Sustainable Cutting Process for Milling Operation using Disturbance Observer

Jamaludin, Z.*, Jamaludin, J., Chiew, T.H., Abdullah, L., Rafan, N.A., Maharof, M.

*Corresponding author. Tel.: +60-6-331-6424; fax: +60-6-331-6411. E-mail address: zamberi@utem.edu.my

1. Introduction

Milling process is a common classical removal process used on production of parts in many metal based industries such as automobile, aerospace, and else. The performance of the milling process is affected by the cutting force and the rigidity of the cutting process. Cutting force exists during cutting process in any machine tool application [1]. Cutting forces influence the tools life and quality of the cut. Therefore, there is a need to monitor and compensate for the cutting forces. A study by [2] designated a repetitive controller which is ideal for periodic reference command signal and disturbance input. Another study of [3] attempted on explicit estimation of the cutting force based on the balance of force acting on the system using relative acceleration sensor measurement. A conventional method to obtain the velocity signal is by differentiating position encoder signal. An improvement by [4] had utilized a relative acceleration sensor recognized as Ferraris sensor. The benefit of using this sensor is that the noise amplification observed initially can be excluded. However, the implementation of this sensor is costly.

Recently, intelligent control approach such as neural network and fuzzy logic have gain large interest. [5] had implemented the control of cutting force based on artificial neural network for system evolved through learning using controller and identifier. Other researchers had applied fuzzy logic to control and compensate cutting force as shown in [6]. This study developed adaptive fuzzy logic control (AFLC) to control the peak of cutting force. It was reported that the controller was able to maintain the cutting force within the optimal range by controlling the table speed based on predicted cutting force and measured cutting force.

Cutting parameters such as feed rate, depth of cut and cutting speeds are the variables that influence the cutting force characteristics. The characteristic of this cutting force is observed using Fast-Fourier-Transform (FFT) analysis. The analysis of these FFT data allows for the identification of all force components existed on the cutting force. There were also unwanted forces that contribute to positioning inaccuracy due to several causes. One of the causes is current measurement error due to current sensor offset or gain deviation as explained in [7] and [8]. From the analysis, the frequencies...
that contribute to ineffective positioning are determined. Disturbance observer could estimates this unmodeled dynamics including internal and external disturbance to the controlled system. An observer algorithm is often embedded into the system to estimate and compensate the cutting force into desired results.

Inverse model based observer designed by [9] was able to be applied with any types of input disturbance. In order to improve the disturbance rejection, the observer excites a high gain loop to existing control configuration. However, the accuracy of the system model plays importance role toward the bandwidth of the observer and thus affects the performance and stability of the controlled system. Another type of the observer that has been used to estimate external disturbance forces is disturbance force observer (DFO). [6] had introduced this type of observer for estimation of disturbance force such as cutting force in order to improve tracking performance of a system. Disturbance force observer considers sinusoidal disturbance force input and their first and second derivative. This type of observer shows greater potential to remove almost all errors. Others such as [10] had made study on haptic controller for measurement of human hand force. Meanwhile, [11] showed the superiority of the observer in compensating internal and external disturbance force in medical tele-analyzer. [12] had demonstrated the effectiveness of inverse model based observer in compensating cutting force to improve the tracking performance. The literature reviews showed that observer based approach is a reliable method for compensating disturbance such as cutting force especially in tracking application.

The objective of this research is to compensate cutting force in order to improve cutting performance in term of improved tracking accuracy. The organization of this paper is as follows. The following section introduces the experimental setup and described the system identification performed. This section is followed by introduction to the methodology used for cutting force characterization and analysis. Section 3 and 4 explained the design of classical proportional-integral-derivative (PID) controller and the observer (namely DFO and IMBDO). Results and discussion are shown in section 5 meanwhile section 6 concluded the finding of this paper.

1.1. System identification

The equipment used in this research is a Googol XYZ milling table (see Figure 1). This stage consist of three axes and driven by Panasonic MSMD 022G1U A.C. servo motors respectively. An incremental encoder with resolution of 0.0005mm/pulse located at each near end of both axes. Fig 1(b) shows the schematic diagram of overall system. The XYZ milling table is linked to DS1104 DSP board then connected to computer with MATLAB Simulink software for applying control design and data collection. The DSP board is a data acquisition unit for capturing signal exited by the system for analysis purposes.

The dynamic behaviour of the system was captured using data acquisition equipment (DS1104 DSP). From the single-input single-output (SISO) signal, the Bode diagram of frequency domain format (FRF) is estimated using H1 estimator [13]. A mathematical model is obtained by fitting the parametric model onto the FRF of the system using ffident toolbox in MATLAB Simulink software. Estimated second order model transfer function for the x-axis of the XYZ milling table is given in equation (1) and the system parameters are tabulated in Table 1.

\[
G(s) = \frac{Z(s)}{U(s)} = \frac{A}{s^2 + Bs + C} e^{-Td}
\]

Table 1. System parameter of x-axis.

<table>
<thead>
<tr>
<th>Axes</th>
<th>A (mm/Vs²)</th>
<th>B (Vs⁻¹)</th>
<th>C (Vs⁻²)</th>
<th>T_d (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-axis</td>
<td>67940</td>
<td>155.1</td>
<td>53.81</td>
<td>0.00129</td>
</tr>
</tbody>
</table>

1.2. Characterization of cutting forces

A straight line milling cutting process was performed on a block of aluminium (Fig 2(a)) with high-speed steel (HSS) cutter of 10mm in diameter. The cutter has four edges with rotational speed of 1000rpm. The cutting parameters are 0.5mm depth of cut and 502mm/min feed rate. The cutting force harmonic components (see Fig 2(b)) explain the characteristic of cutting force during machining. The data of cutting force was extracted using Kistler Dynamometer and frequency harmonic components were obtained using Fast-Fourier-Transform (FFT) analysis.

The analysis showed three distinct peaks that significantly affects tracking accuracy. The identified frequencies were 2.833Hz, 17.33Hz and 35.17Hz. These frequencies contribute to the tracking error. In order to improve tracking accuracy, cutting force at these frequencies need to be compensated. A controller for positioning control is needed for better tracking control meanwhile an observer is required for estimation of cutting data to improve tracking performance of the system.
1.3. Design of position controller

Proportional \((P)\), an integral \((I)\) and a derivative \((D)\) controller is a classical control approach widely used in industrial sector. The flexibility and transparent design characteristic of PID control design drive the advance of control system technology [14]. The general equation for the PID controller is,

\[
G_{\text{PID}}(s) = k_p + \frac{k_i}{s} + k_d s
\]

Design of the PID controller involved heuristic method, frequency response method, analytical method and numerical optimization method which are demonstrated in [15]. Loop shaping method using frequency response [16] is the fundamental method used in this paper. The PID parameters determined for the \(x\)-axis of the XYZ milling table are namely; \(k_p = 1.2051000\) V/mm, \(k_i = 0.0012051\) Vs\(^{-1}\)/mm, and \(k_d = 0.0060257\) Vs/mm.

1.4. Design of inverse model based disturbance observer

Figure 3 shows the schematic diagram of the first control scheme that include a PID controller and the inverse model based disturbance observer (IMBDO).

\(Z_{\text{ref}}\) is the reference signal for the system. \(Z_{\text{act}}\) is the actual output position [mm] signal. \(G_{\text{PID}}\) is the PID controller of equation (2). \(G_s\) is the system model transfer function, \(G_n\) is the nominal system transfer function and \(Q\) is a low pass filter (known as Q-filter [17]). Meanwhile, \(k_f\) is the force constant that converts disturbance signal in [N] to [V]. The design analyses were performed using frequency approach to determine the gain margin, phase margin, stability and sensitivity of the controlled system. Figure 4 and 5 show the entire design criterion. The gain margin of the system is 7.63dB at 160Hz and the phase margin is 31.5degree at 105Hz. The Nyquist plots confirmed the system stability. The bandwidth obtained with the present of observer is 39.5Hz.
1.5. Design of disturbance force observer

Figure 6 shows a schematic diagram of a PID controller with disturbance force observer (DFO). Z_{ref} is the reference input signal, Z_{act} refers to the actual output position and error is indicated by ε_{pos}. G_{pid} is the PID transfer function and $G_s(s)$ is the system model transfer function. Meanwhile, disturbance data in the form of measured cutting force is labeled as $d(t)$. The estimated disturbance data is labeled as $\hat{d}(t)$.

$$d(t) = q_i = A' \sin(\omega t + \theta)$$ (3)
$$\dot{d}_1(t) = \dot{q}_j = q_{j+1} = A_2 \omega q_2 \cos(\omega t + \theta_i)$$ (4)
$$\ddot{d}_1(t) = \ddot{q}_j = -A_2 \omega q_2^2 \sin(\omega t + \theta_i) = -A_2 \dot{q}_i^2$$ (5)

where, $i = n \ (1,2,3,..,n)$ and $j = m \ (1,3,5,....,m)$.

A disturbance force observer can be designed according to the information given above. The following is the state space representation of a general order state space observer:

$$\dot{x} = Fx + Ga + L(y - \hat{y})$$ (6)
$$y = Hx$$ (7)

x is the state variable matrix, y is the output, and L is the observer gain matrix. Equation (8) is the state space based on the transfer function of the x-axis of the system relating the input voltage $U(s)$ and table position $Z(s)$. Figure 7 shows structure of the system with disturbance force observer designed based on equation (8). Figure 8 shows sensitivity function of the observer for single harmonic frequency [17.33Hz].

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{\hat{y}} \\ \dot{\hat{q}}_1 \\ \dot{\hat{q}}_2 \end{bmatrix}$$ (8)

In the case for multiple harmonics, the DFO was designed according to each dedicated frequencies. This research focuses only on the first three identified harmonics frequencies of the measured cutting forces; which are 2.83Hz, 17.33Hz and 35.17Hz.

1.6. Results and discussion

The performance of the observer designed for single and multiple harmonic was analysed using magnitude of the position errors and the maximum peak of the FFT values. In the first analysis, inputs of single sine and multi-sines were inserted as the input disturbance and the measured position
errors were recorded and analysed accordingly. Figure 9 shows results of these experiments.

![Figure 9](image)

In the second analysis, sinusoidal signal of amplitude 400N and frequencies 5Hz, 15Hz and 35Hz were selected as the input disturbance. The position errors were analysed using the FFT method. Table 2 shows the maximum peak of the FFT simulation results using IMBDO in comparison with DFO.

<table>
<thead>
<tr>
<th>Frequency [Hz]</th>
<th>IMBDO [mm]</th>
<th>DFO [mm]</th>
<th>Percentage Reduction [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0196</td>
<td>0.00004</td>
<td>100%</td>
</tr>
<tr>
<td>15</td>
<td>0.0521</td>
<td>0.0033</td>
<td>93.6%</td>
</tr>
<tr>
<td>35</td>
<td>0.0797</td>
<td>0.0148</td>
<td>81.4%</td>
</tr>
</tbody>
</table>

Results obtained indicate the superiority of the DFO compared to IMBDO in disturbance compensation. The DFO is designed according to each frequency present and able to perform a good compensation in term of tracking error.

The performance analysis of the designated observer was then validated on the XYZ milling table. The experiments were conducted by injecting measured cutting force as the input disturbance force into the XYZ milling table. The position errors, e_{pos} were recorded and analysed. No input reference tracking was presence. Figure 10 shows the FFT results of the position errors using IMBDO and DFO. The data is summarised in Table 3. The results show significant reduction at the designed frequencies using DFO compared to conventional IMBDO. DFO was able to estimate accurately the disturbance forces. However, the amplification indicated by red circle is observed. The reason of this amplification is because of waterbed effect [18]. Results indicate the superiority of the DFO compared to IMBDO.

The most significant result was shown at 17.33 Hz, where the errors were reduced by 88.23% followed at 35.17Hz that saw a reduction of 57.14%. However, there was increment at 2.83Hz by about 20%. However, the magnitude of error at this frequency was extremely low, at 0.00001mm. Therefore, the positioning performance was not affected much by this increment.

![Figure 10](image)

Table 3. Results of FFT position error for IMBDO and DFO.

<table>
<thead>
<tr>
<th>Frequency [Hz]</th>
<th>IMBDO [mm]</th>
<th>DFO [mm]</th>
<th>Percentage Reduction [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.833</td>
<td>0.00005</td>
<td>0.00006</td>
<td>-20.00</td>
</tr>
<tr>
<td>17.33</td>
<td>0.0017</td>
<td>0.0002</td>
<td>88.23</td>
</tr>
<tr>
<td>35.17</td>
<td>0.0007</td>
<td>0.0003</td>
<td>57.14</td>
</tr>
</tbody>
</table>

1.7. Conclusions

As a conclusion, the DFO was successfully designed and validated using both numerical and experimental data. The
DFO acts superior in disturbance rejection compared to IMBDO for the range of frequencies studies. For future study, issue related to the waterbed effect needs to be addressed as this phenomenon also contributes to the performance of the controlled system.

Acknowledgements

This research is financially supported by UTeM’s Short Term Research Grant Project with reference number PJP/2014/FKP(8C)/S01360. The authors would also like to extend our appreciation to the Faculty of Manufacturing Engineering, UTeM for the facilities and support provided.

References