Topology Vol. 27, No. 2, pp. 245-248, 1988 Printed in Great Britain. 0040-9383/88 \$03.00 + .00 C 1988 Pergamon Press plc

ON A PROBLEM OF J. MILNOR

QI-MING WANG

(Received 27 October 1986)

LET f_1, \ldots, f_r $(r \ge 2)$ be real polynomials in *n* variables defining a real polynomial map $f: \mathbb{R}^n \to \mathbb{R}^r$. In his book [3], Milnor studied real polynomial maps $f: \mathbb{R}^n \to \mathbb{R}^r$ under the following

HYPOTHESIS (H). There should exist a neighborhood U of the origin in \mathbb{R}^n so that the matrix $(\partial f_i/\partial x_i)$ has rank r for all x in U other than the origin.

The hypothesis (H), as Milnor puts it, "is so strong that examples are very difficult to find". He raised the following

PROBLEM. ([3], p. 100) For which dimensions $n \ge r \ge 2$, do non-trivial examples exist?

As was mentioned in [3], non-trivial (to be defined below) examples were known to exist only for r=2, 3, 5, 9. For r=2, they are essentially the complex polynomials. For r=3, 5, 9, they were constructed by N. H. Kuiper using the multiplications of complex, quaternionic and octavionic numbers.

In this paper, we are going to exhibit new non-trivial examples for every $r \ge 3$ which generalise the Kuiper examples.

Moreover, for $r \equiv 1 \pmod{4}$, our construction gives rise to topologically distinct germs of maps within the same dimensions *n* and *r*. We verified Milnor's conjecture ([3], p. 100) on the homeomorphic types of fibers for our new maps. As a by-product, we find new examples of families of smooth manifolds F_i with boundary (in fact, disk bundles over spheres) which are mutually non-homeomorphic but the products $F_i \times I$ are all homeomorphic. These F_i 's are moreover semi-algebraic in that they are complete intersections of r+1 real quadrics restricted to the unit ball in \mathbb{R}^n . The number of these F_i 's can be arbitrarily large if *r* is chosen properly.

1. THE CLIFFORD MAPS

We first recall some terminology from [3] and [6]. Let $f:\mathbb{R}^n \to \mathbb{R}^r$ $(r \ge 2)$ be a polynomial map satisfying (H). The equations $f_1(x) = \ldots = f_r(x) = 0$ define an algebraic set V which is a smooth manifold of dimension n-r in $U-\{0\}$. The intersection K of V with a small sphere S_{ε}^{n-1} centered at $0 \in \mathbb{R}^n$ is a smooth manifold of dimension n-r-1. Milnor showed that the complement of an open tubular neighborhood of K in S_{ε}^{n-1} is the total space of a smooth fiber bundle over the sphere S^{r-1} , the fiber F being a smooth compact (n-r)-dimensional manifold bounded by a copy of K.

DEFINITION. F is called the Milnor fiber of the map f. f is said to be non-trivial if F is not diffeomorphic to the disk D^{n-r} .

Let E_1, \ldots, E_{m-1} be an orthogonal representation of C_{m-1} on \mathbf{R}^l , i.e. $E_i \in O(l)$ and

$$E_i E_j + E_j E_i = -2\delta_{ij} I. \tag{1.1}$$

For $x \in S^{l-1}$, $(x, E_1 x, \ldots, E_{m-1} x)$ is clearly an orthonormal *m*-frame in \mathbb{S}^l . The map $\sigma(x) = (x, E_1 x, \ldots, E_{m-1} x)$ of S^{l-1} into $V_{l,m}$ is a cross-section of $V_{l,m}$ called the *Clifford* cross-section induced by E_1, \ldots, E_{m-1} . Let ζ be the rank l-m vector bundle over S^{l-1} , the fiber over x being the orthogonal complement of $\{x, E_1 x, \ldots, E_{m-1} x\}$ in \mathbb{N}^l .

DEFINITION. ζ is called the *Clifford bundle* induced by (1.1).

Note that l can not be arbitrary. In fact, $l = k\delta(m)$, where k is an integer and $\delta(m)$ is the dimension of irreducible C_{m-1} modules. As is well-known (cf. e.g. [2]) there is a 1-1 correspondence between systems $\{E_1, \ldots, E_{m-1}\}$ satisfying (1.1) and systems $\{P_0, \ldots, P_m\}$ satisfying

$$P_i P_j + P_j P_i = 2\delta_{ij} I, \qquad P_i \in \mathcal{O}(2l). \tag{1.2}$$

For every such system $\{P_0, \ldots, P_m\}$ we define a Clifford map $f: \mathbb{Z}^{2l} \to \mathbb{Z}^{m+1}$ by

$$f(x) = (\langle P_0 x, x \rangle, \dots, \langle P_m x, x \rangle).$$
(1.3)

THEOREM 1. For every $m \ge 2$, the Clifford map $f: \mathbb{R}^{2l} \to \mathbb{R}^{m+1}$ satisfies (H) and is non-trivial. The Milnor fiber of f is $D(\zeta)$, the disk bundle of the Clifford bundle ζ induced by $E_1 = P_1 P_2, \ldots, E_{m-1} = P_1 P_m$ restricted to $E_+(P_0) \cong \mathbb{R}^l$, the +1 eigenspace of P_0 .

Proof. (1.2) implies that for any $x \in S^{2l-1}$, $P_0 x, \ldots, P_m x$ are orthonormal in \mathbb{R}^{2l} , hence (H) is trivially satisfied. It is also clear that $E_1 = P_1 P_2, \ldots, E_{m-1} = P_1 P_m$ restricted to $E_+(P_0)$ is a system satisfying (1.1).

By definition, the Milnor fiber of f is $F = D_{\epsilon}^{2l} \cap f^{-1}(y)$, where D_{ϵ}^{2l} is a small round ball centered at $0 \in \mathbb{R}^{2l}$ and y is a regular value of $f | S_{\epsilon}^{2l-1}$ such that ||y|| > 0 is sufficiently small. Since f is homogeneous, we may take $\epsilon = 1$ and $y = (a, 0, 0, \dots, 0)$. \mathbb{R}^{2l} is the orthogonal direct sum of $E_+(P_0)$ and $E_-(P_0)$, hence we can write $x = (x_+, x_-)$ with $x_+ \in E_+(P_0)$, $x_- \in E_-(P_0)$. Therefore $F = D^{2l} \cap f^{-1}(y_0) = \{(x_+, x_-)| ||x_+||^2 + ||x_-||^2 = t, ||x_+||^2 - ||x_-||^2 = a, \langle P_1 x_-, x_+ \rangle = 0, \dots, \langle P_m x_-, x_+ \rangle = 0, a \leq t \leq 1\} = \{(x_+, x_-)| ||x_+||^2 = \frac{1}{2}(a+t), ||x_-||^2 = \frac{1}{2}(t-a), \langle P_1 x_-, P_1 P_2 x_+ \rangle = 0, \dots, \langle P_1 x_-, P_1 P_m x_+ \rangle = 0, a \leq t \leq 1\}$. Hence the map $\pi: F \to S^{l-1}$ given by $\pi(x) = x_+/||x_+||$ is a bundle map, the fiber over z is the P_1 -image of the $\sqrt{(t-a)/2}$ disk in the fiber of ζ over z, where ζ is the Clifford bundle induced by $E_1 = P_1 P_2, \dots, E_{m-1} = P_1 P_m$ on $\mathbb{R}^{l-1} \cong E_+(P_0)$. F is clearly not contractible, f is therefore non-trivial. Let $f: \mathbb{R}^n \to \mathbb{R}^r$ be a \mathbb{C}^∞ map. The germ of f at $0 \in \mathbb{R}$ is denoted by (f, 0).

DEFINITION. Let $f, g: \mathbb{R}^n \to \mathbb{R}^r$ be C^{∞} maps. (f, 0) and (g, 0) are topologically equivalent if there exist open neighborhoods U and U' of 0 in \mathbb{R}^n and V and V' of 0 in \mathbb{R}^r and homeomorphisms $h_1: U \to U'$ and $h_2: V \to V'$ such that $h_2 \circ f = g \circ h_1$.

We would like to classify the germs of Clifford maps with respect to this equivalent relation. When $m \neq 0 \pmod{4}$, all Clifford maps $f: \mathbb{R}^{2l} \to \mathbb{R}^{m+1}$ are globally equivalent, as any two systems $\{P_0, \ldots, P_m\}$ and $\{P'_0, \ldots, P'_m\}$ satisfying (1.2) are orthogonally equivalent, i.e. there exists $A \in O(2l)$ such that $P'_i = AP_iA^{-1}$.

When $m \equiv 0 \pmod{4}$, however, there are orthogonally inequivalent systems. These are distinguished by an integer q, defined by

$$tr(P_0 \dots P_m) = 2\delta(m)q. \tag{1.4}$$

The Clifford map defined by a system satisfying (1.4) will be denoted by f_q . The Milnor fiber of f_q will be denoted by F_q . The change from q to -q amounts to changing the sign of P_0 , say. Clearly $(f_q, 0)$ is equivalent to $(f_{-q}, 0)$ and $F_q \cong F_{-q}$.

THEOREM 2. Suppose that $m \equiv 0 \pmod{4}$, let d_m be the denominator of $B_{m/4}/m$, $B_{m/4}$ being the m/4th Bernoulli number. (a) If $q \equiv \pm q' \pmod{2d_m}$, F_q and $F_{q'}$ are diffeomorphic. (b) If $(f_q, 0)$ and $(f_{q'}, 0)$ are equivalent, then $q \equiv \pm q' \pmod{d_m}$.

Proof. (a) We may suppose that q and q' are non-negative. It is shown in [6] that when $q \equiv \pm q' \pmod{2d_m}$, the Clifford bundles ζ_q and $\zeta_{q'}$ are isomorphic as vector bundles, hence

$$F_q \cong D(\zeta_q) \cong D(\zeta_{q'}) \cong F_{q'}$$

(b) Suppose $(f_q, 0)$ and $(f_{q'}, 0)$ are equivalent. There is then a homeomorphism of a neighborhood of 0 in $V_q = f_q^{-1}(0)$ onto a neighborhood of 0 in $V_{q'} = f_{q'}^{-1}(0)$. V_q and $V_{q'}$ have cone neighborhoods with vertices O and base K and K' respectively. It follows (e.g. [5], p. 125) that K and K' are homotopically equivalent. On the other hand, K and K' are diffeomorphic to the manifolds denoted in [6] by $M_+(m,l,q)$ and $M_+(m,l,q')$ respectively. It follows from Theorem 2b in [6] that this implies in turn $q \equiv \pm q' \pmod{d_m}$.

2. EXAMPLES OF HOMEOMORPHIC PRODUCTS WITH [0,1]

It is well-known that there exist smooth manifolds X and Y such that X and Y are not homeomorphic but $X \times I$ and $Y \times I$ are. The first examples were shown by J. H. C. Whitehead [7]: X is the torus with a hole and Y is the disk with two holes. Examples for every dimension $n \ge 5$ were constructed ([1]) which is contractible and occurs as a factor of I^{n+1} . In the following, we will show that the Milnor fiber F_q of the Clifford maps provide us with infinitely many new series of such examples. The main feature of these new examples lies in that they are semi-algebraic sets and that the number of examples within the same dimension can be arbitrarily large.

LEMMA 1. If $m \neq 0 \pmod{4}$, any two Clifford cross-sections of $V_{l,m}$ are homotopic.

Proof. Let $\{E_1, \ldots, E_{m-1}\}$ and $\{E'_1, \ldots, E'_{m-1}\}$ be two systems satisfying (1.1). Since $m \neq 0 \pmod{4}$, there exists ([2]) $A \in O(l)$ such that $E_i = AE_iA^{-1}$. The endomorphisms E_1 and E'_1 define complex structures on \mathbb{R}^l and A is a complex linear map with respect to E_1 and E'_1 hence has determinant +1. In the following commutative diagram

$$S^{l-1} \xrightarrow{\sigma} V_{l,m}$$

 $A \simeq Id$ and $\tilde{A} \simeq Id$, where $\tilde{A}(e_1, \ldots, e_m) = (Ae_1, \ldots, Ae_m)$. Hence $\sigma \simeq \sigma'$.

THEOREM 3. Let $m \equiv 0 \pmod{4}$.

- (a) For any q and q', $F_a \times I$ is homeomorphic to $F_{a'} \times I$.
- (b) F_q and $F_{q'}$ are not homeomorphic if $q \not\equiv \pm q' \pmod{d_m}$

Proof. Denote by ζ (resp. ξ) the Clifford bundle induced by $\{E_1, \ldots, E_{m-1}\}$ (resp. $\{E_1, \ldots, E_{m-2}\}$). We have

$$\xi = \zeta \oplus \theta^1. \tag{2.1}$$

On the other hand, for any vector bundle ζ , $D(\zeta \oplus \theta^1) \cong D(\zeta) \times I$, (cf. e.g. [4]). Hence $F_q \times I \cong F_{q'} \times I$ in view of Lemma 1. (b) If F_q is homeomorphic to $F_{q'}$, it follows from the invariance of boundary that $K = \partial F_q$ and $K' = \partial F_{q'}$ are homeomorphic. Hence $q \equiv \pm q'$ as in the proof of Theorem 2b.

REMARK 1. For big *l*, the number of mutually non-homeomorphic F_q 's is at least $\frac{1}{4}d_m$. The number d_m can be arbitrarily large. For example, $d_{24} = 65520$. On the other hand, the dimension of F_q grows very fast too.

REMARK 2. Let $f: \mathbb{R}^n \to \mathbb{R}^r$ be a real polynomial map satisfying (*H*), so is $p \circ f: \mathbb{R}^n \to \mathbb{R}^{r-1}$, where *p* is the linear projection map of \mathbb{R}^r onto \mathbb{R}^{r-1} . Let *F* and *F'* be the Milnor fibers of *f* and $p \circ f$ respectively. Milnor conjectured ([3], p. 100) that *F'* and $F \times I$ are homeomorphic. Theorem 3 shows that the conjecture is true for the Clifford maps.

Acknowledgements—This work was done during the author's visit to the Max-Planck-Institut für Mathematik at Bonn. The author is grateful to Professor F. Hirzebruch for his hospitality.

REFERENCES

- 1. M. L. CURTIS: Cartesian products with intervals. Proc. Am. Math. Soc. 12 (1961), 819-820.
- D. FERUS, H. KARCHER and H. F. MÜNZNER: Clifford algebren und neue isoparametrische Hyperflächen. Math. Z. 177 (1981), 479-502.
- 3. J. MILNOR: Singular points of complex hypersurfaces. Ann. Math. Stud. 61. Princeton University Press, New Jersey (1968).
- 4. R. SWITZER: Algebraic Topology-Homotopy and Homology. Springer, Berlin (1975).
- 5. H. SEIFERT and W. A. TREFALL: Textbook of Topology. Academic Press, New York (1980).
- 6. Q-M. WANG: On the topology of Clifford isoparametric hypersurfaces. J. Diff. Geom. 25 (November 1987).
- 7. J. H. C. WHITEHEAD: On the homotopy type of manifolds. Ann. Math. 41 (1940), 825-832.

Institute of Mathematics Academia Sinica, Beijing The Peoples Republic of China