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a b s t r a c t

We prove for generic steady solutions of the Lattice Boltzmann (LB) models that the
variation of the numerical errors is set by specific combinations (called ‘‘magic numbers’’)
of the relaxation rates associated with the symmetric and anti-symmetric collision
moments. Given the governing dimensionless physical parameters, such as the Reynolds or
Peclet numbers, and the geometry of the computationalmesh, the numerical errors remain
the same for any change of the transport coefficients only when the ‘‘free’’ (‘‘kinetic’’) anti-
symmetric rates and the boundary rules are chosen properly. The single-relaxation-time
(BGK) model has no free collision rate and yields viscosity dependent errors with any
boundary scheme for hydrodynamic problems. The simplest and most efficient collision
operator for invariant errors is the two-relaxation-times (TRT) model. As an example, this
model is able to compute viscosity independent permeabilities for any porous structure.
These properties are derived from steady recurrence equations, obtained through linear

combinations of the LB evolution equations, in which the equilibrium and non-equilibrium
components are directly interconnected via finite-difference link-wise central operators.
The explicit dependency of the non-equilibrium solution on the relaxation rates is then
obtained. This allows us, first, to confirm the governing role of the ‘‘magic’’ combinations for
steady solutions of the Stokes equation, second, to extend this property to steady solutions
of the Navier–Stokes and anisotropic advection–diffusion equations, third, to develop a
parametrization analysis of the microscopic and macroscopic closure relations prescribed
via link-wise boundary schemes.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Mostly owing to the simplicity of modeling complex solid boundaries via local andmass-conservingMaxwell reflections,
the Lattice Boltzmann schemes have rapidly gained some popularity to study flows in staircase reconstructions of porous
samples (a far to be exhaustive list includes [1–20]). The geometric structure and the effective hydrodynamic properties of
porous media are characterized by a series of effective parameters. Among them the permeability tensor K, a measure of
the fluid conduction, relates the averaged mass fluxEȷ to the driving pressure drop: ∇P , and forcing: EF , via Darcy’s law:

Eȷ = K
(EF −∇P)

ν
, (1)
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assuming a slow steady and incompressible creeping flow governed by the Stokes equation relating the velocity Eu to the
pressure P:

ν∆Eu =
1
ρ0
(∇P − EF), Eȷ = ρ0Eu. (2)

Although the LB schemes are not especially efficient for steady problems (see Ref. [19] for an alternative), their convergence
rate toward the steady state can be improved by using rather large values for the kinematic viscosity ν. However, prescribing
the same forcing, e.g., across a periodic sample of the porous media, but using different values of ν, the solutions obtained
for νEu can differ, contrary to what is expected from the linearity of the Stokes equation. This leads to obvious non-physical
numerical artifacts, as the dependency of the computed permeability on the viscosity. Based on the exact LB solution [21]
for a Poiseuille flow in a straight channel, the simplest example is the deviation from the expected permeability value:
k = H2/12, equal to (48ν2 − 1)/12 [22] for the single-relaxation-time (BGK) model [23] with the bounce-back boundary
condition. One should find therefore a trade-off between efficiency (using the BGKwith large viscosities) and accuracy (using
sufficiently fine resolutions and/or small viscosities), or try to rescue the permeability measurements with the help of more
accurate boundary rules, such as those recently elaborated for a better description of solid shapes [24,25] through the use
of more complicated but still directional rules [22,26]. However, as we show in this paper, the permeability dependency on
the viscosity is unavoidable when using the BGK model, whatever boundary scheme is involved.
At the same time, there were strong numerical evidences that this numerical artifact disappears completely and the

permeability values do not change when the viscosity varies, provided that some specific combinations of the relaxation
rates are kept constant. This was first observed using the FCHC and d3Q19 velocity sets with the bounce-back boundary
rule for flows around square arrays of cylinders and inside different shaped tubes. These combinations, named ‘‘magic’’
at that time [7,8], relate the collision rates of the ‘‘symmetric’’ and ‘‘anti-symmetric’’ moments of the multiple-relaxation-
times (MRT) models [27–29]. The two-relaxation-times (TRT) model [30,31] has the minimal sufficient number of collision
rates: one for the symmetric and one for the anti-symmetric modes, while retaining the same computational simplicity
and efficiency as the BGK model. A viscosity independent permeability is then obtained, e.g., for cubic arrays of spheres
and reconstructed fiber materials, using the d3Q15 velocity set in Ref. [22], and for body-centered cubic arrays of spheres
and random-size sphere-packed porous media, using d3Q19 velocity in Ref. [25]. For any value of the magic combination,
these results were obtained not only with the bounce-back rule but also with the parabolic (third-order accurate) MR1
scheme, Ref. [22]. At the same time, while the linear interpolations [26,32] reduce the dependency on the viscosity, they do
not remove it completely. Until now no rigorous explanation has been found except for simple solutions [8,21,22], such as
Poiseuille flow or for truncated (at third, fourth, . . . , orders) steady expansions of the populations.
In this paper we prove these results using the followingmethodology. First, wewrite the collision operator in a link-wise

form [30,31,33], the TRT-operator being the common sub-class of the link-wise and MRT ones. Based on a parity argument,
the link-wise form enables very simple manipulations of the symmetric/anti-symmetric components of the evolution
equation and its solutions. Second, we derive some recurrence equations for the link-wise operators. Independently of
the conservation constraints, they express each individual non-equilibrium component as a solution of a link-wise finite-
difference type equation, governed (along a given link) by the equilibrium components. Then we substitute the solution of
the recurrence equation into the exact microscopic steady mass and momentum conservation equations. Prescribing the
Stokes equilibrium, we show that the macroscopic solution for νEu varies linearly with the driving forcing only when the
‘‘magic’’ combinationΛeo of the two relaxation rates is kept constant. This proves that the collision numberΛeo controls the
Stokes solution in the bulk and raises the more general question of finding relevant parameters for the Lattice Boltzmann
macroscopic solutions (called in the sequel its parametrization).
It is well understood that the solutions of the second-order macroscopic mass and momentum conservation laws are

governed by several non-dimensional numbers, such as the Peclet number for linear advection–diffusion equations or the
Reynolds and Froude numbers for incompressible hydrodynamic equations. However, due to the neglected higher-order
corrections, the numerical schemes for solving these equations are not guaranteed to follow exactly the ‘‘physical’’ scalings.
These corrections depend usually on the free parameters of the chosen numerical scheme, such as the weights of the finite-
difference or the equilibrium stencils, resulting in different solutions for different choices of these parameters, e.g., two
incompressible Navier–Stokes steady solutions on the same grid, computed with different characteristic velocities and
viscosities, may differ for the same grid Reynolds number.
In LB schemes the second- and higher-order terms in the expansion of the populations, then the third- and higher-order

corrections to the derived macroscopic equations, depend on the values of the free (‘‘kinetic’’) collision rates. Based on
the solutions of the recurrence equations, we show that on a given grid the dimensionless steady pressure and velocity
distributions, obtained for the TRT model with the standard Navier–Stokes polynomial equilibrium, are controlled by the
hydrodynamic numbers and collision numberΛeo.We extend this analysis to the anisotropic, advection–diffusion equations
(AADE), in the frame of more general link-wise operators [30,34], and show that the dimensionless steady solution of the
AADE on a given mesh is controlled by the grid Peclet number and all the possible link combinations of ‘‘symmetric’’ and
‘‘anti-symmetric’’ rates, a rescaling not available for the BGK model for which the error is related to the powers of the
transport coefficient.
A specific property of the LB schemes originates from the kinetic nature of their boundary conditions. Namely, in contrast

with the bulk populations, the incoming populations do not obey the evolution equation. Instead, they are computed
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through microscopic closure relations prescribed by the boundary rules. For suitable boundary schemes, these microscopic
closure relations approximate the desired macroscopic boundary conditions, but only up to some order. It follows that
the macroscopic closure relations are not guaranteed a priori to share the parametrization of the exact macroscopic bulk
equations, even at second order. This question is examined in parallelworks [35,36]. Additional constraints on the coefficients
of generic multi-reflection link-wise boundary schemes have been derived there which enable the closure relations to
share the parametrization of the bulk solutions. The bounce-back and multi-reflection MR1 schemes obey naturally these
constraints and yields viscosity independent permeabilities, but not the linear interpolation schemes in [26,32]. Infinite
classes of exactly parametrized linear and parabolic rules have been designed for Dirichlet velocity, pressure, or mixed
boundary conditions in [35,36]. In this notewe explain this analysis inmore detail, but only for the simplest Dirichlet velocity
or pressure conditions.
Along these lines, the paper is organized as follows. Section 2 derives the recurrence equations for the link-wise operators

and presents their steady solutions. Section 3 examines the parametrization of the exact, conservation and closure, steady
relations, with a focus on the Stokes, Navier–Stokes, and anisotropic advection–diffusion equilibrium distributions. We
show that the bounce-back and anti-bounce-back boundary rules share the bulk parametrization andwe improve the linear
schemes of Ref. [26] for this property. Section 4 summarizes the paper. Appendix A gives a second pair of recurrence relations
and discusses its relation with the pair derived in Section 2. In Appendix B we build the solution of the recurrence equations
as infinite series where all the coefficients are explicit functions of the collision rates. An extension of all the results for
MRT-L-models is given in Appendix C.

2. Recurrence equations and solutions

2.1. Link-based evolution equation

The unknown variable of the scheme at the node Er and time t is the population vector f (Er, t) = {fq, q = 0, . . . ,Q−1}.We
assume the equidistant d-dimensional computational mesh {Er}where the velocity vectors {Ecq} interconnect grid nodes. The
velocity set contains Q vectors: one zero, Ec0 = E0, for the rest population, and Q − 1 nonzero ones, Ecq = {cqα, α = 1, . . . , d},
q = 1, . . . ,Q − 1, for the moving populations. Cubic velocity sets, Ref. [23], with two moving classes are mostly assumed,
e.g., d2Q9, d3Q15, d3Q19. They allow formulating a single scheme for the hydrodynamic (Navier–Stokes) equation and for
the anisotropic, linear or nonlinear, advection–diffusion equation (AADE). The models with one class of nonzero velocities
are only sufficient for diagonal diffusion tensors.
Each nonzero velocity Ecq has an opposite one Ecq̄ = −Ecq and below such a pair of anti-parallel velocities (Ecq, Ecq̄) is called

a link. The link-wise basis of Ref. [30] is such that the projections of any Q -vector φ on the pair of basis vectors associated
with the qth-link are equal to its symmetric (even), φ+q , and anti-symmetric (odd), φ

−
q , components: φq = φ+q + φ

−
q . The

even parts are equal: φ+q = φ
+

q̄ =
1
2 (φq + φq̄), φ

+

0 = φ
0, and the odd parts have opposite signs: φ−q = −φ

−

q̄ =
1
2 (φq − φq̄),

φ−0 = 0. Specifying the collision operator (3) by an equilibrium distribution {e
±
q } and a pair of collision rates {λ

+
q , λ

−
q } for

each link, the evolution of the populations obeys the following update rule:

fq(Er + Ecq, t + 1) = f̃q(Er, t) ≡ fq(Er, t)+ g+q + g
−

q , q = 0, . . . ,Q − 1,

g±q = λ
±

q n
±

q , n±q = (f
±

q − e
±

q ), f ±q =
1
2
(fq ± fq̄), e±q = ±e

±

q̄ ,

λ±q = λ
±

q̄ , −2 < λ±q < 0 . (3)

Here and below, any relation with ‘‘±’’ and/or ‘‘∓’’ addresses two different relations: one with the ‘‘upper’’ sign and another
one with the ‘‘lower’’ sign, for all the variables. The population fq = e+q + e

−
q + n

+
q + n

−
q and the outgoing (post-collision)

one f̃q can also be expressed via the equilibrium and post-collision components:

fq(Er, t) =
[
e+q + e

−

q −

(
1
2
+Λ+q

)
g+q −

(
1
2
+Λ−q

)
g−q

]
(Er, t), (4)

f̃q(Er, t) =
[
e+q + e

−

q +

(
1
2
−Λ+q

)
g+q +

(
1
2
−Λ−q

)
g−q

]
(Er, t), (5)

Λ+q = −

(
1
2
+
1
λ+q

)
> 0, Λ−q = −

(
1
2
+
1
λ−q

)
> 0, ∀ q.

The link-wise operator has at most (Q − 1)/2 distinct ‘‘magic’’ valuesΛeoq given by the products of the eigenvalue functions
Λ+q andΛ

−
q :

Λeoq = Λ
+

q Λ
−

q , Λeoq > 0, q = 1, . . . ,Q − 1. (6)

Locally prescribed mass M and/or momentum EF source terms can be split into arbitrary proportions between the
equilibrium and the outgoing populations via suitable modifications of the equilibrium mass and momentum variables
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(see for instance relation (28) and Ref. [35]). Here, for the sake of simplicity, the source terms have been hidden in the
equilibrium and do not appear in the evolution equation (3). Hence the links are related by the following conservation
relations:

Q−1∑
q=0

g+q (Er, t) = M(Er, t),
Q−1∑
q=1

g−q (Er, t)Ecq = EF(Er, t). (7)

2.2. Steady recurrence equations

In the sequel we assume, first, that at least one steady state exists as a solution of the LB evolution equation (3) with
given boundary conditions and source terms. Although this is probably not necessary, we assume also that this steady
state is locally stable, i.e., it is an attractor of the time evolution for any starting point in a compact neighborhood. Second,
we assume that the steady state is unique for linear LB models and that there is a finite number of them for nonlinear
LB models, an assumption true for most boundary schemes used in practical applications, hence referred to as ‘‘generic’’.
Possible extensions (or counter-examples) of the present results to models having ‘‘spurious’’ conserved quantities coming
from the bulk evolution or from pathological boundary conditions (see Ref. [35] and the references therein) is left for future
work. Finally, the collision rates are assumed link-wise constant.
At steady state, the immobile population takes its equilibrium value then g0 = g+0 ≡ 0. The subsequent developments

are then relevant only for moving populations, q = 1, . . . ,Q − 1. Keeping in mind that g+q = g
+

q̄ and g
−
q = −g

−

q̄ , we first
write down two steady-state evolution equations (3) from Er to Er ± Ecq:[

e+q + e
−

q −

(
1
2
+Λ+q

)
g+q −

(
1
2
+Λ−q

)
g−q

]
(Er + Ecq) =

[
e+q + e

−

q +

(
1
2
−Λ+q

)
g+q +

(
1
2
−Λ−q

)
g−q

]
(Er), (8)[

e+q − e
−

q −

(
1
2
+Λ+q

)
g+q +

(
1
2
+Λ−q

)
g−q

]
(Er − Ecq) =

[
e+q − e

−

q +

(
1
2
−Λ+q

)
g+q −

(
1
2
−Λ−q

)
g−q

]
(Er). (9)

With the help of the following link-wise finite-difference operators,

∆̄qφ(Er) =
1
2
(φ(Er + Ecq)− φ(Er − Ecq)),

∆2qφ(Er) = φ(Er + Ecq)− 2φ(Er)+ φ(Er − Ecq), (10)

the sum and the difference of Eqs. (8) and (9) become:[
∆2qe

±

q + 2∆̄qe
∓

q −

(
1
2
+Λ±q

)
∆2qg

±

q − 2
(
1
2
+Λ∓q

)
∆̄qg∓q

]
(Er) = 2g±q (Er). (11)

A second pair of the evolution equations describes the propagation from Er ± Ecq to Er:[
e+q − e

−

q +

(
1
2
−Λ+q

)
g+q −

(
1
2
−Λ−q

)
g−q

]
(Er + Ecq) =

[
e+q − e

−

q −

(
1
2
+Λ+q

)
g+q +

(
1
2
+Λ−q

)
g−q

]
(Er), (12)[

e+q + e
−

q +

(
1
2
−Λ+q

)
g+q +

(
1
2
−Λ−q

)
g−q

]
(Er − Ecq) =

[
e+q + e

−

q −

(
1
2
+Λ+q

)
g+q −

(
1
2
+Λ−q

)
g−q

]
(Er). (13)

Their sum and difference give two recurrence equations, one for g+q (Er) and one for g
−
q (Er):[

∆2qe
±

q − 2∆̄qe
∓

q +

(
1
2
−Λ±q

)
∆2qg

±

q − 2
(
1
2
−Λ∓q

)
∆̄qg∓q

]
(Er) = −2g±q (Er). (14)

Let the four equations (11) and (14) be split into two pairs: one with the ‘‘upper’’ superscript and one with the ‘‘lower’’
superscript. Eliminating ∆̄qg∓q yields two new recurrence relations for g

+
q (Er) and g

−
q (Er):

g±q (Er) =
[
∆̄qe∓q −Λ

∓

q ∆
2
qe
±

q +

(
Λeoq −

1
4

)
∆2qg

±

q

]
(Er), (15)

for any node Er ∈ Ωq, called q-bulk node, having its two neighbors along the link q in the computational domain Ω . The
nodes inΩ , but not inΩq (at least one neighbor along the link q not inΩ), are called q-boundary nodes and denoted Erb.
Let us now associate to any quantity φ(Er) defined in Ω the auxiliary quantity Γq(φ) defined on Ωq by the following

recurrence equation:

2Γq(φ) = ∆2qφ + 2
(
Λeoq −

1
4

)
∆2qΓq(φ), (16)
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with [Γq(φ)](Erb) = 0 for all the q-boundary nodes, where the value zero has been chosen to close the system in the simplest
way, but this does not rule out possible other choices. The quantity Γq(φ) is related to ∆2qφ/2 by a diagonal dominant,
hence nonsingular, tridiagonal matrix, since 1 + 2((Λeoq −

1
4 ) − |Λ

eo
q −

1
4 |) is equal to one for Λ

eo
q ≥ 1/4 and to 4Λ

eo
q for

0 < Λeoq ≤ 1/4. Thus Γq(φ) exists, is unique and related to φ through the eigenvalue combinationΛ
eo
q only.

Let us now associate to φ(Er) and Γq(φ) a second auxiliary quantity γq(φ) defined onΩq by

γq(φ) = ∆̄qφ + 2
(
Λeoq −

1
4

)
∆̄qΓq(φ), (17)

and on the boundary nodes Erb1 and Erb2 = Erb1 + NqEcq (ends of a segment of Nq + 1 consecutive nodes all inΩ) by[
γq(φ)

]
(Erb1) = [γq(φ)](Erb1 + Ecq)− [Γq(φ)](Erb1 + Ecq), Erb1 − Ecq 6∈ Ω,[

γq(φ)
]
(Erb2) = [γq(φ)](Erb2 − Ecq)+ [Γq(φ)](Erb2 − Ecq), Erb2 + Ecq 6∈ Ω. (18)

With these choices, we show in Appendix A that γq(φ) is solution of the recurrence equation:

γq(φ) = ∆̄qφ +

(
Λeoq −

1
4

)
∆2qγq(φ). (19)

Then, for any conservation relation and any equilibrium function, the steady solution of the evolution equation (3) can be
written as

g±q (Er) = γq(e
∓

q )− 2Λ
∓

q Γq(e
±

q )+ δg
±

q (Er), (20)

where the terms δg±q (Er) are required to accommodate any mismatch between the values of g
±
q (Erb) and [γq(e

∓
q )](Erb) (since

Γq(e±q )(Erb) = 0):

δg±q (Erb) =
[
g±q − γq(e

∓

q )
]
(Erb), (21)

and are solutions of

δg±q =
(
Λeoq −

1
4

)
∆2qδg

±

q . (22)

Note that the actual values of δg±q (Er) depend on the boundary scheme used to get the steady state. For instance
δg±q (Er) = 0 along any segment with periodic boundary conditions since the systems (15), (16), and (19) are defined for
all the nodes. Other properties of the δg±q and their relation with other recurrence equations derived from Eqs. (11) and
(14) are discussed in Appendix A. The post-collision components, as infinite series around the equilibrium, are given in
Appendix B for arbitraryΛeoq > 0.
For the particular value:

Λeoq ≡
1
4
, ∀ q, (23)

the recurrence part of Eqs. (15), (16) and (22) vanishes, δg±q (Er) = 0 for the q-bulk nodes, and the post-collision components
are expressed via the gradients of the equilibrium components. This value of Λeoq , available for both hydrodynamic and
advection–diffusion problems with the TRT evolution operator (25), has also several particular stability properties (Ref.
[34]).
At equilibrium, the mass and momentum variables are related to the moments of the populations and the source

quantities such that relations (7) are satisfied. They close the system of equations for the bulk. Substituting solution in
the form (20), the steady conservation relations (7) become:

Q−1∑
q=1

γq(e−q )− 2
Q−1∑
q=1

Λ−q Γq(e
+

q )+

Q−1∑
q=1

δg+q (Er) = M(Er),

Q−1∑
q=1

γq(e+q )Ecq − 2
Q−1∑
q=1

Λ+q Γq(e
−

q )Ecq +
Q−1∑
q=1

δg−q (Er)Ecq = EF(Er). (24)

The conserved quantities and the δg±q are given by the solutions of the implicit system built from (24) and the boundary
conditions (see next sections). For each solution, the procedure outlined above and in Appendix A can be used to compute
the associated g±q , solutions of the recurrence equations (15) and (A.1), hence the corresponding steady solution of the LBE.
This implies that the numbers of steady solutions of the LBE and of system (24) have to be the same: one for the linear cases
and a finite number of them otherwise, as assumed at the beginning of this section.
In the next sections we will make an extensive use of the linear properties of γq and Γq: γq(φ1 + φ2) = γq(φ1)+ γq(φ2)

and γq(µφ1) = µγq(φ1), where µ is a constant.
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3. Exact conservation and closure relations

We first restrict the LB framework to the link-wise collision operator (3). Specifying equal symmetric eigenvalues (λ+q =
λ+,∀ q) but using distinct anti-symmetric eigenvalues {λ−q }, the so-called L-model, Ref. [30,34], keeps the equilibriummass
variable equal to a microscopic mass of population, in contrast to the BGK-type anisotropic models, Ref. [37]. Extending
this property to the momentum equilibrium variable, for the hydrodynamic equations, the link-wise operator reduces to
the two-relaxation-time model (TRT). The polynomial MRT vectors [27–29,38–40] and the link-wise ones represent two
alternative collision bases, with the TRT as the only common sub-class. However, the bases can be combined, e.g., the link-
wise anti-symmetric vectors and theMRT polynomial symmetric vectors, theMRT-L-model [30,33]. This combination hasQ
(the highest possible value) distinct eigenvalues for the AADE. For the hydrodynamic equations, it reduces to the commonly
used MRT collision operator, with one relaxation rate for all the non-conserved anti-symmetric modes, λ−q = λ

−, ∀ q.
Below, the conservation and closure relations, based on the Stokes and Navier–Stokes equilibrium distributions, are

first parametrized for the TRT-operator, and the AADE is modeled with the L-operator. The results are extended for
MRT-L-operators in Appendix C.

3.1. The TRT model

The two-relaxation-time model assigns one value for all the λ+q and one value for all the λ
−
q :

λ+q = λ
+, λ−q = λ

−, q = 0, . . . ,Q − 1, then

Λ−q = Λo = −

(
1
2
+
1
λ−

)
, Λ+q = Λe = −

(
1
2
+
1
λ+

)
,

Λeoq = Λeo = ΛoΛe, ∀ q. (25)

The BGK model is a special sub-class of the TRT with λ− = λ+ = −1/τ , i.e., with Λo = Λe = τ − 1/2, ν = Λe/3,
and Λeo = 9ν2. Assuming the local conservation laws (7), the equilibrium mass ρeq and momentum Eȷ eq are related to
microscopic population mass ρ and momentum EJ as follows:

ρ =

Q−1∑
q=0

fq =
Q−1∑
q=0

f +q , ρeq =

Q−1∑
q=0

e+q = ρ −
M
λ+
, (26)

EJ =
Q−1∑
q=1

fqEcq̄ =
Q−1∑
q=1

f −q Ecq̄, Eȷ eq =
Q−1∑
q=1

e−q Ecq = EJ −
EF
λ−
. (27)

In the presence of sources, the macroscopic variables ρm andEȷ differ from the microscopic variables ρ and EJ:

ρm = ρ +
1
2
M, Eȷ = EJ +

1
2
EF , (28)

then ρeq = ρm +ΛeM, Eȷ eq =Eȷ+ΛoEF . (29)

Following the Chapman–Enskog method, the macroscopic TRT hydrodynamic equations are derived in Ref. [35] for ρm
and Eȷ. At second order, and for uniform sources, they depend neither on the free eigenvalue λ− nor on Λeo. However, mass
and momentum steady conservation relations (24) depend on Λeo for general flows, owing to the truncated corrections
and/or the variation of the source distributions. Let us examine this dependency for exact steady Stokes and Navier–Stokes
equations.

3.1.1. Viscosity independent permeability
The equilibrium distribution for the Stokes equation is a linear function of the pressure P and the momentumEȷ:

e−q = t
?
q j
eq
q = t

?
q (jq +ΛoFq), jq = (Eȷ · Ecq), Fq = (EF · Ecq),

e+q = t
?
q (P + c

2
sΛeM), q = 1, . . . ,Q − 1, e+0 = e0 = ρ

eq
−

Q−1∑
q=1

e+q , (30)

P = c2s ρ
m, ∀c2s ,

Q−1∑
q=1

t?q cqαcqβ = δαβ , 3
Q−1∑
q=1

t?q c
2
qαc

2
qβ = 1+ 2δαβ , ∀α, β. (31)
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Multiplying the mass equation byΛe, the exact mass and momentum conservation equations (24) become:

Q−1∑
q=1

γq(Λej?q)−Λeo
Q−1∑
q=1

(2Γq(P?q )− γq(F
?
q ))+Λe

Q−1∑
q=1

δg+q = ΛeM + 2Λeo
Q−1∑
q=1

Γq(ΛeM?
q ), (32)

Q−1∑
q=1

γq(P?q )Ecq − EF +
Q−1∑
q=1

δg−q Ecq = 2
Q−1∑
q=1

Γq(Λej?q)Ecq −
Q−1∑
q=1

γq(ΛeM?
q )Ecq + 2Λeo

Q−1∑
q=1

Γq(F ?q )Ecq, (33)

with j?q = t
?
q jq, P?q = t

?
qP, F ?q = t

?
q Fq, M?

q = c
2
s t
?
qM.

Since the LB equation is assumed to have a unique steady state for the given boundary conditions (beginning of
Section 2.2), the solution of Eqs. (32) and (33) exists and is unique (see the end of Section 2.2). According to Eq. (17), any non-
equilibrium component γq or Γq in Eqs. (32) and (33) depends on the relaxation parameters only via the combination Λeo.
Therefore, if the contributions of the source quantities:ΛeM and EF , and the boundary terms:Λe

∑Q−1
q=1 δg

+
q and

∑Q−1
q=1 δg

−
q Ecq,

vanish or depend onΛeo only, both equations, written for the variablesΛeEȷ and P , are controlled byΛeo only, independently
of Λe and Λo separately. Note that the last two terms in Eqs. (32) and (33) take into account the variations of the source
terms. Their impact for Brinkman models is investigated in Ref. [41].
Assuming then Darcy’s law (1) for the mean velocity value Eu (averaged over the whole volume Vs), the components of

the permeability tensor K are derived from the solution for νEȷ(Er):

Eȷ(ν) = K(EF −∇P), Eȷ(ν) =
1
Vs

∑
Er

νEȷ(Er) =
1
3Vs

∑
Er

ΛeEȷ(Er), ν =
Λe

3
. (34)

Since the linear relation between ∇P and Eȷ(ν) is controlled by Λeo, the components of the permeability tensor stay
constantwhen the viscosity varies butΛeo is kept constant.When the boundary scheme obeys the parametrization properly,
the derived permeability value is then independent of the used viscosity for any porous structure and can be computed
efficiently. Let us first examine the bounce-back rule with respect to this property.

3.1.2. Using the bounce-back rule
The simplest and mass-conserving boundary rule for incoming populations fq̄ in the boundary grid node Erb, the bounce-

back scheme is commonly applied for no-slip velocity in porous media:

fq̄(Erb, t + 1) = f̃q(Erb, t), (35)

where q is chosen such that Erb + Ecq is outside Ω . Early analysis (Ref. [21]) of the bounce-back rule in the frame of the
MRT FCHCmodel has shown that an effective location of the no-slip wall for Poiseuille flow depends, at second order, on the
‘‘magic’’ combination Λeo of the ‘‘symmetric’’ (stress) rate defining the kinematic viscosity and the free ‘‘anti-symmetric’’
one (energy fluxes). It was then understood that fixing Λeo uniquely defines the effective channel width H , therefore the
permeability H2/12 of a straight channel as a function ofΛeo (see exact formulas for H(Λeo) in [22,36]). Let us extend now
these results to an arbitrary geometry.
Replacing fq̄ and f̃q with relations (4) and (5), the steady closure relation takes the form:[

e−q +
1
2
g+q −Λog

−

q

]
(Erb) = 0. (36)

Using relation (20) for g±q and the fact that Γq(φ) = 0 on the boundary nodes, this closure relation multiplied by Λe
becomes:[

Λej?q +ΛeoF
?
q +

1
2

(
γq(Λej?q)+Λeoγq(F

?
q )
)
−Λeoγq(P?q )+

1
2
Λeδg+q −Λeoδg

−

q

]
(Erb) = 0, (37)

for any values of e±q given in Eq. (30). Replacing δg
−
q (Erb) in Eq. (37) by its value given by relation (A.8) (for Erb2 ) allows one

to compute Λeδg+q (Erb) (at both ends of the link segment with the proper choice of q), hence δg
−
q (Erb), as unique functions

ofΛej?q +ΛeoF
?
q + γq(Λej

?
q)/2−Λeoγq(P

?
q ) andΛeo only. Again, since γq(φ) and Γq(φ) depend on {λ

+, λ−} only viaΛeo for
any φ, it follows that, with the bounce-back rule, Eqs. (32) and (33), written for the variablesΛeEȷ, EF , and P , are controlled by
Λeo only. This explains why this boundary rule yields viscosity independent permeabilities for any porous media whenΛeo
is kept constant. The MR1 scheme has similar properties (as shown in Ref. [35]).
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3.1.3. Example of inexact parametrization, BFL-rule
Let us consider the linear interpolation introduced in Ref. [26] (BFL-rule for Bouzidi, Firdaouss, and Lallemand, or

Upward/Downward-Linear-Interpolation (ULI/DLI) in [22,35]). This boundary scheme extends the bounce-back to arbitrary
link distance δqEcq, 0 ≤ δq ≤ 1, between Erb and the pointwhere velocity Ecq cuts thewall. For no-slip condition, these rules are:

if δq ≤
1
2
: fq̄(Erb, t + 1) = α(u)

[
δq f̃q(Erb, t)+

(
1
2
− δq

)
f̃q(Erb − Ecq, t)

]
, α(u) = 2,

if δq ≥
1
2
: fq̄(Erb, t + 1) = α(u)

[
1
2
f̃q(Erb, t)+

(
δq −

1
2

)
f̃q̄(Erb, t)

]
, α(u) =

1
δq
. (38)

The DLI-rule (δq ≥ 1
2 ) is local and its exact steady closure relation can be obtained exactly as for the bounce-back. The

analysis of the ULI-rule (δq ≤ 1
2 ) becomes local for steady solutions when f̃q(Erb−Ecq) is replaced with fq(Erb). For both ULI and

DLI schemes, the exact steady state closure relation is:

α(u)
[
Λej?q +ΛeoF

?
q + δq

(
γq(Λej?q)+Λeoγq(F

?
q )
)
+ δqΛeδg+q −

(
Λeo +Λe

∣∣∣∣12 − δq
∣∣∣∣) (γq(P?q )+ δg−q )] (Erb) = 0. (39)

Except for δq = 1/2 when both ULI/DLI reduce to the bounce-back rule, the term Λe|δq −
1
2 | breaks the reasoning

following Eq. (37). This explains the dependency of the permeability upon the viscosity for these schemes, reported in [22,
24,25]. Since this term appears first together with the second-order term ∂qP?q − ∂

2
qΛej

?
q (see Appendix B), the microscopic

closure condition violates the exact bulk parametrization already at second order. The ‘‘magic’’ linear interpolations
MGULI/MGDLI in [35,36] improve the linear schemes [26,32] with respect to this property by adding a local correction
α(u)| 12 − δq|g

−
q (Erb, t) to the RHS of the boundary conditions (38):

fq̄(Erb, t + 1)→ fq̄(Erb, t + 1)+ α(u)
∣∣∣∣12 − δq

∣∣∣∣ g−q (Erb, t). (40)

Ref. [36] gives a particular value: Λeo = 3δ2/4, for which the TRT-operator, with these and other ‘‘magic’’ linear (second-
order accurate) boundary conditions, gives Poiseuille flows exactly in straight channels (δq ≡ δ), even for channels (pores)
only one or two lattice nodes wide. This extends the previous bounce-back solution [21,22] (Λeo = 3/16 for δ = 1/2)
to 0 < δ ≤ 1. The dependency of the measured permeability on the selected collision number is studied in Ref. [35] for
the bounce-back, linear and ‘‘magic’’ boundary schemes, this dependency being drastically reduced for third-order accurate
parabolic schemes.

3.1.4. Navier–Stokes equilibrium
For the sake of completeness, we summarize here the developments of Ref. [35]. Let us introduce the dimensionless

macroscopic velocity Eȷ′, pressure P ′, and force EF ′, computed with the reference density ρ0 and the characteristic physical
velocity U and acceleration constant g:

Eȷ′ =
Eȷ
ρ0U

δx
δt
, P ′ =

P − P0
ρ0U2

δx2

δt2
, EF ′ =

EF
ρ0g

δx
δt2
,

ρm
′
=
ρm

ρ0
= 1+Ma2P ′, where P = c2s ρ

m, Ma =
U
cs

δt
δx
, (41)

where δx and δt are the mesh size and the time step in physical units. For the sake of simplicity, we assume the standard
form [23,42] for the nonlinear Navier–Stokes equilibrium term E+q (Eȷ, ρ̂) and no mass sources (M = 0, ρ

m
= ρ):

e+q = Π
?
q = t

?
qΠq, Πq(ρ,Eȷ, ρ̂) = P + E+q (Eȷ, ρ̂), q = 1, . . . ,Q − 1,

e+0 = e0 = ρ −
Q−1∑
q=1

e+q , E+q (Eȷ, ρ̂) =
3j2q − ‖Eȷ‖

2

2ρ̂
. (42)

Expressing the equilibriumand the post-collision components (20) via the dimensionless variables and substituting them
into the exact mass and momentum steady conservation relations (24), the latter become:

3
Q−1∑
q=1

γq(j′q
?
)+

Reg
ρ0U2

δx2

δt2

Q−1∑
q=1

Λeδg+q (Er) = 2ΛeoReg
Q−1∑
q=1

Γq(Π
′

q
?
)+Λeo

Reg
Fr2g

Q−1∑
q=1

γq(F ′q
?
), (43)

Q−1∑
q=1

γq(Π
′

q
?
)Ecq +

1
ρ0U2

δx2

δt2

Q−1∑
q=1

δg−q (Er) =
EF ′

Fr2g
+
6
Reg

Q−1∑
q=1

Γq(j′q
?
)Ecq +

2Λeo
Fr2g

Q−1∑
q=1

Γq(F ′q
?
)Ecq, (44)
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where Reg =
Uδx
νp
, Fr2g =

U2

gδx
, νp =

1
3
Λeδx2

δt
,

Π ′q
?
(ρ ′,Eȷ′, ρ̂ ′) =

Π?
q (ρ,Eȷ, ρ̂)

ρ0U2
δx2

δt2
= t?q (Ma

−2
+ P ′ + E+q (Eȷ

′, ρ̂ ′)), ρ̂ ′ =
ρ̂

ρ0
,

where νp is the physical kinematic viscosity. WhenΛeδg+q and δg
−
q , through the exact microscopic closure relations set by

the boundary schemes, do not depend on the individual values ofΛe andΛo, it follows from relations (43) and (44) that the
steady solutions forEȷ′ and P ′ are exactly the same on a given grid provided thatΛeo and the grid Reynolds (Reg ) and Froude
(Frg ) numbers are kept constant when the viscosity varies. Additionally, in compressible regimes, the Mach (Ma) number
should also be kept constant, e.g., via c2s . The exact (without second-order truncation) macroscopic relations (43) and (44)
depend however onΛeo through the finite-difference Laplacian of γq(e∓q ) and Γq(e

±
q ) in Eqs. (16) and (19) and the nonzero

γq(F ′q
?
) and Γq(F ′q

?
) in the presence of an inhomogeneous forcing. Note that the existence of a solution for relations (43) and

(44) in terms of Eȷ′ and ρ ′ is assumed at the beginning of Section 2.2. Since the system of equations is nonlinear, it has also
been assumed that it exists only a finite number of stable steady states (see the end of Section 2.2), each of them is then
parametrized by the macroscopic dimensionless numbers andΛeo.
The microscopic, then the macroscopic, exact steady closure relations can be obtained in a generic form, in terms of the

coefficients of all the involved populations. For the multi-reflection-type schemes the generic closure relations are worked
out in Ref. [35], for both the Dirichlet velocity and pressure conditions. They allow one to derive sufficient constraints on
the multi-reflection coefficients which enforce exact bulk parametrization of the closure relations. These conditions are the
same for the Stokes and Navier–Stokes equations. The bounce-back and the MR1 scheme of Ref. [22] obey them, but not the
linear interpolations [26,32], unless special local corrections, as relations (40), improve them from this deficiency, giving
rise to the ‘‘magic’’ linear schemes mentioned above. These schemes, as well as the new parabolic ones [35,36] allow exact
parametrization of the steady Stokes and Navier–Stokes solutions.

3.1.5. Using again the bounce-back rule
As the simplest example, we demonstrate this property for the bounce-back closure relation (35), multiplying it by

δx/(ρ0Uδt) and reorganizing it in terms ofEȷ′ andΠ ′q:[
3j?q
′
+
3
2
γq(j?q

′
)−ΛeoRegγq(Π ′q)+

ΛeoReg
Fr2g

(
F ?q
′
+
1
2
γq(F ?q

′
)

)
+
Reg
ρ0U2

δx2

δt2

(
1
2
Λeδg+q −Λeoδg

−

q

)]
(Erb) = 0. (45)

For the same reasons as in Section 3.1.2, the bounce-back closure relation does not depend on the individual eigenvalues.
Once the hydrodynamic numbers (Reg , Frg , and, in compressible regime, Ma) and the ‘‘magic’’ collision one Λeo have been
chosen, any subset of parameters {U, ν, g, c2s , λ

+, λ−} will then yield the same steady dimensionless solution on a given
grid.

3.2. The AADE

For modeling anisotropic advection–diffusion equations (AADE), we keep only one conserved quantity (mass, i.e., no
momentumconservation) and use the link-wise collision (3)with the same eigenvalueλ+ for all the symmetric components.
The equilibrium distribution for a ‘‘diffusion’’ scalar variable D̄(ρ) and a d-dimensional ‘‘advection vector’’Eȷ eq(ρ) is chosen
as:

e+q = EqD̄(ρ)+ Ct
?
qΛeM, Λe = −

(
1
2
+
1
λ+

)
, q = 1, . . . ,Q − 1,

e−q = t
?
q j
eq
q , jeqq = (Eȷ

eq
· Ecq),

Q−1∑
q=1

t?q cqαcqβ = δαβ , ∀α, β,

e+0 = e0 = ρ
m
+ΛeM −

Q−1∑
q=1

e+q , ρm = ρ +
1
2
M, ρ =

Q−1∑
q=0

fq, (46)

where C is some positive constant restricted by linear stability analysis (see Ref. [34]). All the equilibrium components are
given as functions of the local microscopic mass quantity ρ. The equilibrium weights {t?q } and {Eq} are symmetric (their
values are the same for opposite velocities). The second-order approximation of the mass conservation relation (7) takes
the form of the advection–dispersion equation [30,34]:

∂tρ
m
+∇ ·Eȷ eq = M +

∑
α ,β

∂α
[
Dαβ∂βD̄(ρ)

]
,

Dαβ = 2
(Q−1)/2∑
q=1

Tqcqαcqβ , Tq = Λ
−

q Eq. (47)
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The linear advection–diffusion equation is comprised with D̄(ρ) = ρm and Eȷ eq = ρm EU . The components of the diffusion
tensor Dαβ represent the linear combination of the link-wise parameters Tq. The velocity sets without ‘‘diagonal links’’
(cqαcqβ = 0 for all α and β 6= α), e.g., d2Q5 and d3Q7, cannot yield nonzero off-diagonal elements. For the d3Q13 velocity
set with 6 moving links, the mapping from {Dαβ} to {Tq} is unique. The d2Q9 and d3Q15 sets have one free parameter and
the d3Q19 set has three free parameters for this linear transformation. The available range of the off-diagonal elementswith
respect to the diagonal ones is examined in Ref. [34] for positive weights {Eq}.
Once the products Tq are set from the diffusion tensor, different strategies are developed to get Λ−q and Eq. Following

Ref. [30], two ‘‘extreme’’ strategies are the TRT-E and L-models. The first one uses the TRT-operator (Λ−q ≡ Λo, ∀ q), and
it gets the anisotropic diffusion elements via the anisotropic weights {Eq}. The anisotropic weights may differ for any two
non-parallel velocities from the same class. In contrast, the L-model maintains isotropic weights, e.g., Eq = t?q , but the set of
its eigenvalue functions {Λ−q } is anisotropic for anisotropic tensors.
Different combinations of the two techniques are possible, e.g., the mixed M-model of Ref. [34]. Distinct configurations

have different stability and, especially, continuity properties for problems where the diffusion elements are not uniform,
e.g., in heterogeneous soils (see Ref. [34]). Also, for the transient problems, the second-order tensor of the numerical diffusion
should be canceled. For the TRT-E anisotropic model this can be achieved simply, via a suitable ‘‘diffusive’’ correction of the
equilibrium distribution (see Ref. [30]).
Let us address the parametrization properties of the exactmass conservation. For steady states with the equilibrium (46),

Eq. (24) becomes:
Q−1∑
q=1

γq(j′q
?
)+

1
ρ0U

δx
δt

Q−1∑
q=1

δg+q (Er) =
2
Peg

Q−1∑
q=1

T ′qΓq(D̄
′)+ 2

Q−1∑
q=1

Γq(Λ
eo
q M

?
q
′
)+M ′,

whereΛeoq = Λ
−

q Λe, D̄ ′ =
D̄(ρ)

ρ0
, Peg =

Uδx
D0

, M ′ =
M
ρ0

δx
Uδt

,

T ′q =
Λ−q Eq
D0

δx2

δt
, j′q

?
= t?q

jeqq
ρ0U

δx
δt
, M?

q
′
= Ct?qM

′, (48)

whereD0 and ρ0 are reference values for respectively the components of the physical diffusion tensor and themass variable.
When the characteristic velocity is changed on a given grid for a given grid Peclet number Peg , the solution will stay the same
if all the combinationsΛ−q Eq vary proportionally to the characteristic velocity U . This condition is sufficient for the second-
order mass conservation relations, at least when the mass source is uniform (Γq(Λeoq M

?
q
′) = 0). But again, the higher-order

corrections to AADE, hidden in
∑Q−1
q=1 γq(j

′
q
?
) and

∑Q−1
q=1 T ′qΓq(D̄

′), depend on {Λeoq }. The proper rescaling of these terms
requires to set all the values {Λeoq }, with the help of the free eigenvalue functionΛe. This becomes possible only if the whole
set {Λ−q }, then the whole set {Eq}, varies similarly with U .
It is noted that these conditions constrain the free equilibrium and collision parameters.When they are rescaled properly,

the solution of the link-wise AADE model is fully controlled, on a given grid, by Peg and {Λeoq }. A distinguished property of
the TRT-Emodel is that it yields equal collision number for all the links, reducing the disparity in the distribution of the bulk
and boundary errors.

3.3. Using the anti-bounce-back rule

The anti-bounce-back rule prescribes the boundary value e+q
b for the symmetric equilibrium component:

fq̄(Erb, t + 1) = −f̃q(Erb, t)+ 2e+q
b
. (49)

Its steady closure relation is (cf. relation (37)):[
e+q +

1
2
γq(e+q )+

1
2
δg−q −Λeγq(e

−

q )−Λeδg
+

q

]
(Erb) = e+q

b
. (50)

Multiplying for each cut link the relation (50) by Λ
−
q

ρ0D0
δx2
δt , and assuming the advection–diffusion equilibrium (46):[

T ′q D̄
′
+
1
2

T ′q γq(D̄
′)−Λeoq Pegγq(j

′

q
?
)+

Peg
ρ0U

δx
δt

(
1
2
Λ−q δg

−

q −Λ
eo
q δg

+

q

)]
(Erb) = T ′q D̄

′b. (51)

Using now the fact thatΛ−q δg
−
q is a function of δg

+
q andΛ

eo
q only, it follows that, for the anti-bounce-back rule,

1
ρ0U

δx
δt δg

+
q is

a function of T ′q (D̄
′
+ γq(D̄

′)/2)−Λeoq Pegγq(j
′
q
?
), {Λeoq }, and Peg only. Then the solution of Eq. (48) is controlled by the grid

Peclet number Peg and {Λeoq } only.
When e+q contains a mass source component, the boundary value e

+
q
b should be computed similarly. Otherwise, the

source term should be removed ‘‘by hand’’ from the closure relation (see the anti-bounce-back rule in Ref. [43]). According
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to solutions (B.3) with (B.4), g−q (D̄
′) = ∂qD̄

′
+O(ε3), g+q (D̄

′) = −Λ−q ∂
2
q D̄
′
+O(ε4). The boundary value is prescribed in the

middle of the link with a second-order accuracy. WhenΛeoq = 1/8 andwithout mass source, the anti-bounce-back becomes
exact for a parabolic distribution D̄ ′(Er).
The anti-bounce-back rule can also be used to prescribe the hydrodynamic pressure values, e.g., on the free interface in

Ref. [44]. Like for the bounce-back, multiplying the exact relation (50) by 1
ρ0U2

δx2

δt2
and restricting the link-wise operator to

the TRT model, the dimensionless pressure condition becomes:[
Π ′q

?
+
1
2
γq(Π

′

q
?
)−

3
Reg

γq(j′q)+
1

ρ0U2
δx2

δt2

(
1
2
δg−q −Λeδg

+

q

)]
(Erb) = Π ′q

?b
. (52)

The anti-bounce-back scheme with the correction −Λeg+q (Erb, t) is called PAB in [35,36]. Similar to the bounce-back, the
anti-bounce-back and the PAB yield the parametrization properties of the bulk solutions for the hydrodynamic equations.
The second- and third-order accurate, linear and parabolic, respectively, multi-reflection pressure schemes [35,36] extend
the anti-bounce-back for arbitrary distance to the boundary. A coupling of the Dirichlet velocity and pressure schemes is
called the ‘‘mixed’’ scheme. It is suitable to prescribe pressure/tangential velocity mixed condition, which is sufficient to fix
the Navier–Stokes solution, e.g., at the inlet/outlet.

4. Concluding remarks

This paper is focused on the derivation of steady recurrence equations, given by Eq. (15) for the link-wise collision
operator (3) and by Eqs. (C.6) and (C.8) for the MRT-L-operator (C.1). Due to the linearity of the evolution equation,
the post-collision component g±q (Er) of the link-wise operator is split into a sum of two ‘‘bulk’’ components: γq(e

∓
q ) and

−2Λ∓q Γq(e
±
q ), each of them being a solution of the recurrence equations (16) and (19), plus an additional term δg±q

handling arbitrary boundary conditions. These recurrence equations, then their solutions, depend on the collision rates
only via their combinations (Λeoq −1/4). This property explains the parametrization role of the TRT eigenvalue combination
Λeo (Λ

eo
q ≡ Λeo,∀ q) for generic steady Stokes and Navier–Stokes bulk solutions. It follows that the measured permeability

value depends on the relaxation rates only via Λeo, provided that the boundary scheme is also parametrized exactly.
This dependency is structure-dependent and individual for each boundary scheme, such that there is no universal (‘‘most
accurate’’) collision number. Using third-order accurate, ‘‘parabolic’’ boundary schemes (e.g., [22,35,36]), one can shift the
dependency on Λeo beyond second order. Both bulk and boundary truncated errors become then insignificant when Λeo,
typically, stays inside the interval ]0, 1] (we use mostlyΛeo ∈ [ 18 ,

1
4 ]). These schemes are based on expansions of the ‘‘bulk’’

components of the post-collision components and, as a result, the ‘‘boundary’’ terms δg±q are of the order of the neglected
corrections. The linear interpolations MGULI/MGDLI in [35,36]: relations (38) and (40), are exactly parametrized, robust,
and sufficient for computations in porous media.
When the governing physical numbers and the ‘‘magic’’ collision ones are given, one can find an efficient (fast) choice of

the computational parameters (characteristic length, velocity and transport coefficients) for the samephysical solution. Also,
owing to the improved accuracy for suitable values ofΛeo, verymodest grid resolutions become sufficient, a crucial property
for realistic computations in porous media. Moreover, when the ‘‘magic’’ collision numbers are kept constant, the explicit
expansion of the steady solutions given by Eq. (B.3) with (B.4) allows one to estimate the errors on the transport coefficients
with the grid refining at arbitrary order. Finally, all these properties are valid for any equilibrium/source distribution and
any kind of conservation and boundary constraints. They are worthwhile also for ‘‘meso-scale’’ modeling, combining the
Stokes/Navier–Stokes andBrinkmanequations,where suitable values ofΛeo canhelp to reduce the leading-order corrections
due to the force variations (see Ref. [41]). We emphasize that all these improvements are not possible with the BGK model.
We believe that the TRT model is the simplest one sufficiently efficient for creeping flow modeling. However one can

also measure the permeability independently of the assigned collision rates and rescale the truncated errors correctly with
the ‘‘full’’ MRT-operators, at least when they have only one eigenvalue λ− for all non-conserved anti-symmetric modes.
Their symmetric eigenvalues can take distinct values, one value for stress flux mode, say {λν}, and other ones, say {λ+ (i)},
for ‘‘kinetic energy’’ and ‘‘kinetic energy squared’’ modes [29,38,40]. Even if their values are irrelevant for the second-order
incompressible equations, the ‘‘free’’ symmetric eigenvalues have an impact, not yet completely understood, on the effective
stability (see Ref. [38]). In particular, high bulk viscosity values, defined via the rate of ‘‘kinetic energy’’ mode, can be used to
damp transient acoustic waves. The preliminary results of Ref. [7] and our later computations show that it is again sufficient
to set Λeo(λν, λ−) along with the additional combinations Λeo (i)(λ+ (i), λ−) (when the MRT model does reduce to the TRT
one). Then specifying λ− exactly as for the TRT model: Λo(λ−) = Λeo/Λe(λν), the free even eigenvalues are given by
Λe(λ

+ (i)) = Λeo (i)/Λo(λ
−). These properties have motivated us to extend the TRT analysis to MRT-L-operators, which

include the MRT models as a special sub-class suitable for hydrodynamic problems.
An extension of the recurrence equations (15) to transient regime is straightforward:

g±q (Er, t) =
[
∆̄te±q + ∆̄qe

∓

q −Λ
∓

q (∆
2
q −∆

2
t )e
±

q +

(
Λeoq −

1
4

)
(∆2q −∆

2
t )g
±

q

]
(Er, t)

−

[
1
2
∆2t + (Λ

±

q +Λ
∓

q )∆̄t

]
g±q (Er, t),
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where ∆̄tφ(t) = (φ(t + 1)− φ(t − 1))/2,

and ∆2t φ(t) = φ(t + 1)− 2φ(t)+ φ(t − 1), ∀φ. (53)

As far as we can see, only the spatial components (then the spatial truncated errors) are controlled by {Λeoq }, whereas
the higher-order corrections in time may depend on Λ+q and Λ

−
q . Future works are needed to represent, if possible,

the coefficients of time-dependent solutions as explicit functions of the eigenvalues and find their most efficient
parametrization.
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Appendix A. ‘‘Mixed’’ recurrence equations: solution for δg±q (Er).

Four link-wise recurrence equations (11) and (14) are derived from the steady evolution equation. Two linear
combinations of these equations, relations (15), relate independently the symmetric and the anti-symmetric post-collision
components to the equilibrium distribution. Two other linear combinations are given by the sum of the ‘‘upper’’ and ‘‘lower’’
relations (11) and (14):

[∆2qe
±

q −Λ
±

q ∆
2
qg
±

q − ∆̄qg
∓

q ](Er) = 0. (A.1)

These recurrence relations involve both components, g+q and g
−
q , and any steady solution of the evolution equation (3) is

also solution of equations (15) and (A.1). In addition, the sequence of linear combinations leading to these equations from
Eqs. (8), (9), (12) and (13) can be reverted to show that any solution of equations (15) and (A.1) is also a steady solution
of the LBE. However, as it is discussed below, the recurrence equations (15) (or (A.1)) alone have solutions that are not
solutions of the other pair. For instance, the state g±q = ∆

2
qe
±
q = 0, but at least one ∆̄qe

±
q 6= 0, is solution of the recurrence

equations (A.1), but not of (15).
Taking the sum of Γq(φ) at Er − Ecq and Er plus γq(φ) at Er − Ecq, where Er − Ecq and Er are both q-bulk nodes, it comes from

relations (16) and (17):[
Γq(φ)

]
(Er)+ [Γq(φ)+ γq(φ)](Er − Ecq)

=
1
2

(
φ(Er + Ecq)− φ(Er − Ecq)

)
+

(
Λeoq −

1
4

) (
[Γq(φ)](Er + Ecq)− [Γq(φ)](Er − Ecq)

)
= [γq(φ)](Er). (A.2)

The definitions of [γq(φ)](Erb1) and [γq(φ)](Erb2) in Eqs. (18) have been chosen to extend relation (A.2) for any pair of adjacent
nodes in the computational domainΩ . The difference and half the sumof relation (A.2) taken at Er and Er−Ecq give respectively

∆2qγq(φ) = 2∆̄qΓq(φ), (A.3)

∆̄qγq(φ) =
1
2
∆2qΓq(φ)+ 2Γq(φ) = ∆

2
qφ + 2Λ

eo
q ∆

2
qΓq(φ). (A.4)

Using relation (A.3) in Eq. (17) yields

γq(φ) = ∆̄qφ +

(
Λeoq −

1
4

)
∆2qγq(φ), (A.5)

for any q-bulk node. Using Eqs. (A.3), (A.4) and (20), it comes

[Λ±q ∆
2
qδg
±

q + ∆̄qδg
∓

q ](Er) = 0. (A.6)

Although the solutions of the recurrence equations (15) and (A.1) are the same if δg±q (Er) ≡ 0, this is not true in general
unless the terms g±q are related as shown below.
When Λeoq = 1/4 then δg

±
q (Er) = 0 (see Eq. (22)) except for the boundary nodes. Then the finite-difference operators

in Eq. (A.6) reduce to their components at both ends Erb1 and Erb2 = Erb1 + NqEcq of any segment in Ω (as defined in
Eqs. (18)). The first equation (A.6) gives: δg−q (Erb1) = 2Λ

+
q δg

+
q (Erb1) and δg

−
q (Erb2) = −2Λ

+
q δg

+
q (Erb2), and the second one:

δg+q (Erb1) = 2Λ
−
q δg

−
q (Erb1) and δg

+
q (Erb2) = −2Λ

−
q δg

−
q (Erb2). Since 4Λ

−
q Λ
+
q = 1, the two sets of conditions are the same and

it follows that any solution of Eq. (15) and one of Eq. (A.1) is also solution of the other.



D. d’Humières, I. Ginzburg / Computers and Mathematics with Applications 58 (2009) 823–840 835

When Λeoq 6= 1/4, the solutions of Eq. (22) are given by g±q (Er) = g±0qK
n, where n is the node index along the

direction Ecq, the g±0q are link-wise constants, and K is a root of k = (Λeoq − 1/4)(k − 1)
2 (or 4Λeoq (k − 1)

2
= (k + 1)2),

i.e., K = Kσ = (2
√
Λeoq − σ)/(2

√
Λeoq + σ) for σ = ±1. For these solutions, the right-hand side of Eq. (A.1) is equal to

(Λ±q (Kσ − 1)
2g±0q + (K

2
σ − 1)g

∓

0q/2)K
n−1
σ and is nonzero unless

√
Λ+q g+0q = σq

√
Λ−q g−0q with σq = −σq̄ = σ . This condition

being obtained independently for each Eq. (A.6), any solution of Eq. (15) and one of Eq. (A.1) is also solution of the other as
forΛeoq = 1/4.
It follows that the solution of the recurrence equation (22) for given values of δg+q at boundary points Erb1 and Erb2 , also

steady solution of the evolution equation (3), hence (A.6), is given by:

δg+q (Er) =
K n1 − K

−n
1

KNq1 − K
−Nq
1

δg+q (Erb2)+
K (Nq−n)1 − K−(Nq−n)1

KNq1 − K
−Nq
1

δg+q (Erb1), (A.7)

√
Λ−q

Λ+q
δg−q (Er) = δg

+

q (Er)+
2δg+q (Erb2)K

−n
1

KNq1 − K
−Nq
1

−
2δg+q (Erb1)K

(Nq−n)
1

KNq1 − K
−Nq
1

, (A.8)

where K1 is the value of Kσ for σ = 1 and Er = Erb1 + nEcq. Multiplying relation (A.8) byΛ
+
q /
√
Λeoq and since K1 is a function

ofΛeoq only, δg
−
q (Erb1) and δg

−
q (Erb2) are unique functions ofΛ

+
q δg

+
q (Erb1),Λ

+
q δg

+
q (Erb2), andΛ

eo
q (for Nq � 1, the influence on

Erb1 of Erb2 can be neglected and conversely). The closure relations of the boundary schemes set two boundary values, here
δg+q (Erb1) and δg

+
q (Erb2).

Note that here K does not depend on Ecq. This is not the case when one looks for solutions fq(Er) ∼ exp(Ek · Er), as in the
general Knudsen problem, unless Ek is aligned along one of the main axes, as in the Knudsen layer studied in Ref. [36].

Appendix B. Solutions of the steady recurrence equations

Assuming that the transforms of φ(Er) by the link-wise finite-difference operators ∆̄q and ∆2q have infinite Taylor
expansions:

∆̄qφ =
∑
k≥1

∂2k−1q φ

(2k− 1)!
, ∆2qφ = 2

∑
k≥1

∂2kq φ

(2k)!
, (B.1)

∂kqφ = (Ecq · ∇)
kφ, ∀ k ≥ 1, (B.2)

the solutions of equations (17) can be written

γq(φ) =
∑
k≥1

a2k−1∂2k−1q φ

(2k− 1)!
, Γq(φ) =

∑
k≥1

a2k∂2kq φ

(2k)!
, (B.3)

where the coefficients {a2k−1, a2k} are given by

a1 = 1, a2 = 1, X = 2
(
Λeoq −

1
4

)
,

a2k−1 = 1+ X
k−1∑
n=1

(
2k− 1
2n− 1

)
a2n−1, k ≥ 2,

a2k = 1+ X
k−1∑
n=1

(
2k
2n

)
a2n, k ≥ 2. (B.4)

The coefficients a2k−1 and a2k are polynomials of degree k − 1 in X , hence they are related to the relaxation parameters
throughΛeoq only.
If the expansion (B.3) is substituted into Eqs. (A.3) and (A.4) for φ = e±q , it comes

2∆̄q
∑
k≥1

a2k∂2kq e
∓
q

(2k)!
= ∆2q

∑
k≥1

a2k−1∂2k−1q e∓q
(2k− 1)!

,

∆̄q

∑
k≥1

a2k−1∂2k−1q e±q
(2k− 1)!

= ∆2qe
±

q + 2Λ
eo
q ∆

2
q

∑
k≥1

a2k∂2kq e
±
q

(2k)!
. (B.5)
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Expanding the finite-difference link-wise operators using the series (B.1) and equating the coefficients of equal derivatives,
it comes:

a1 = 1,
k−1∑
n=1

(
2k− 1
2n

)
a2n =

k−1∑
n=1

(
2k− 1
2n− 1

)
a2n−1, k ≥ 2, (B.6)

k∑
n=1

(
2k

2n− 1

)
a2n−1 = 2+ (2X + 1)

k−1∑
n=1

(
2k
2n

)
a2n, k ≥ 2. (B.7)

Relations (B.6) and (B.7) have also been obtained from an infinite steady Chapman–Enskog expansion in Ref. [41]. This
confirms, with the following proof, that the series (B.3), with (B.4), and the steady form of the Chapman–Enskog expansion
give equivalent bulk solutions.
Let us now prove that the solution of the recurrence equations (15) given by (B.3) with (B.4) is also solution of Eq. (A.1),

i.e., the values of the coefficients a2k−1 and a2k computed from relations (B.4) or from relations (B.6) and (B.7) are the same.
First, let us assume that the coefficients a2n−1 and a2n given by Eq. (B.4) satisfy relation (B.6) for 1 ≤ n ≤ k− 1. Inserting

Eq. (B.4) for a2k−1 into the RHS of Eq. (B.6) gives:
k∑
n=1

(
2k+ 1
2n− 1

)
a2n−1 =

k∑
n=1

(
2k+ 1
2n− 1

)
+ X

k∑
n=2

((
2k+ 1
2n− 1

) n−1∑
l=1

(
2n− 1
2l− 1

)
a2l−1

)

=

k∑
n=1

(
2k+ 1
2n− 1

)
+ X

k−1∑
l=1

(
k∑

n=l+1

(
2k+ 1
2n− 1

)(
2n− 1
2l

))
a2l

=

k∑
n=1

(
2k+ 1
2n

)
+ X

k∑
n=2

((
2k+ 1
2n

) n−1∑
l=1

(
2n
2l

)
a2l

)

=

k∑
n=1

(
2k+ 1
2n

)
a2n, (B.8)

where the second line is derived from the first one by using Eq. (B.6) for n = {2, . . . , k} and rearranging the summations.
Using

k∑
n=l+1

(
2k+ 1
2n− 1

)(
2n− 1
2l

)
=

k∑
n=l+1

(
2k+ 1

2(k+ l− n+ 1)− 1

)(
2(k+ l− n+ 1)− 1

2l

)

=

k∑
n=l+1

(
2k+ 1
2n

)(
2n
2l

)
, (B.9)

in the second line gives the third one after rearranging the summations, then the last line using Eq. (B.4) for a2k.
Then, if the coefficients a2n−1 and a2n given by Eq. (B.4) satisfy relation (B.6) for 1 ≤ n ≤ k − 1, this is also true for

1 ≤ n ≤ k. Since a1 = a2 = 1, a2n−1 and a2n satisfy relation (B.6) for 1 ≤ n ≤ k − 1 with k = 2, then with k = 3, and, by
induction, for all the values of k.
Let us nowassume that the coefficients a2n−1 and a2n given by Eq. (B.4) satisfy relation (B.7) for respectively 1 ≤ n ≤ k−1

and 1 ≤ n ≤ k− 2. Inserting Eq. (B.4) for a2k−1 into the LHS of (B.7) gives
k∑
n=1

(
2k

2n− 1

)
a2n−1 =

k∑
n=1

(
2k

2n− 1

)
+ X

k∑
n=2

(
2k

2n− 1

)(n−1∑
l=1

(
2n− 1
2l− 1

)
a2l−1

)

=

k∑
n=1

(
2k

2n− 1

)
+ X

k−1∑
l=1

(
k∑

n=l+1

(
2k

2n− 1

)(
2n− 1
2l− 1

))
a2l−1

=

k∑
n=1

(
2k

2n− 1

)
+ X

k−1∑
l=1

(
k−1∑
n=l

(
2k
2n

)(
2n
2l− 1

))
a2l−1

= 2+ (2X + 1)

((
2k
2

)
+

k−1∑
n=2

(
2k
2n

)(
1+ X

n−1∑
l=1

(
2n
2l

)
a2l

))

= 2+ (2X + 1)
k−1∑
n=1

(
2k
2n

)
a2n, (B.10)
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where the third line is derived from the second one by using
k−1∑
n=l+1

(
2k

2n− 1

)(
2n− 1
2l− 1

)
=

k−1∑
n=l+1

(
2k

2(k+ l− n)− 1

)(
2(k+ l− n)− 1

2l− 1

)

=

k−1∑
n=l+1

(
2k
2n

)(
2n
2l− 1

)
. (B.11)

Rearranging the summations in the third line, with (B.7) for n = {2, . . . , k−1} and
∑k
n=1

(
2k
2n−1

)
= 2+

∑k−1
n=1

(
2k
2n

)
= 22k−1,

gives the fourth line, then the last line using Eq. (B.4) for a2k.
Then, if the coefficients a2n−1 and a2n given by Eq. (B.4) satisfy relation (B.7) for respectively 1 ≤ n ≤ k − 1 and

1 ≤ n ≤ k − 2, this is also true for respectively 1 ≤ n ≤ k and 1 ≤ n ≤ k − 1. Since a1 = a2 = 1 and a3 = 1 + 3X , the
coefficients a2n−1 and a2n given by Eq. (B.4) satisfy relation (B.7) for respectively 1 ≤ n ≤ k − 1 and 1 ≤ n ≤ k − 2 with
k = 3, then with k = 4, and by induction for all the values of k.

Appendix C. MRT-L-model

Let us combine the link-wise anti-symmetric vectors and theMRT polynomial symmetric vectors (MRT-L-operator in [30,
33]). Denoting {v+ (i)} the N+ = 1 + Q/2 vectors of the symmetric part of the MRT-L-basis and {λ+ (i)} the corresponding
eigenvalues, the evolution equation (3) remains valid with the following changes:

n+q = (f
+

q − e
+

q ) =

N+∑
i=1

n+ (i)q , n+ (i)q =
(n+ · v+ (i))
‖v+ (i)‖2

v+ (i)q ,

g+q =
N+∑
i=1

g+ (i)q , g+ (i)q = λ+ (i)n+ (i)q . (C.1)

For the MRT-L-operators, the relations (4) and (5) take respectively the form

fq(Er, t) =

[
e+q + e

−

q −

N+∑
i=1

(
1
2
+Λ+ (i)

)
g+ (i)q −

(
1
2
+Λ−q

)
g−q

]
(Er, t),

f̃q(Er, t) =

[
e+q + e

−

q +

N+∑
i=1

(
1
2
−Λ+ (i)

)
g+ (i)q +

(
1
2
−Λ−q

)
g−q

]
(Er, t),

Λ+ (i) = −

(
1
2
+

1
λ+ (i)

)
> 0, Λ−q = −

(
1
2
+
1
λ−q

)
> 0, ∀ q, ∀ i. (C.2)

The MRT-L-operator has at most (Q − 1)2/4 distinct ‘‘magic’’ valuesΛeo (i)q :

Λeo (i)q = Λ+ (i)Λ−q , Λeo (i)q > 0, q = 1, . . . ,Q − 1, i = 1, . . . ,N+, (C.3)

all of them being available for the AADE. The eigenvalues related to the conserved ‘‘moments’’, such as the density and
momentum, are not relevant and can take any values in the MRT-basis. Taking λ−q = λ

−, ∀ q, it follows that the evolution
equation (C.1) is equivalent to the usual MRT models with one relaxation rate λ− for all anti-symmetric non-conserved
modes. Eqs. (11) and (14) become, respectively:[

∆2qe
+

q + 2∆̄qe
−

q −

N+∑
i=1

(
1
2
+Λ+ (i)

)
∆2qg

+ (i)
q − 2

(
1
2
+Λ−q

)
∆̄qg−q

]
(Er) = 2g+q (Er),[

∆2qe
−

q + 2∆̄qe
+

q −

(
1
2
+Λ−q

)
∆2qg

−

q − 2
N+∑
i=1

(
1
2
+Λ+ (i)

)
∆̄qg+ (i)q

]
(Er) = 2g−q (Er). (C.4)

and [
∆2qe

+

q − 2∆̄qe
−

q +

N+∑
i=1

(
1
2
−Λ+ (i)

)
∆2qg

+ (i)
q − 2

(
1
2
−Λ−q

)
∆̄qg−q

]
(Er) = −2g+q (Er),[

∆2qe
−

q − 2∆̄qe
+

q +

(
1
2
−Λ−q

)
∆2qg

−

q − 2
N+∑
i=1

(
1
2
−Λ+ (i)

)
∆̄qg+ (i)q

]
(Er) = −2g−q (Er). (C.5)
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Again, splitting the four equations (C.4) and (C.5) into two pairs: one with the ‘‘upper’’ superscript and one with the ‘‘lower’’
superscript, and eliminating ∆̄qg−q and ∆̄qg

+ (k)
q from respectively the first and second pairs yields:

g+q (Er) =

[
∆̄qe−q −Λ

−

q ∆
2
qe
+

q +

N+∑
i=1

(
Λeo (i)q −

1
4

)
∆2qg

+ (i)
q

]
(Er), (C.6)

g−q (Er) =

[
∆̄qe+q −Λ

+ (k)∆2qe
−

q +Λ
+ (k)∆̄qg+q −

N+∑
i=1

Λ+ (i)∆̄qg+ (i)q

]
(Er)+

(
Λeo (k)q −

1
4

)
∆2qg

−

q (Er),

k = 1, . . . ,N+. (C.7)

The last equation reduces to ‘‘lower’’ Eq. (15) for the TRT-operator withΛ+ (i) ≡ Λe, ∀ i. The sum of relations (C.7) for all k,
divided by N+, is:

g−q (Er) =

[
∆̄qe+q − Λ̄

+∆2qe
−

q + Λ̄
+∆̄qg+q −

N+∑
i=1

Λ+ (i)∆̄qg+ (i)q

]
(Er)+

(
Λ̄eoq −

1
4

)
∆2qg

−

q (Er),

Λ̄+ =
1
N+

N+∑
k=1

Λ+ (k), Λ̄eoq =
1
N+

N+∑
k=1

Λeo (k)q = Λ̄+Λ−q . (C.8)

The role of terms δg±q does not change compared to the TRT model and they will be omitted in the sequel in order to
keep the algebra as simple as possible. Thus we look for solutions in the form

g−q (Er) = γq(e
+)− 2Λ̄+Γq(e−),

g+q (Er) = γq(e
−)− 2Λ−q Γq(e

+),

γq(e−) =
N+∑
i=1

γ (i)q (e
−), γ (i)q (e

−) =
(γ (e−) · v+ (i))
‖v+ (i)‖2

v+ (i)q ,

Γq(e+) =
N+∑
i=1

Γ (i)
q (e

+), Γ (i)
q (e

+) =
(Γ (e+) · v+ (i))
‖v+ (i)‖2

v+ (i)q ,

for i = 1, . . . ,N+. (C.9)

In contrast with solutions (15), the link-wise components γq and Γq depend now on the whole equilibrium vectors e+ and
e−, since the MRT-collision ‘‘couples’’ the symmetric link components. Eqs. (C.6)–(C.8) yield the recurrence relations:

γq(e−) = ∆̄qe−q +
N+∑
i=1

(
Λeo (i)q −

1
4

)
∆2qγ

(i)
q (e

−),

2Γq(e+) = ∆2qe
+

q + 2
N+∑
i=1

(
Λeo (i)q −

1
4

)
∆2qΓ

(i)
q (e

+),

γq(e+) = ∆̄qe+q − 2Λ̄
eo
q ∆̄qΓq(e

+)+ 2
N+∑
i=1

Λeo (i)q ∆̄qΓ
(i)
q (e

+)+

(
Λ̄eoq −

1
4

)
∆2qγq(e

+),

2Γq(e−) = ∆2qe
−

q − ∆̄qγq(e
−)+

1
Λ̄eoq

N+∑
i=1

Λeo (i)q ∆̄qγ
(i)
q (e

−)+ 2
(
Λ̄eoq −

1
4

)
∆2qΓq(e

−). (C.10)

‘‘Mixed’’ recurrence equations similar to Eq. (A.1):[
∆2qe

+

q −

N+∑
i=1

Λ+ (i)∆2qg
+ (i)
q − ∆̄qg−q

]
(Er) = 0. (C.11)

[
∆2qe

−

q −Λ
−

q ∆
2
qg
−

q − ∆̄qg
+

q

]
(Er) = 0, (C.12)

come from the sum of Eqs. (C.4) and (C.5) or, for Eq. (C.12), from the difference between any pair of relations (C.7). Using
relations (C.9) the microscopic conservation relations (7) become:

Q−1∑
q=1

γq(e−)− 2
Q−1∑
q=1

Λ−q Γq(e
+) = M(Er),
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Q−1∑
q=1

γq(e+)Ecq − 2
Q−1∑
q=1

Λ̄+Γq(e−)Ecq = EF(Er). (C.13)

Expanding again the solution for γq(e∓) and Γq(e±) around the equilibrium, and substituting the projections γ
(i)
q (e−)

and Γ (i)
q (e+) given in (C.9), one can derive the solutions for the coefficients of the series, which depend now on the choice of

the basis vectors {v+ (i)}. Dropping the third and higher orders in Eqs. (C.10) (they correspond then to k = 1 in series (B.3)),
the solution is:

γq
[1](e−) = ∆̄qe−q , γq

[1](e+) = ∆̄qe+q , Γq
[1](e+) =

1
2
∆2qe

+

q ,

−2Λ̄+Γq[1](e−) = −Λ̄+∆2qe
−

q + Λ̄
+∆̄qγq

[1](e−)−
N+∑
i=1

Λ+ (i)∆̄qγ
(i)
q
[1]
(e−)

=
1
2
∆2qe

−

q +

N+∑
i=1

∆̄q(∆̄e− · v+ (i))
λ+ (i)‖v+ (i)‖2

v+ (i)q , (C.14)

where ∆̄e− = (∆̄qe−q ) and the first relation has been injected into the last one as: ∆̄qγq
[1](e−) = ∆̄q∆̄qe−q = ∆2qe

−
q +

∆2q∆
2
qe
−
q /4, and the double Laplacian neglected. The second-order solution (C.9) with (C.14) could have also been obtained

by a steady Chapman–Enskog expansion performed in the MRT-L-basis.
The recurrence equations (C.10) or (C.11) and (C.12) confirm that the bulk solution has the form (C.9) where all the

components γq(e∓) and Γq(e±) depend on the eigenvalues only via the combinations Λ
eo (i)
q . The analysis of the exact

conservation constraints (C.13) and boundary closure relations follow the same lines as for the link-wise operators. The
higher-order truncated errors are rescaled properly on a given grid provided that all the collision numbersΛeo (i)q , then their
mean values Λ̄eoq , are kept constant. Under these conditions, the closure relation (37) of the bounce-back and the closure
relation (50) of the anti-bounce-back keep their parametrization properties. This can be proven by replacing 2ΛeoΓq(Λej?q)
in relation (20) with 2Λ̄eoq Γq(Λej

?
q), for Stokes solution, and similarly for 2ΛeoΓq(j

?
q
′) in relation (45), for Navier–Stokes

solution. Then Λeγq is replaced with
∑N+
i=1Λ

+ (i)γ
(i)
q and ΛeΓq(e−q ) with Λ̄

+Γq(e−) for the anti-bounce-back closure
relations (50). Finally, the sufficient conditions of Ref. [35] on the coefficients of the boundary schemes, derived for the
TRT-operator, are valid for the MRT- and MRT-L-operators, replacingΛo withΛ−q , if necessary. Altogether, the macroscopic
dimensionless solutions on a given mesh, obtained with properly parametrized boundary schemes, are controlled by the
physical dimensionless numbers when all the combinationsΛeo (i)q are kept constant.
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