - e, t) dx, t) dx dt + j/o ~$9, dx dt 

- 
ss 

s’(t) X@(t), t) ~(x, t) dx dt. (4.7) s2 

Combining (4.7) with (4.5) and (4.6), we obtain 

j-j- fp, dx dt = - /j. (4s~ + j.“‘“’ A,@?, t) d[ v) dx dt + jj-n uzY dx dt n R z 

- 
ss u,p, dx dt + l$ ss u&(t) - E, t) q~(x, t) dx dt. 

n R 

The result (ii) follows since the first term on the right-hand side equals 

SJaf’p dx dt. Q.E.D. 

5. CONDITIONS FOR UNIQUENESS 

According to Section 3, there are a minimal solution w’ and a maximal 
solution w” to Problem (*) with the property that 

w’ < w < wn in D 

for any solution w to Problem (*). We now impose conditions sufficient to 
imply uniqueness of the solution. Obviously this amounts to showing that 
w’ = w”. These hypotheses will not be the weakest available, but in the 
interest of simplicity we shall not pursue this question in more detail. A local 
uniqueness theorem may be proven, for example, assuming only that 
w;, E C(D), sz’ = {(x, t) : w’(x, t) > O}. The theorem of Section 4 is too 
weak, it would seem, to imply uniqueness in general. Indeed, our proof 
places in evidence the role of the smoothness of the second derivatives of the 
solution in determining its uniqueness. 

LEMMA 5.1. Let w be a solution to Problem (*) and define u by (4.1). Suppose 
that 

UO, 0) - g”(0) -=c h(% , 0) - g”(s,) = 0, (5.1) 

h,,(x, 0) - g”(x) 3 0 for 0 < x < so , (5.2) 
X,(0, t) - f(t) > 0 for 0 < t < T (5.3) 
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and that w,, E C(a). Then there exists a nezjyhborhood UC l2 of r : x = 
s(t), 0 < t < T, such that 

11$(X, t) < 0 for (x, t) E u 

for (x, t) E au n 52 for some E > 0. 

The assertion about U means that I’ C a U. 

Proof. We first consider uz(x, t) when (x, t) E a’&!, the parabolic boundary 
of Q. Since 

u,(x, t) = UX, t) - %z(X, 0, (x9 t> E Q 

and w,, E C(D), u, is continuous in a. It follows from Theorem 4 that 

24,(x, t) = 0 for (x, t) E r. (5.4) 
Also 

u,(x, 0) = &(x, 0) - g”(x) < 0, 0 <x <so, (5.5) 

by hypothesis (5.1). C onsider now the lateral wall x = 0. Here ~(0, t) = 
w, t) - $(t>, so 

u,,(O, t) = %(O, t) = &(O, t) - f(t) > 0, O<t<T, (5.6) 

according to (5.3). 
Conditions (5.1), (5.2) imply that there is an interval (0, e,,) for which the 

equation U,,‘(X) = XG(x, 0) - g”(X, 0) = --E has a unique solution X, E (0, s,-,) 
when 0 < E < es . Consider the level set 

a = c$ = {(x, t) E a : 24,(x, t) = -c}. 

By Sard’s theorem, 01 is the union of disjoint regular open arcs for almost 
every E in (0, Q) and so we consider a fixed 01 = g with this property. In 
particular, observe that grad 11,(x, t) # (0,O) for (x, t) E 0~. 

Consider a fixed subarc 01~ of cx with terminus X, . Such a subarc must 
exist by continuity of u, in 0 and the strict monotonicity of u, on (0, so). 
Following 01~ we cannot return to X, for then there would exist a region V C Q 
with u, = --e on aV. By the maximum principle, u, would be constant in Q, 
which is not the case. Nor does a0 tend to r for u2(x, t) = 0 on r. If a0 
terminates at a point ( y, t), t < T, in Q then the system dx/du = -uot , 
dt/do = u,, has a singular point at ( y, t) so grad u,( y, t) = (0,O). But this 
cannot happen for ( y, t) E 0~~. 
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One remaining possibility is that 01~ terminates on ((0, t); 0 < t < T}. 
We exclude this provided E is sufficiently small. Assuming the contrary, let V 
be the domain bounded by 

where 

((x,0): 0 < x < x,} u cd0 u ((0, t): 0 < t < i}, 

t = lim sup{t: t = lim ti when (xi , ti) E OIO, xi + O}. 

We search for the maximum of u, in r which must occur in 8V. Since 

u&x, 0) = X2&, 0) - g”(x) > 0 

by (5.3, max,++ u,@, 0) = 4x, , 0) = --E. On the other hand supyu, 
cannot be attained on x = 0, for ~~~(0, t) > 0 by (5.6). Hence II, attains its 
maximum in V on CY.O. 

Now, a0 is given by t = t(u), x = x(u), 0 < u < c?. Suppose t(u) increases 
for 0 < u < ur and decreases for u > ur [It cannot increase again for u > u2 
(with u2 > ul) for otherwise the maximum principle gives uz = -•E in some 
region bounded by a0 and some line t = t(6) for some 6 near us .] Since u, 
takes its maximum in V on ore, we must have u,, < 0 on 01~ if u > ur . 
Hence u zz < 0 at some point (0, f); contradiction. We have thus proved 
that t(u) is monotone increasing. It is actually strictly increasing, for otherwise 
u,(x, t) = --E on a segment xi < x < x2, t = t, lying on 01~. Hence 
u,,(x, tJ = 0 if x1 < x < x2 . By analytic continuation we get u,,(x, tr) = 0 
if 0 < x < xi , but this is impossible since u&O, tr) > 0 by (5.6). 

We conclude that 01~ can be represented in the form x = x,(t), 0 < t < 
f = t, . We have assumed that a0 intersects x = 0 for some sequence 
E = E’ 4 0, i.e., x,(i,,) = 0. Define x,(t) = 0 if t > t,r . Then x,,(t) < 
x,,(t) if or > e2 . Let 

x0(t) = &n//(t) (0 < t < T). (5.7) 

If x,(t) is not continuous at t = to , then we easily deduce that there is an 
interval z < x < X=, t = to along which u, = 0. This is impossible. Thus, 
x0(t) is continuous, and by Dini’s theorem, the convergence in (5.7) is uniform 
in 0 < t < T. It follows, in particular, that x = x0(t) intersects x = 0, at 
some time <T. 

Denote by W the region bounded by x = x,(t) and x = s(t) for 0 < t < Z 
where 2 is the first time x0(t) = 0. Since w, = 0 on the parabolic boundary 
of W, we conclude that w, = 0 in W, which is impossible. This proves that 
for any small E > 0, the arc or0 terminates at a point ( y, T), 0 < y < s(T). 
The set U bounded by 2 u [xc , so] u F u [ y, s(T)] has the property that 
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by (5.4), (5.5), and the choice of ore. Hence u,(x, t) < 0 in U and u,(x, t) = -e 
for (x, t) E a0 = au n 9. Q.E.D. 

THEOREM 5. Let w’ be the minimal solution and wn be the maxim& solution 
of Problem (*) and set 

J2’ = {(x, t); w/(x, t) > O> and sz” = {(x, t); W”(X, t) > 01. 

Suppose that wk. E C(c), wiz E C(p), and 

UO, 0) - g”(O) < &c(~o f 0) - g”(so) = 0, 

U% 0) - g”(x) 2 0 for 0 < x < sg , 

w, t) - F(t) z 0 for 0 -==L t < T. 

Then w’ = wn and hence the solution to Problem (*) is unique. 

Proof. Define u’ and u” corresponding to w’ and w” according to (4.1) and 
let P: x = s’(t), 0 < t < T, and r”: x = s”(t), 0 < t < T, denote the 
associated free boundary curves to w’ and wn respectively. To prove the 
theorem, it suffices to show that u’ = U” in D. Clearly Sz’ C 9”. 

We observe that u” - ti = un - X > 0 on I” and un - u’ = 0 on 
3’9’ - r’. Hence 

24” - 24’ 2 0 in a. 

Let U be the neighborhood of r” in 0” such that u,(x, t) < 0 in U 
and uz(x, t) < --E on BU n 52” which exists by Lemma 5.1. Let t, = 
sup{t: the arc of I” from 0 to t is in U u r”); t, > 0 since U is open and aU 
contains a segment {(x, 0): x, < x < so}. 

In the closure of the set 9’ n {(x, t); 0 < t < tl> the maximum of u” - u’ 
occurs at a point (x,, , to) E r’, to < t, , because u” - u’ = 0 on a’!? - P’. 
Hence 

If U’ $ u” in ~2’ n {(x, t); 0 < t < tl} then (x0, to) $ I”‘. We conclude that 
uS’(xO, to) < uz(xO, tO) < 0, which is impossible since u2’ = 0 on 1”. 
Hence U’ = u” in !2’ n ((x, t); 0 < t < tl . By definition of tl it then follows 
that tl = T, and the proof is complete. 

Remark. The conditions (5.1)-(5.3) ensure that the conditions in (4) are 
satisfied. Consequently, if A, > 0, At < 0, then there exists a unique classical 
solution of (3). Th us, ifs E Cl and wu,, is, say, in P(!?), then the uniqueness 
of (w, S) is well known. The novelty of Theorem 5 is in that it requires only 
that s be continuous and w,, E C(n). 
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6. OTHER PROBLEMS 

The previous results extend to other quasi-variational inequalities. For 
example, they extend to the case where in Problem (*) the function f (which 
occurs in (1.11)) is replaced by 

provided g > 0, g, ,( 0. Defining 

u(x, t) = w(x, t) + 1 + jO’g(s(T)) dr, (6.1) 

we find that u, s form a solution of the problem: 

Ut - u,, = 0 if 0 < x < s(t), 0 < t < T, 

%&(t), 4 = 0 if O<t<T, 

u(s(t>, f> = 1 + j-otdW dT if O<t<T, (64 

u(x, 0) = g(x) if O<x<s,, 

%(OP 4 = WI if O<t<T. 

We can solve quasi-variational inequalities also when the boundary con- 
ditions at x = 0 depend on s(t). For example, consider a modification of the 
preceding problem obtained by replacing the condition w,(O, t) = #(t) by 

~(0, t) = #(t) - 1 - j’s(+)) d7. 
0 

Assuming #’ > g we can establish the existence of solutions w by the methods 
of this paper. Defining u by (6.1), we find that u satisfies all the equations in 
(6.2) except for the last one, which is replaced by 

40, t> = #(t> if O<t<T. 

REFERENCES 

1. C. BAIOCCHI, Free boundary problems in the theory of fluid flow through porous 
media, International Congress of Mathematicians, Vancouver, Canada, August 
1974. 

2. A. BEZNSOUSSAN AND J. L. LIONS, Nouvelles mkthodes en contrble impulsionnel, 
Appl. Math. Optimization 1 (1974). 

3. G. I. BAFUWBLATT AND A. Iv. ISHLINSKII, On the impact of a viscoplastic bar on a 
rigid obstacle, J. Appl. Math. Mech. 26 (1962), 740-748. 



416 FRIEDMAN AND KINDERLEHRER 

4. H. BREZIS AND A. FRIEDMAN, Estimates on the support of solutions of parabolic 
variational inequalities, Illinois J. Math. 20 (1976), 82-97. 

5. A. FRIEDMAN, Free boundary problems for parabolic equations. I. Melting of 
solids, 1. Math. Mech. 8 (1959), 499-518. 

6. S. N. KRUZKOV, On some problems with unknown boundaries for the heat 
conduction equation, J. Appl. M&h. Mech. 31 (1967), 1014-1024. 

7. B. SHERMAN, A general one-phase Stefan problem, Quart. Appl. Math. 28 (1970), 
371-382. 

8. B. SHERMAN, General one-phase Stefan problems and free boundary problems 
for the heat equation with Cauchy data prescribed on the free boundary, SIAM 
J. Appl. Math. 20 (1971), 555-570. 

9. V. A. SOLONNIKOV, A priori estimates for second order parabolic equations, 
Trudy Math. Inst. Steklov 70 (1964), 133-212. [Amer. Math. Sac. Transl. Ser. 2, 
65 (1967), 51-137.1 

10. L. TARTAR, Inequations quasi-variationelles abstraite, C.R. Acad. Sci. Paris 278 
(1974), 1193-1196. 


