ON A PROBLEM OF J. MILNOR

Qi-Ming Wang

(Received 27 October 1986)

LeT $f_{1}, \ldots f_{r}(r \geqslant 2)$ be real polynomials in n variables defining a real polynomial map f : $\mathbb{R}^{n} \rightarrow \mathbb{F}_{6}^{r}$. In his book [3], Milnor studied real polynomial maps $f: \mathbb{R}^{n} \rightarrow \mathbb{E}^{r}$ under the following

Hypothesis (H). There should exist a neighborhood U of the origin in \mathbb{R}^{n} so that the matrix ($\partial f_{i} / \partial x_{j}$) has rank r for all x in U other than the origin.

The hypothesis (H), as Milnor puts it, "is so strong that examples are very difficult to find". He raised the following

Problem. ([3], p. 100) For which dimensions $n \geqslant r \geqslant 2$, do non-trivial examples exist?
As was mentioned in [3], non-trivial (to be defined below) examples were known to exist only for $r=2,3,5,9$. For $r=2$, they are essentially the complex polynomials. For $r=3,5,9$, they were constructed by N. H. Kuiper using the multiplications of complex, quaternionic and octavionic numbers.

In this paper, we are going to exhibit new non-trivial examples for every $r \geqslant 3$ which generalise the Kuiper examples.

Moreover, for $r \equiv 1(\bmod 4)$, our construction gives rise to topologically distinct germs of maps within the same dimensions n and r. We verified Milnor's conjecture ([3], p. 100) on the homeomorphic types of fibers for our new maps. As a by-product, we find new examples of families of smooth manifolds F_{i} with boundary (in fact, disk bundles over spheres) which are mutually non-homeomorphic but the products $F_{i} \times I$ are all homeomorphic. These F_{i} 's are moreover semi-algebraic in that they are complete intersections of $r+1$ real quadrics
 properly.

1. THE CLIFFORD MAPS

We first recall some terminology from [3] and [6]. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{P}^{r}(r \geqslant 2)$ be a polynomial map satisfying (\mathbf{H}). The equations $f_{1}(x)=\ldots=f_{r}(x)=0$ definc an algebraic set V which is a smooth manifold of dimension $n-r$ in $U-\{0\}$. The intersection K of V with a small sphere S_{c}^{n-1} centered at $0 \in \operatorname{E}^{n}$ is a smooth manifold of dimension $n-r-1$. Milnor showed that the complement of an open tubular neighborhood of K in S_{ε}^{n-1} is the total space of a smooth fiber bundle over the sphere S^{r-1}, the fiber F being a smooth compact ($n-r$)-dimensional manifold bounded by a copy of K.

Definition. F is called the Milnor fiber of the map $f . f$ is said to be non-trivial if F is not diffeomorphic to the disk D^{n-r}.

Let E_{1}, \ldots, E_{m-1} be an orthogonal representation of C_{m-1} on \mathbf{R}^{l}, i.e. $E_{i} \in \mathrm{O}(l)$ and

$$
\begin{equation*}
E_{i} E_{j}+E_{j} E_{i}=-2 \delta_{i j} I . \tag{1.1}
\end{equation*}
$$

For $x \in S^{i-1},\left(x, E_{1} x, \ldots, E_{m-1} x\right)$ is clearly an orthonormal m-frame in 1 . The map $\sigma(x)=\left(x, E_{1} x, \ldots, E_{m-1} x\right)$ of S^{l-1} into $V_{l, m}$ is a cross-section of $V_{l, m}$, called the Clifford cross-section induced by E_{1}, \ldots, E_{m-1}. Let ζ be the rank $l-m$ vector bundle over S^{1-1}, the fiber over x being the orthogonal complement of $\left\{x, E_{1} x, \ldots, E_{m-1} x\right\}$ in 1 .

Definition. 5 is called the Clifford bundle induced by (1.1).
Note that l can not be arbitrary. In fact, $l=k \delta(m)$, where k is an integer and $\delta(m)$ is the dimension of irreducible C_{m-1} modules. As is well-known (cf. e.g. [2]) there is a $1-1$ correspondence between systems $\left\{E_{1}, \ldots, E_{m-1}\right\}$ satisfying (1.1) and systems $\left\{P_{0}, \ldots P_{m}\right\}$ satisfying

$$
\begin{equation*}
P_{i} P_{j}+P_{j} P_{i}=2 \delta_{i j} I, \quad P_{i} \in \mathrm{O}(2 l) \tag{1.2}
\end{equation*}
$$

For every such system $\left\{P_{0}, \ldots, P_{m}\right\}$ we define a Clifford map $f:{ }^{-2 l}{ }^{m+1}$ by

$$
\begin{equation*}
f(x)=\left(\left\langle P_{0} x, x\right\rangle, \ldots,\left\langle P_{m} x, x\right\rangle\right) \tag{1.3}
\end{equation*}
$$

Theorem 1. For every $m \geqslant 2$, the Clifford mapf: $⿷^{2 l} 5^{m+1}$ satisfies (H) and is non-trivial. The Milnor fiber of is $D(\zeta)$, the disk bundle of the Clifford bundle ζ induced by $E_{1}=P_{1} P_{2}, \ldots$, $E_{m-1}=P_{1} P_{m}$ restricted to $E_{+}\left(P_{0}\right) \cong \vec{E}^{I}$, the +1 eigenspace of P_{0}.

Proof. (1.2) implies that for any $x \in S^{2 l-1}, P_{0} x, \ldots, P_{m} x$ are orthonormal in ${ }^{2 l}$, hence (H) is trivially satisfied. It is also clear that $E_{1}=P_{1} P_{2}, \ldots, E_{m-1}=P_{1} P_{m}$ restricted to $E_{+}\left(P_{0}\right)$ is a system satisfying (1.1).

By definition, the Milnor fiber of f is $F=D_{\varepsilon}^{2 l} \cap f^{-1}(y)$, where $D_{\varepsilon}^{2 l}$ is a small round ball centered at $0 \epsilon^{-2 l}$ and y is a regular value of $f \mid S_{\varepsilon}^{2 t-1}$ such that $\|y\|>0$ is sufficiently small. Since f is homogeneous, we may take $\varepsilon=1$ and $y=(a, 0,0, \ldots, 0) . \quad 2 l$ is the orthogonal direct sum of $E_{+}\left(P_{0}\right)$ and $E_{-}\left(P_{0}\right)$, hence we can write $x=\left(x_{+}, x_{-}\right)$with $x_{+} \in E_{+}\left(P_{0}\right), x_{-} \in E_{-}\left(P_{0}\right)$. Therefore $\quad F=D^{2 t} \cap f^{-1}\left(y_{0}\right)=\left\{\left(x_{+}, x_{-}\right)\| \| x_{+}\left\|^{2}+\right\| x_{-}\left\|^{2}=t, \quad\right\| x_{+}\left\|^{2}-\right\| x_{-} \|^{2}=a\right.$, $\left.\left\langle P_{1} x_{-} x_{+}\right\rangle=0, \ldots,\left\langle P_{m} x_{-}, x_{+}\right\rangle=0, a \leqslant t \leqslant 1\right\}=\left\{\left(x_{+}, x\right)\|x,\|^{2}=\frac{1}{2}(a+t),\left\|x_{-}\right\|^{2}=\frac{1}{2}(t-a)\right.$, $\left.\left\langle P_{1} x_{-}, P_{1} P_{2} x_{+}\right\rangle=0, \ldots,\left\langle P_{1} x_{-}, P_{1} P_{m} x_{+}\right\rangle=0, a \leqslant t \leqslant 1\right\}$. Hence the map $\pi: F \rightarrow S^{t-1}$ given by $\pi(x)=x_{+} /\|x+\|$ is a bundle map, the fiber over z is the P_{1}-image of the $\sqrt{(t-a) / 2}$ disk in the fiber of ζ over z, where ζ is the Clifford bundle induced by $E_{1}=P_{1} P_{2}, \ldots$, $E_{m-1}=P_{1} P_{m}$ on ${ }^{\prime} \cong E_{+}\left(P_{0}\right) . F$ is clearly not contractible, f is therefore non-trivial.

Let $f: n \rightarrow r$ be a C^{x} map. The germ of f at $0 \in R$ is denoted by ($f, 0$).

Definition. Let $f, g: n \rightarrow r$ be C^{x} maps. $(f, 0)$ and $(g, 0)$ are topologically equivalent if there exist open neighborhoods U and U^{\prime} of 0 in and V and $V^{\prime \prime}$ of 0 in and homeomorphisms $h_{1}: U \rightarrow U^{\prime}$ and $h_{2}: V \rightarrow V^{\prime}$ such that $h_{2} f=g \cdot h_{1}$.

We would like to classify the germs of Clifford maps with respect to this equivalent relation. When $m \not \equiv 0(\bmod 4)$, all Clifford maps $f: \rightarrow^{2 t} \rightarrow^{-m+1}$ are globally equivalent, as any two systems $\left\{P_{0}, \ldots, P_{m}\right\}$ and $\left\{P_{0}^{\prime}, \ldots, P_{m}^{\prime}\right\}$ satisfying (1.2) are orthogonally equivalent, i.e. there exists $A \in \mathrm{O}(2 l)$ such that $P_{i}^{\prime}=A P_{i} A^{-1}$.

When $m \equiv 0(\bmod 4)$, however, there are orthogonally inequivalent systems. These are distinguished by an integer q, defined by

$$
\begin{equation*}
\operatorname{tr}\left(P_{0} \ldots P_{m}\right)=2 \delta(m) q \tag{1.4}
\end{equation*}
$$

The Clifford map defined by a system satisfying (1.4) will be denoted by f_{q}. The Milnor fiber of f_{q} will be denoted by F_{q}. The change from q to $-q$ amounts to changing the sign of P_{0}. say. Clearly $\left(f_{q}, 0\right)$ is equivalent to $\left(f_{-q}, 0\right)$ and $F_{q} \cong F_{-q}$.

Theorem 2. Suppose that $m \equiv 0(\bmod 4)$, let d_{m} be the denominator of $B_{m / 4} / m, B_{m, 4}$ being the $m / 4$ th Bernoulli number. (a) If $q \equiv \pm q^{\prime}\left(\bmod 2 d_{m}\right), F_{q}$ and $F_{q^{\prime}}$ are diffeomorphic. (b) If $\left(f_{q}, 0\right)$ and $\left(f_{q^{\prime}}, 0\right)$ are equivalent, then $q \equiv \pm q^{\prime}\left(\bmod d_{m}\right)$.

Proof. (a) We may suppose that q and q^{\prime} are non-negative. It is shown in [6] that when $q \equiv \pm q^{\prime}\left(\bmod 2 d_{m}\right)$, the Clifford bundles ζ_{q} and $\zeta_{q^{\prime}}$ are isomorphic as vector bundles, hence

$$
F_{q} \cong D\left(\zeta_{q}\right) \cong D\left(\zeta_{q^{\prime}}\right) \cong F_{q^{\prime}}
$$

(b) Suppose $\left(f_{q}, 0\right)$ and ($f_{q^{\prime}}, 0$) are equivalent. There is then a homeomorphism of a neighborhood of 0 in $V_{q}=f_{q}^{-1}(0)$ onto a neighborhood of O in $V_{q^{\prime}}=f_{q^{\prime}}^{-1}(0)$. V_{q} and $V_{q^{\prime}}$, have cone neighborhoods with vertices O and base K and K^{\prime} respectively. It follows (e.g. [5], p. 125) that K and K^{\prime} are homotopically equivalent. On the other hand, K and K^{\prime} are diffeomorphic to the manifolds denoted in [6] by $M_{+}(m, l, q)$ and $M_{+}\left(m, l, q^{\prime}\right)$ respectively. It follows from Theorem 2 b in $[6]$ that this implies in turn $q \equiv \pm q^{\prime}\left(\bmod d_{m}\right)$.

2. EXAMPLES OF HOMEOMORPHIC PRODUCTS WITH [0,1]

It is well-known that there exist smooth manifolds X and Y such that X and Y are not homeomorphic but $X \times I$ and $Y \times I$ are. The first examples were shown by J. H. C. Whitehead [7]: X is the torus with a hole and Y is the disk with two holes. Examples for every dimension $n \geqslant 5$ were constructed ([1]) which is contractible and occurs as a factor of I^{n+1}. In the following, we will show that the Milnor fiber F_{q} of the Clifford maps provide us with infinitely many new series of such examples. The main feature of these new examples lies in that they are semi-algebraic sets and that the number of examples within the same dimension can be arbitrarily large.

Lemma 1. If $m \neq 0(\bmod 4)$, any two Clifford cross-sections of $V_{l, m}$ are homotopic.
Proof. Let $\left\{E_{1}, \ldots, E_{m-1}\right\}$ and $\left\{E_{1}^{\prime}, \ldots, E_{m-1}^{\prime}\right\}$ be two systems satisfying (1.1). Since $m \neq 0(\bmod 4)$, there exists ([2]) $A \in \mathrm{O}(l)$ such that $E_{i}=A E_{i} A^{-1}$. The endomorphisms E_{1} and E_{1}^{\prime} define complex structures on \mathbb{E}^{l} and A is a complex linear map with respect to E_{1} and E_{1}^{\prime} hence has determinant +1 . In the following commutative diagram

$A \simeq I \mathrm{~d}$ and $\tilde{A} \simeq \mathrm{Id}$, where $\tilde{A}\left(e_{1}, \ldots, e_{m}\right)=\left(A e_{1}, \ldots, A e_{m}\right)$. Hence $\sigma \simeq \sigma^{\prime}$.
Theorem 3. Let $m \equiv 0(\bmod 4)$.
(a) For any q and $q^{\prime}, F_{q} \times I$ is homeomorphic to $F_{q} \times I$.
(b) F_{q} and $F_{q^{\prime}}$ are not homeomorphic if $q \neq \pm q^{\prime}\left(\bmod d_{m}\right)$

Proof. Denote by ζ (resp. ξ) the Clifford bundle induced by $\left\{E_{1}, \ldots, E_{m-1}\right\}$ (resp. $\left\{E_{1}, \ldots, E_{m-2}\right\}$). We have

$$
\begin{equation*}
\xi=\zeta \oplus \theta^{1} . \tag{2.1}
\end{equation*}
$$

On the other hand, for any vector bundle $\zeta, D\left(\zeta \oplus \theta^{1}\right) \cong D(\zeta) \times I$, (cf. e.g. [4]). Hence $F_{q} \times I \cong F_{q^{\prime}} \times I$ in view of Lemma 1. (b) If F_{q} is homeomorphic to $F_{q^{\prime}}$, it follows from the invariance of boundary that $K=\partial F_{q}$ and $K^{\prime}=\partial F_{q^{\prime}}$ are homeomorphic. Hence $q \equiv \pm q^{\prime}$ as in the proof of Theorem 2 b .

Remark 1. For big l, the number of mutually non-homeomorphic F_{q} 's is at least $\frac{1}{4} d_{m}$. The number d_{m} can be arbitrarily large. For example, $d_{24}=65520$. On the other hand, the dimension of F_{q} grows very fast too.
 where p is the linear projection map of \mathbb{R}^{r} onto $\mathbb{R}^{r^{-1}}$. Let F and F^{\prime} be the Milnor fibers of f and $p \circ f$ respectively. Milnor conjectured ([3], p. 100) that F^{\prime} and $F \times I$ are homeomorphic. Theorem 3 shows that the conjecture is true for the Clifford maps.

Acknowledgements-This work was done during the author's visit to the Max Planck-Institut für Mathematik at Bonn. The author is grateful to Professor F. Hirzebruch for his hospitality.

REFERENCES

1. M. L. Curtis: Cartesian products with intervals. Proc. Am. Math. Soc. 12 (1961), 819-820.
2. D. Ferus. H. Karcher and H. F. MUnZner: Clifford algebren und neue isoparametrische Hyperflächen. Math. Z. 177 (1981), 479-502.
3. J. Milnor: Singular points of complex hypersurfaces. Ann. Math. Stud. 61. Princeton University Press, New Jersey (1968).
4. R. SwItzer: Algebraic Topology-Homotopy and Homology. Springer, Berlin (1975).
5. H. Seifert and W. A. Trefall: Textbook of Topology. Academic Press, New York (1980).
6. Q-M. Wang: On the topology of Clifford isoparametric hypersurfaces. J. Diff. Geom. 25 (November 1987).
7. J. H. C. Whitehead: On the homotopy type of manifolds. Ann. Math. 41 (1940), 825-832.

Institute of Mathematics

Academia Sinica, Beijing
The Peoples Republic of China

