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a b s t r a c t

We produce an explicit parameterization of well-rounded sublattices of the hexagonal
lattice in the plane, splitting them into similarity classes. We use this parameterization to
study the number, the greatestminimal norm, and the highest signal-to-noise ratio ofwell-
rounded sublattices of the hexagonal lattice of a fixed index. This investigation parallels
earlier work by Bernstein, Sloane, and Wright where similar questions were addressed on
the space of all sublattices of the hexagonal lattice. Our restriction is motivated by the
importance of well-rounded lattices for discrete optimization problems. Finally, we also
discuss the existence of a natural combinatorial structure on the set of similarity classes of
well-rounded sublattices of the hexagonal lattice, induced by the action of a certain matrix
monoid.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we will write Λh for the hexagonal lattice in R2:

Λh :=

1 −
1
2

0

√
3
2

 Z2, (1.1)

which is routinely identified with the ring of Eisenstein integers Z[ω], where ω = e
2π i
3 . This lattice has many important

properties, in particular it solves a variety of classical discrete optimization problems in the plane, such as circle packing
and covering problems, kissing number problem, and quantizer problem (see [5] for a detailed account). Not surprisingly,
the properties and structure of Λh have been extensively studied for their own sake, as well as for the benefit of many
applications arising in engineering and digital communications problems. In particular, a detailed analysis of distribution
and optimization properties of sublattices of Λh has been carried out by Bernstein, Sloane, andWright in [3]. It is the goal of
this note to continue this investigation, concentrating on the more special class of well-rounded (from now on abbreviated
as WR) sublattices of Λh.

Given a lattice Γ = AZ2
⊂ R2, where A is a basis matrix, we define its determinant to be det(Γ ) = | det(A)|, which does

not depend on the choice of a basis, and itsminimum (orminimal norm) to be
|Γ | = min{‖y‖2

: y ∈ Γ \ {0}},
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where ‖ ‖ stands for the usual Euclidean norm. Then each x ∈ Γ such that ‖x‖2
= |Γ | is called a minimal vector, and the

set of minimal vectors of Γ is denoted by S(Γ ). A lattice Γ ⊂ R2 is called WR if there exists x, y ∈ S(Γ ) which form a
basis for Γ , in which case we call x, y a minimal basis. This minimal basis is not unique, but it is always possible to select a
minimal basis x, y for a WR lattice Γ so that the angle θ between these two vectors lies in the interval [π/3, π/2], and any
value of the angle in this interval is possible. From now on when we talk about a minimal basis for aWR lattice in the plane,
we will always mean such a choice. Then the angle between minimal basis vectors is an invariant of the lattice, and we call
it the angle of the lattice Γ , denoted θ(Γ ); in other words, if x, y is any minimal basis for Γ and γ is the angle between x
and y, then γ = θ(Γ ) (see [8] for details and proofs of the basic properties of WR lattices in R2). WR lattices are important
in coding theory [1] and discrete optimization problems [10]; they also come up in the context of some number theoretic
problems, such as Minkowski’s conjecture [11] and the linear Diophantine problem of Frobenius [9]. The distribution of WR
sublattices of Z2 has been studied in [7,6].

In [3], the authors consider sublattices of Λh of fixed index J ≥ 2, counting their number (up to similarity—to be defined
below), and asking which of them have the largest minimum and signal-to-noise ratio, abbreviated SNR (to be defined in
(1.9).) They provide only a partial answer for these last two questions, proving that both of these quantities are maximized
by an ideal sublattice (i.e., a sublattice coming from an ideal in the ring of Eisenstein integers) whenever there exists one
of index J . However ideal sublattices, which are a special case of WR sublattices of Λh, do not exist for all possible values
of the index, and the authors in [3] remark that ‘‘for other values of the index there does not seem to be any general rule
to identify which sublattices are best’’. This motivates a closer investigation of WR sublattices of Λh, which, as we show,
exist for more values of the index than ideal sublattices. In this paper we discuss WR sublattices of Λh, giving an explicit
description and parameterization for all of them. We then use this parameterization to study their properties with a view
toward the discrete optimization questions analogous to those asked in [3].

In order to state our results the notion of similarity of lattices is needed. Two lattices Γ1, Γ2 ⊂ R2 are called similar,
denoted Γ1 ∼ Γ2, if there exists a nonzero real number α and a 2 × 2 real orthogonal matrix A such that Γ2 = αAΓ1.
Similarity is easily seen to be an equivalence relation, andwe refer to the equivalence classes under this relation as similarity
classes of lattices. WR lattices can only be similar to WR lattices, hence it makes sense to talk about similarity classes of WR
lattices. In fact, it is easy to notice that two WR lattices Γ1, Γ2 ⊂ R2 are similar if and only if θ(Γ1) = θ(Γ2) (see [8] for a
proof). Therefore the set of all similarity classes of WR lattices is bijectively parameterized by the set of all possible values
of the angle, which is the interval [π/3, π/2]. On the other hand, this parameterization becomes much less trivial if we talk
about similarity classes of WR sublattices of Λh. Let us write WR(Λh) for the set of all WR sublattices of Λh, and for each
Γ ∈ WR(Λh) define

⟨Γ ⟩ := {Ω ∈ WR(Λh) : Ω ∼ Γ } = {Ω ∈ WR(Λh) : θ(Ω) = θ(Γ )} , (1.2)
and let

SimWR(Λh) := {⟨Γ ⟩ : Γ ∈ WR(Λh)} .

Then it is clear that SimWR(Λh) is bijectively parameterized by some subset of the interval [π/3, π/2], and the natural
question is what is this subset? Our main result answers this question in detail.

Theorem 1.1. Let

Ch = {θ ∈ [π/3, π/2] : θ = θ(Γ ) for some Γ ∈ WR(Λh)}. (1.3)

Then θ ∈ Ch if and only if

cos θ =
1
2

×
|n2

+ 2mn − 2m2
|

n2 − mn + m2
(1.4)

for some m, n ∈ Z such that gcd(m, n) = 1, 1 ≤
m
n ≤ 2, and 3 - (m + n). For each θ ∈ Ch, let us write Ch(θ) for the

corresponding similarity class. Then Ch(θ) = ⟨Γθ ⟩, where

Γθ =
1
2

[
m + n m − 2n

(m − n)
√
3 m

√
3

]
Z2

⊆ Λh, (1.5)

for the integers m, n corresponding to θ as above, and for each Γ ∈ Ch(θ),

|Γ | ≥ |Γθ | = n2
− mn + m2, |Λh : Γ | =

det(Γ )

det(Λh)
≥ |Λh : Γθ | = (2m − n)n. (1.6)

In fact,

Ch(θ) =

√
kAΓθ ⊆ Λh : k ∈ Z>0, A ∈ O2(R)


, (1.7)

where all the possible values of k and the corresponding matrices A are explicitly described in Lemma 4.8, and all possible values
of |Λh : Γ | for Γ ∈ WR(Λh) are described in Corollary 4.9. Due to the properties (1.6) and (1.7), we call Γθ a minimal sublattice
in its similarity class.
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Remark 1.1. Notice in particular that π/3 ∈ Ch with the corresponding pair (m, n) = (1, 1), and Ch(π/3) = ⟨Λh⟩. As is
indicated in [3], ideal sublattices of Λh are precisely those that are similar to Λh, hence the ideal sublattices form only one
similarity class Ch(π/3) in the infinite set SimWR(Λh) of similarity classes of WR sublattices of Λh, parameterized by Ch. On
the other hand, π/2 ∉ Ch, since

n2
+ 2mn − 2m2

= (m + n)2 − 3m2
≠ 0,

as 3 - (m + n). This is the complete opposite of the situation for WR sublattices of Z2 (identified with the ring of Gaussian
integers), as studied in [7]: the similarity class of ideal sublattices of Z2 corresponds to the value of the angle π/2, while
there is no similarity class of WR sublattices of Z2 corresponding to π/3.

We prove Theorem 1.1 in Section 4. Our proof is based on a parameterization of lattices in question in terms of integral
solutions to a certain Diophantine equation, given by a ternary quadratic form. We produce such a parameterization of
solutions for a family of integral ternary quadratic form equations in Section 2 with the use of a simple geometric argument.
In Section 3 we show how such a particular quadratic form can be used to parameterize similarity classes of WR lattices by
means of looking at the corresponding values of the angle. However the parameterization of Section 3 does not necessarily
produce a minimal lattice for each similarity class. The main goal of Section 4 then is to go one step further and produce a
description of similarity classes in terms of minimal lattices.

In Section 5 we discuss the three optimization questions for WR sublattices of Λh, that are analogous to the questions
considered in [3]. These questions are concerned with counting the number, as well as maximizing the minimal norm and
signal-to-noise ratio of WR sublattices of Λh of a fixed index. Given a sublattice Γ ∈ WR(Λh), we can regard its nonzero
points as transmitterswhich interferewith the transmitter at the origin, and then a standardmeasure of the total interference
of Γ is given by EΓ (2), where

EΓ (s) =

−
x∈Γ \{0}

1
‖x‖2s

(1.8)

is the Epstein zeta-function of Γ , and the signal-to-noise ratio of Γ is defined by

SNR(Γ ) = 10 log10
1

9EΓ (2)
, (1.9)

as in [3]. To maximize SNR(Γ ) on the set of all WR sublattices of Λh of a fixed index J is the same as to minimize EΓ (2). In
particular, we show (Lemma 5.2 below) that SNR(Γ ) is maximized by the same sublattice of fixed index J that maximizes
|Γ |, and vice versa. This is not always so for non-WR sublattices of Λh, as demonstrated in [3].

Finally, in Section 6 we discuss a combinatorial structure on the set of all similarity classes of WR sublattices of Λh,
induced by the action of a certain submonoid of GL3(Z).

2. A Diophantine equation

In this section we use a simple geometric idea to construct an explicit parameterization of integral zeros of a certain
integral ternary quadratic form. We later use this parameterization to prove Theorem 1.1.

Lemma 2.1. Consider the Diophantine equation

αx2 + βxy + γ y2 = δz2, (2.1)

where α, β, γ , δ ∈ Z with β2
≠ 4αγ and δ ≠ 0. Then either this equation has no integral solutions with z ≠ 0, or all such

solutions (x, y, z) of (2.1) are rational multiples of

x = γ n(an − 2bm) − (αa + βb)m2,

y = αm(bm − 2an) − (γ b + βa)n2,

z = ±c(αm2
+ βmn + γ n2),

(2.2)

where m, n ∈ Z with gcd(m, n) = 1 and m ≥ 0; here (a, b, c) is any integral solution to (2.1) with c ≠ 0. In this later case,
every multiple of (2.2) is a solution to (2.1) by homogeneity of the Eq. (2.1).

Proof. Suppose there exists an integer solution (a, b, c) to (2.1) with c ≠ 0, and consider the rational curve

α

δ
u2

+
β

δ
uv +

γ

δ
v2

= 1, (2.3)

where u = x/z, v = y/z. The point (a/c, b/c) lies on this curve, and let (u, v) be any other rational point on the curve.
If v = b/c , then we must have α ≠ 0 and u = −a/c − bβ/cα, and so the point (u, v) corresponds to the solution
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(−aα − bβ, bα, cα) of Eq. (2.1), obtained from Eq. (2.2) when m = 1, n = 0. Otherwise, there exists a unique line with
rational slope through the points (a/c, b/c) and (u, v). Therefore there existsm/n ∈ Q such that

u =
m
n


v −

b
c


+

a
c
. (2.4)

Substituting (2.4) into (2.3) and solving for v, we obtain:

v =
αm(bm − 2an) − (γ b + βa)n2

c(αm2 + βmn + γ n2)
. (2.5)

Now substituting (2.5) into (2.4), we have:

u =
γ n(an − 2bm) − (αa + βb)m2

c(αm2 + βmn + γ n2)
. (2.6)

Asm, n range over all coprime pairs of integers, (2.5) and (2.6) give coordinates of all rational points (u, v) on the curve (2.3),
and therefore every integral solution (x, y, z) of (2.1) is a rational multiple of (2.2) for somem, n. �

Remark 2.1. Notice that for every two different relatively prime pairs of integers m1, n1 and m2, n2, the corresponding
solutions (x1, y1, z1) and (x2, y2, z2) of (2.1) as in (2.2) represent different projective points, i.e., there does not exist a
real number t such that (x1, y1, z1) = t(x2, y2, z2). Hence (2.2) describes all the distinct rational projective points on the
hypersurface given by the Eq. (2.1). We will be especially interested in primitive integral solutions to equations of the form
(2.1), i.e., representatives (x, y, z) ∈ Z3 of their projective points described by (2.2) with gcd(x, y, z) = 1.

3. The angle form

In this section we construct our first parameterization of WR sublattices of Λh.

Lemma 3.1. For every Γ ∈ WR(Λh),

cos θ(Γ ) =
p
q

≤
1
2
, sin θ(Γ ) =

r
q

√
3 ≥

√
3
2

, (3.1)

where the triple (p, r, q) ∈ Z3
≥0 is relatively prime.

Proof. Let Γ be a WR sublattice of Λh. Then there exist a, b, c, d ∈ Z such that

Γ =

1 −
1
2

0

√
3
2

 [
a c
b d

]
Z2

=

[
a − b/2 c − d/2
b
√
3/2 d

√
3/2

]
Z2,

where

x :=

[
a − b/2
b
√
3/2

]
, y :=

[
c − d/2
d
√
3/2

]
is a minimal basis for Γ . Hence

‖x‖2
= a2 − ab + b2 = c2 − cd + d2 = ‖y‖2,

and
1
2

≥ cos θ(Γ ) =
xty

‖x‖ ‖y‖
=

a(2c − d) + b(2d − c)
2(a2 − ab + b2)

∈ Q.

Then

sin θ(Γ ) =


1 − cos2 θ(Γ ) =


1 −

(2ac + 2bd − ad − bc)2

4(a2 − ab + b2)2

=
ad − bc

2(a2 − ab + b2)

√
3 ≥

√
3
2

.

Therefore (3.1) is satisfied with

p = a(2c − d) + b(2d − c), r = ad − bc, q = 2(a2 − ab + b2), (3.2)

which completes the proof of the lemma. �
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Fig. 1. Algorithm for x2 + 3y2 = z2 with the solution (−1, 0, 1).

Notice, on the other hand, that if the triple (p, r, q) is as in (3.1) for some Γ ∈ WR(Λh), then

p2 + 3r2 = q2, (3.3)

which is a particular instance of the Eq. (2.1) with α = δ = 1, β = 0, and γ = 3. We will refer to the binary integral
quadratic form p2 + 3r2 on the left hand side of (3.3) as the angle form because of the above connection of the integral
solutions of (3.3) to values of trigonometric functions of the angles of lattices from WR(Λh). In fact, Lemma 2.1 (see also
Fig. 1 above) guarantees that all projectively distinct integer solutions (p, r, q) ∈ Z3

>0 of (3.3) are given by

p = m2
− 3n2, r = 2mn, q = m2

+ 3n2, (3.4)

where m and n are coprime integers. If we only consider triples (p, r, q) as in (3.4) with
√
3 < m/n ≤ 3, then there exists

an angle θ ∈ [π/3, π/2) such that

cos θ =
p
q
, sin θ =

r
q

√
3, (3.5)

and vice versa. Then θ ∈ Ch defines the similarity class Ch(θ) of WR sublattices of Λh, as described in the statement of
Theorem 1.1. We will now construct a sublattice Ωθ of Λh in Ch(θ) using our parameterization.

Lemma 3.2. Let m and n be coprime positive integers with
√
3 < m

n ≤ 3, and let (p, r, q) be as in (3.4). Let θ be as in (3.5).
Then the lattice

Ωθ :=

[
m m

n
√
3 −n

√
3

]
Z2 (3.6)

is inWR(Λh), and has the following properties:

|Ωθ | = q, det(Ωθ ) = r
√
3, |Λh : Ωθ | = 2r, and Ωθ ∈ Ch(θ).

Hence Ch(θ) = ⟨Ωθ ⟩.

Proof. First notice that Ωθ , as defined in (3.6), is given by

Ωθ =

1 −
1
2

0

√
3
2

 [
m + n m − n
2n −2n

]
Z2,

hence it is a sublattice of Λh. Also

det(Ωθ ) = 2mn
√
3 = r

√
3,

and

|Λh : Ωθ | =
detΓ
detΛh

= 4mn = 2r.

Now let

x =

[
m

n
√
3

]
, y =

[
m

−n
√
3

]
,

and notice that ‖x‖ = ‖y‖ =
√
m2 + 3n2 =

√
q. Moreover, if ν is the angle between these two vectors, then

cos ν =
xty

‖x‖ ‖y‖
=

m2
− 3n2

q
=

p
q
,
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Fig. 2. Algorithm for x2 − xy + y2 = z2 with the solution (−1, 1, 1).

hence this angle is precisely θ . The condition
√
3 < m

n ≤ 3 implies that π/3 ≤ θ < π/2, meaning that for any s, t ∈ Z

‖sx + ty‖2
= s2‖x‖2

+ 2st‖x‖ ‖y‖ cos θ + t2‖y‖2
≥ ‖x‖2

= ‖y‖2,

hence x, y form a minimal basis for Ωθ . Therefore |Ωθ | = q, and Ωθ ∈ Ch(θ). �

Thus similarity classes of WR sublattices of Λh are in bijective correspondence with triples (p, r, q) as defined in (3.4)
satisfying

√
3 < m/n ≤ 3 and gcd(m, n) = 1. In other words, we obtained a parameterization of the set Ch by a subset of

projectively distinct zeros of the angle form. The construction of Lemma 3.2 however does not always produceminimalWR
sublattices of Λh in the sense of (1.6) of Theorem 1.1. For instance, Λh ∈ Ch(π/3), while

Ωπ/3 =

[
3 3

√
3 −

√
3

]
Z2

with |Ωπ/3| = 12 (recall that |Λh| = 1). Our next goal is to provide a parameterization of SimWR(Λh) byminimal sublattices,
which we do in the next section.

4. The norm form

The main goal of this section is to prove Theorem 1.1. We start by considering another particular instance of the Eq. (2.1)
with α = γ = δ = 1 and β = −1, which we write as

a2 − ab + b2 = c2, (4.1)

where the left hand side of (4.1) is the norm form of the hexagonal lattice with respect to the basis matrix


1 −

1
2

0

√
3
2


, which is

precisely the norm in the ring of Eisenstein integers Z[ω]. We will call every solution (a, b, c) ∈ Z3
≥0 \ {(0, 0, 0)} to (4.1) an

Eisenstein triple, and we call an Eisenstein triple (a, b, c) primitive if a ≤ b and gcd(a, b, c) = 1. Then we have the following
simple corollary of Lemma 2.1.

Corollary 4.1. All Eisenstein triples are positive rational multiples of

a = m(2n − m), b = n(2m − n), c = m2
− mn + n2, (4.2)

wherem, n ∈ Z>0 with gcd(m, n) = 1 and 1
2 ≤

m
n ≤ 2. Moreover, every integer triple (a, b, c) that is a positive rational multiple

of (4.2) for some m, n satisfying the above conditions is an Eisenstein triple by homogeneity of the Eq. (4.1).

Proof. We apply Lemma 2.1 to the Eq. (4.1) with the particular solution (−1, −1, 1) as in Fig. 2. To obtain the restrictions
on m and n, first notice that since (a, b, c) ∈ Z3

≥0 and m ≥ 0 we have 0 ≤ 2n − m, hence n ≥
m
2 ≥ 0 and m

n ≤ 2 (n > 0
since n = 0 would imply m = n = 0 ⇒ a = b = c = 0). Since b ≥ 0, we must have 0 ≤ 2m − n. Since n > 0, we have
m > 0, and hence 1

2 ≤
m
n . �

Here is a brief outline of our strategy for the remainder of this section. We will first use Corollary 4.1 to give a
parameterization of the primitive Eisenstein triples. We will then relate primitive Eisenstein triples to solutions of the
angle form equation, thus obtaining a new parameterization for the similarity classes of WR sublattices of Λh. This new
parameterization will then be used to produce minimal lattices for the similarity classes.

Sincewe are trying to produce primitive Eisenstein triples, wemay assume that integersm, n in (4.2) are relatively prime.
We start by proving that in this case gcd(a, b, c) = 1 or 3.
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Lemma 4.2. Let (a, b, c) be a triple of the form (4.2)with relatively prime m, n ∈ Z, then gcd(a, b, c) = 1 or 3. More precisely:

(1) gcd(a, b, c) = 3 if and only if 3 | (m + n).
(2) gcd(a, b, c) = 1 if and only if 3 - (m + n).

Proof. Suppose first thatm + n = 3k for some integer k, then

a = 3m(2k − m), b = 3n(2k − n), c = 3(km − mn + kn),

so 3 | gcd(a, b, c). Now suppose that there is some prime p dividing gcd(a,b,c)
3 , then p | m(2k − m), n(2k − n). Since

gcd(m, n) = 1, it must be that either p | m, 2k − n or p | 2k − m, n. Notice that n = 3k − m and 2k − n = m − k.
First suppose that p | m, 2k − n, then

p | m − (m − k) = k H⇒ p | 2k − (2k − n) = n,

which is a contradiction. Next suppose that p | 2k − m, n, then

p | (3k − m) − (2k − m) = k H⇒ p | 2k − (2k − m) = m,

which is a contradiction. Therefore gcd(a, b, c) = 3.
Conversely, if gcd(a, b, c) = 3, then

3 | a + b = −((m + n)2 − 6mn),

hence 3 | m + n.
Next assume that 3 - (m + n). Suppose that gcd(a, b, c) > 1, then there exists a prime p such that p | a, b. Suppose that

p | (m − n), then

p | (b + (m − n)2) = m2, p | (a + (m − n)2) = n2,

which contradicts the co-primality of m, n. Therefore p - (m − n). Moreover, p - m, n: if, for instance, p | m, then
p | (2nm − b) = n2, which is a contradiction; similarly, if p | n, then p must dividem. Now notice that

p | (b − a) = (m − n)(m + n),

and since p - (m − n), p must dividem + n. Therefore

p | (b + (m + n)2) = m(m + 4n), p | (a + (m + n)2) = n(n + 4m).

Since p - m, n, we find that p | (m + 4n), (n + 4m), and hence

p | ((n + 4m) − (m + 4n)) = 3(m − n).

Since p - (m − n), it must be the case that p = 3, contradicting our assumption that 3 - (m + n). Thus gcd(a, b, c) = 1.
Conversely, suppose gcd(a, b, c) = 1. Suppose 3 | (m + n). Then

3 | (m − n)(m + n) = b − a, 3 | −((m + n)2 − 6mn) = a + b,

and so

3 | (b − a) + (b + a) = 2b, 3 | (b − a) − (b + a) = −2a.

Hence 3 | a, b, which is a contradiction, so 3 - (m + n). This completes the proof of the lemma. �

Remark 4.1. A parameterization of primitive Eisenstein triples partially similar to our Corollary 4.1 and Lemma 4.2 (but
using different arguments) has been obtained in [2]. We include our results here since the details of this parameterization
are important to our description of similarity classes of WR sublattices of Λh.

We can now give a parameterization of primitive Eisenstein triples. Notice that for each primitive Eisenstein triple
(a, b, c), (b − a, b, c) is also a primitive Eisenstein triple, and (b − (b − a), b, c) = (a, b, c), i.e., the map taking (a, b, c) to
(b − a, b, c) is an involution on the set of primitive Eisenstein triples. We will call two triples like this associated, and write
⟨a, b, c⟩ for the associated pair. Then the set of all primitive Eisenstein triples can be split into a collection of associated pairs.

Lemma 4.3. A pair of vectors (a, b, c), (b − a, b, c) ∈ Z3
≥0 is an associated pair of primitive Eisenstein triples if and only if

precisely one of these triples is given by (4.2) for some integers m, n satisfying

(1) m, n > 0 and gcd(m, n) = 1
(2) 1 ≤

m
n ≤ 2

(3) 3 - (m + n).
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Proof. Suppose first that (a, b, c) is as in (4.2) withm, n satisfying the above-stated conditions (1), (2), (3). Then (a, b, c) is
an Eisenstein triple by Corollary 4.1, and gcd(a, b, c) = 1 by Lemma 4.2. Moreover,

a = 2mn − m2
≤ 2mn − n2

= b,

and hence (a, b, c) is a primitive Eisenstein triple.
Now assume that (a, b, c) is a primitive Eisenstein triple, then so is (b − a, b, c). Corollary 4.1 implies that

(a, b, c) =
1
g
(a′, b′, c ′),

where (a′, b′, c ′) is an Eisenstein triple given by (4.2) with m, n satisfying condition (1) and 1
2 ≤

m
n ≤ 2, and g =

gcd(a′, b′, c ′). First suppose that m
n < 1. This means that

a = 2mn − m2 > 2mn − n2
= b, (4.3)

which contradicts (a, b, c) being primitive. Therefore the integers m, n must also satisfy condition (2). Now Lemma 4.2
implies thatm, n satisfy condition (3) if and only if g = 1, and g = 3 otherwise. Suppose g = 3. Then it can be easily verified
that (a1, b1, c1) := (b − a, b, c) is given by (4.2) with positive integers

m1 =
m + n

3
, n1 =

2m − n
3

.

Suppose that an integer t | m1, n1. Then

t | m1 + n1 = m, 2m1 − 2n1 = n,

but gcd(m, n) = 1 ⇒ gcd(m1, n1) = 1, hence m1, n1 satisfy condition (1). By the same argument as in (4.3) with
a1, b1,m1, n1 instead of a, b,m, n we conclude that m1, n1 satisfy condition (2). Finally, suppose that 3 | (m1 + n1) = m.
Since 3 | (m + n), we conclude that 3 | n, meaning that m, n are not relatively prime, which is a contradiction. Therefore
m1, n1 satisfy condition (3) as well.

Now suppose that g = 1, then it is easy to verify that

(b − a, b, c) =
1
3
(a2, b2, c2),

where (a2, b2, c2) is given by (4.2) with positive integers

m2 = m + n, n2 = 2m − n.

By the argument in the proof of Lemma 2.1 (see also Remark 2.1), there cannot exist another pairm′

2, n
′

2 parameterizing the
triple (b−a, b, c). Hence we showed that precisely one of the triples in an associated pair is given by (4.2) with integersm, n
satisfying (1)–(3). This completes the proof of the lemma. �

Our next step is to relate primitive Eisenstein triples to solutions of the angle form Eq. (3.3). For each vector (x, y, z) ∈ R3,
we will write [x, y, z] to denote the corresponding projective point. First define

A = {[p, r, q] : (p, r, q)satisfying (3.4),
√
3 < m/n ≤ 3}

= {[p, r, q] : (p, r, q)satisfying (3.3),0 < p/q ≤ 1/2}. (4.4)

Next, for each associated pair ⟨a, b, c⟩ of primitive Eisenstein triples, let us write {a, b, c} for the associated pair of the
corresponding projective points, [a, b, c] and [b − a, b, c], and define E to be the set of all such associated pairs. Let
T : R3

→ R3 be a bijective linear map, given by the matrix
−2 1 0
0 1 0
0 0 2


.

Notice that for each {a, b, c} ∈ E with gcd(a, b, c) = 1

T (a, b, c) = (b − 2a, b, 2c), T (b − a, b, c) = (−(b − 2a), b, 2c),

and

(b − 2a)2 + 3b2 = (2c)2,

meaning that precisely one triple from the associated pair {a, b, c} maps to the triple (|b − 2a|, b, 2c) under T . Since a ≤ b
and gcd(a, b) = 1 (meaning in particular that 2a ≠ b),

0 < |b − 2a|2 = 4a(a − b) + b2 ≤ a(a − b) + b2 = c2,
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therefore 0 < |b − 2a|/2c ≤ 1/2, and so [|b − 2a|, b, 2c] ∈ A. Now consider the map T−1
: R3

→ R3, given by the inverse
matrix of T

−1/2 1/2 0
0 1 0
0 0 1/2


,

and notice that for every [p, r, q] ∈ A,

T−1(p, r, q) =


r − p
2

, r,
q
2


is a solution to (4.1). Moreover, if

p = m2
− 3n2, r = 2mn, q = m2

+ 3n2,

where m and n are coprime integers withm = αn for some real
√
3 < α ≤ 3, then

r − p = (2α − α2
+ 3)n2

≥ 0,

and (r − p)/2 ≤ r . Hence T−1(p, r, q) is a representative of a projective point defined by some primitive Eisenstein triple.
We have proved the following lemma.

Lemma 4.4. There is a bijective correspondence between the sets A and E as described above.

Now this bijection can be easily used to relate primitive Eisenstein triples to well-rounded sublattices of the hexagonal
lattice.

Corollary 4.5. Let Ch be as in (1.3), and for every θ ∈ Ch let Ch(θ) be the corresponding similarity class ofWR sublattices of Λh, as
in the statement of Theorem 1.1. Then for each Ch(θ) there exist exactly two primitive Eisenstein triples (a, b, c) and (b− a, b, c)
such that

cos θ =
|b − 2a|

2c
=

|b − 2(b − a)|
2c

. (4.5)

Conversely, for each primitive Eisenstein triple (a, b, c) there exists a unique similarity class Ch(θ) with θ ∈ Ch satisfying (4.5).

Proof. Notice that the quotients in (4.5) only depend on the associated pair of projective points {a, b, c}, not on actual
choice of representatives of these points. The statement of the corollary now follows by combining Lemma 4.4 with the
parameterization of Section 3. �

Next we use the parameterization given in Lemma 4.3 to construct a WR sublattice in each similarity class Ch(θ) with θ
as in (4.5).

Lemma 4.6. Let (a, b, c) be a primitive Eisenstein triple, and let m, n be the integers parameterizing either (a, b, c) or (b −

a, b, c), as defined in Lemma 4.3. Let θ be as given by (4.5). Define

Γθ =

1 −
1
2

0

√
3
2

 [
m m − n

m − n m

]
Z2

=
1
2

[
m + n m − 2n

(m − n)
√
3 m

√
3

]
Z2. (4.6)

Then Γθ ∈ WR(Λh) is such that Ch(θ) = ⟨Γθ ⟩. Moreover,

|Γθ | = c, detΓθ = b

√
3
2

, |Λh : Γθ | = b.

Proof. By definition (4.6), Γθ is a sublattice of Λh. First we see that

detΓθ = det
[

m m − n
m − n m

]
detΛh = n(2n − m)

√
3
2

= b

√
3
2

,

and so

|Λh : Γθ | =
detΓθ

detΛh
= b.

Now let

x =
1
2

[
m + n

(m − n)
√
3

]
, y = ±

1
2

[
m − 2n
m

√
3

]
,
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where the ± choice in the definition of y is such that xty > 0. Notice that ‖x‖2
= ‖y‖2

= m2
− mn + n2

= c . Moreover,
the cosine of the angle between these two vectors is equal to

xty
‖x‖ ‖y‖

= ±
2m2

− 2mn − n2

2c
=

|b − 2a|
2c

,

hence this angle is precisely θ . By construction, π/3 ≤ θ < π/2, which means that any integral linear combination of the
vectors x and y has norm at least as large as the norm of these vectors, hence they form a minimal basis for Γθ . This implies
that |Γθ | = c and Γθ ∈ Ch(θ), which means that Ch(θ) = ⟨Γθ ⟩. �

Nowwe show that the sublattice constructed in Lemma 4.6 is minimal in its similarity class, as defined in the statement
Theorem 1.1.

Lemma 4.7. Let Γθ be defined as in (4.6) and let Ω ∈ Ch(θ), then |Γθ | ≤ |Ω|. Hence Γθ is a minimal sublattice in the similarity
class Ch(θ).

Proof. Since Ω ∼ Γθ , there exists 0 ≠ α ∈ R and a 2 × 2 real orthogonal matrix A such that

Ω = αAΓθ .

Notice that α2c = |Ω| ∈ Z and α2b = |Λh : Ω| ∈ Z, hence α2
∈ Q; let us write α2

= p/q with gcd(p, q) = 1. Then q2 | b
and q2 | c , but gcd(b, c) = 1 and so α2

∈ Z≥0. Therefore |Γθ | ≤ α2
|Γθ | = |Ω|. �

Therefore for each θ ∈ Ch,

Ch(θ) =

√
kAΓθ ⊆ Λh : k ∈ Z>0, A ∈ O2(R)


. (4.7)

What can be said about k and A? We have the following lemma.

Lemma 4.8. Let

D = {1} ∪ {d = p1 · · · ps : p1, . . . , ps distinct primes ≡ 1(mod 3)},

and for each d ∈ D let

S(d) = {(p, r, q) : p2 + 3r2 = dq2}

as given by the parameterization of Lemma 2.1withα = 1, β = 0, γ = 3, δ = d. A latticeΓ ∈ Ch(θ) if and only if Γ =
√
kAΓθ

where one of the following two conditions hold:

(1) k = j2d for some j ∈ Z>0, d ∈ D, and

A =


p

q
√
d

−
r
√
3

q
√
d

r
√
3

q
√
d

p

q
√
d

 or


p

q
√
d

r
√
3

q
√
d

r
√
3

q
√
d

−
p

q
√
d


for some (p, r, q) ∈ S(d) with q | j.

(2) k = 3j2d for some j ∈ Z>0, d ∈ D, and

A =


r
√
3

q
√
d

−
p

q
√
d

p

q
√
d

r
√
3

q
√
d

 or


r
√
3

q
√
d

p

q
√
d

p

q
√
d

−
r
√
3

q
√
d


for some (p, r, q) ∈ S(d) with q | j.

Proof. Suppose Γ ∈ Ch(θ), so Γ =
√
kAΓθ for some k ∈ Z>0 and A ∈ O2(R). First notice that

A =

[
cos t − sin t
sin t cos t

]
or

[
cos t sin t
sin t − cos t

]
for some 0 ≤ t < 2π.

Therefore, either

Γ =

√
k

2

[
(m + n) cos t − (m − n)

√
3 sin t (m − 2n) cos t − m

√
3 sin t

(m + n) sin t + (m − n)
√
3 cos t (m − 2n) sin t + m

√
3 cos t

]
Z2,
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or

Γ =

√
k

2

[
(m + n) cos t + (m − n)

√
3 sin t (m − 2n) cos t + m

√
3 sin t

(m + n) sin t − (m − n)
√
3 cos t (m − 2n) sin t − m

√
3 cos t

]
Z2,

wherem, n are as in Lemma 4.6; in any case, Γ is a sublattice ofΛh =

1 −
1
2

0

√
3
2

 Z2. These observations imply the following

conditions on k and t:
√
k

(m + n) cos t ∓ (m − n)

√
3 sin t


∈ Z

√
k

(m − 2n) cos t ∓ m

√
3 sin t


∈ Z

√
k

(m + n) sin t ± (m − n)

√
3 cos t


∈

√
3Z

√
k

(m − 2n) sin t ± m

√
3 cos t


∈

√
3Z


. (4.8)

Let us write k = 3uj2d, where j, d ∈ Z>0 with d squarefree and not divisible by 3, and u = 0, 1. We consider two cases.
Case 1. Suppose first that u = 0. Then (4.8) implies that

cos t =
p

q
√
d
, sin t =

r

q
√
d

√
3 (4.9)

for some q | j.
Case 2. Suppose next that u = 1. Then (4.8) implies that

sin t =
p

q
√
d
, cos t =

r

q
√
d

√
3 (4.10)

for some q | j.
In both cases, the triple (p, r, q) must be a solution to the equation

p2 + 3r2 = dq2. (4.11)

Notice that (4.11) has integral solutions if and only if d is representable by the positive definite binary quadratic form x2+3y2,
in which case all such solutions are given by the parameterization of Lemma 2.1 with α = 1, β = 0, γ = 3, δ = d. Now, it is
a well known fact (see, for instance [4]) that d is representable by x2 +3y2 if and only if its prime factorization contains only
primes congruent to 1mod 6 (which, for primes, is the same as≡ 1(mod 3)); moreover, the number of such representations
for a given d is 2ω(d)+1, whereω(d) is thenumber of distinct primedivisors of d, which canbe obtained as an easy consequence
of unique factorization into irreducibles in the ring of Eisenstein integers. This completes the proof of the lemma. �

An immediate corollary of this result is an explicit description of the set of all possible index values of WR sublattices of
Λh.

Corollary 4.9. Let I be the set of all possible values of |Λh : Γ |, where Γ ∈ WR(Λh). Then

I =


3uj2d(2m − n)n : u = 0 or 1, j, d,m, n ∈ Z>0, d is 1 or a product of distinct primes

≡ 1(mod 3), gcd(m, n) = 1, 3 - (m + n), 1 ≤
m
n

≤ 2

. (4.12)

Proof. This follows immediately by combining Lemmas 4.6 and 4.8. �

Theorem 1.1 now follows by combining Lemmas 4.3, 4.6 and 4.7 with Corollary 4.5 (also notice references to Lemma 4.8
and Corollary 4.9 in the statement of Theorem 1.1).

5. Number, minima, and interference of WR sublattices of Λh

In this section we investigate three related questions, which are the analogues of Questions 1, 2, and 3 of [3] for well-
rounded sublattices of Λh. Let I be as in (4.12) and let J ∈ I.

Question 1. Up to similarity, how many WR sublattices of Λh of index J are there?

Question 2. Which WR sublattice of Λh of index J has the greatest minimum?

Question 3. Which WR sublattice of Λh of index J has the highest SNR?
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In what follows, we use our parameterization in Theorem 1.1 to develop algorithmic procedures and obtain experimental
data for Questions 1–3.Wewill write Γθ (m, n) for the lattice as in (4.6) with the specified choices ofm and n; we also define

A1(p, r, q, d) =


p

q
√
d

−
r
√
3

q
√
d

r
√
3

q
√
d

p

q
√
d

 , A2(p, r, q, d) =


p

q
√
d

r
√
3

q
√
d

r
√
3

q
√
d

−
p

q
√
d

 , (5.1)

and

B1(p, r, q, d) =


r
√
3

q
√
d

−
p

q
√
d

p

q
√
d

r
√
3

q
√
d

 , B2(p, r, q, d) =


r
√
3

q
√
d

p

q
√
d

p

q
√
d

−
r
√
3

q
√
d

 . (5.2)

Considering Question 1: Let N (J) be the number of WR sublattices of Λh of index J . Then N (J) is equal to the number of
distinct representations of J in the form

J = 3uj2d(2m − n)n, where u = 0 or 1, j, d,m, n ∈ Z>0,

d is 1 or a product of distinct primes ≡ 1(mod 3),

gcd(m, n) = 1, 3 - (m + n), 1 ≤
m
n

≤ 2. (5.3)

For a given J it is not difficult to count all such representations. For example, if J = 84 we have

84 = 30
× 22

× 1 × (2 × 5 − 3) × 3
= 31

× 22
× 7 × (2 × 1 − 1) × 1,

and so N (84) = 2, where the particular sublattices of Λh of index 84, up to similarity, are

2Γθ (5, 3), 2
√
21B1(2, 1, 1, 7)Λh,

corresponding to these representations of 84 respectively. As another example, consider J = 1925:

1925 = 30
× 52

× 1 × (2 × 9 − 7) × 7
= 30

× 12
× 7 × (2 × 18 − 11) × 11

= 30
× 12

× 35 × (2 × 8 − 5) × 5
= 30

× 12
× 55 × (2 × 6 − 5) × 5

= 30
× 52

× 77 × (2 × 1 − 1) × 1,

and so N (1925) = 5. The particular sublattices of Λh of index 1925, up to similarity, corresponding to the first two of these
representations are

5Γθ (9, 7),
√
7A1(2, 1, 1, 7)Γθ (18, 11),

while the other three are sublattices similar to Γθ (8, 5), Γθ (6, 5), and 5Λh, respectively.
Considering Question 2: Let Γ ∈ WR(Λh) be a lattice with |Λh : Γ | = J . Let θ ∈ Ch be such that Γ ∈ Ch(θ). Then, on the
one hand det(Γ ) = J det(Λh) = J

√
3/2, and on the other det(Γ ) = |Γ | sin θ by the parallelogram rule. Letm, n be coprime

positive integers with n ≤ m ≤ 2n and 3 - (m + n) which correspond to the angle θ under the parameterization of (1.4),
then

sin θ =

√
3(2m − n)n

2(n2 − nm + m2)
,

and so

|Γ | =
J(n2

− nm + m2)

(2m − n)n
∈ Z. (5.4)

Hence (2m − n)n must be a divisor of J(n2
− nm + m2), which implies that (2m − n)n | J (since by Lemma 4.3

gcd((n2
− nm + m2), (2m − n)n) = 1). Therefore our integersm, nmust satisfy the following conditions:

(1) m, n > 0 and gcd(m, n) = 1
(2) 1 ≤

m
n ≤ 2

(3) 3 - (m + n)
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Table 1
Examples of Γ ∈ WR(Λh) of fixed index J maximizing |Γ |.

J = |Λh : Γ | Maximal |Γ | Lattice Γ

8 7 Γθ (3, 2)
15 13 Γθ (4, 3)
21 19 Γθ (5, 3)
24 21

√
3B1(1, 1, 2, 1)Γθ (3, 2)

32 28 2Γθ (3, 2)
35 31 Γθ (6, 5)
40 37 Γθ (7, 4)
45 39

√
3B1(1, 1, 2, 1)Γθ (4, 3)

55 49 Γθ (8, 5)
60 52 2Γθ (4, 3)
65 61 Γθ (9, 5)

(4) (2m − n)n | J
(5) J(n2−nm+m2)

(2m−n)n is representable by the quadratic form x2 − xy + y2,

and, tomaximize |Γ |, among all suchm, nwewant to choose a pair that maximizes the quotient (n2
−nm+m2)/(2m−n)n.

We can writem = βn, where β ∈ [1, 2], and define

f (β) =
n2

− nm + m2

(2m − n)n
=

β2
− β + 1
2β − 1

,

which is a decreasing function on the interval [1, (1 +
√
3)/2) and an increasing function on the interval ((1 +

√
3)/2, 2].

In fact, f (β) reaches its maximum at the endpoints of the interval, β = 1, 2, which are achieved by the pairs (m, n) = (1, 1)
and (2, 1), respectively. The choice (m, n) = (2, 1), however, does not satisfy the condition (3) above, while the choice
(m, n) = (1, 1) corresponds to the similarity class Ch(π/3) = ⟨Λh⟩. This means that whenever J is representable by the
quadratic form x2 − xy + y2, then |Γ | reaches its maximum on WR(Λh) at an ideal sublattice of index J; this conclusion is
consistent with Theorem 3 of [3]. As indicated in (12) of [3], this happens for all values of J with prime factorization of the
form

J = 3k
∏

pi≡1(mod 3)

plii
∏

qj≡−1(mod 3)

q
2mj
j , (5.5)

where k, li,mj ∈ Z≥0. On the other hand, there exist WR sublattices of Λh of index J for many values of J not in the form
(5.5); in these situations, verifying conditions (1)–(5) above for every divisor of J presents a finite search algorithm for the
similarity class containing a WR sublattice Γ of Λh of index J with maximal |Γ |. The next lemma allows to eliminate some
of the values of the index J for which WR sublattices of Λh do not exist.

Lemma 5.1. Suppose that J ∈ Z>0 is not of the form (5.5), and satisfies one of the following:

1. J is a prime
2. J = pq, where p, q are odd primes with q > 3p
3. J = 2p, where p is an odd prime.

Then Λh does not have a WR sublattice of index J.

Proof. Suppose there exists Γ ∈ WR(Λh) with |Λh : Γ | = J , where J is not of the form (5.5). Then Γ ∈ ⟨Γθ ⟩ for some
Γθ � Λh as in Theorem 1.1, meaning that

J = k(2m − n)n

for somem, n, k ∈ Z>0 with gcd(m, n) = 1, n ≤ m ≤ 2n, 3 - (m + n), andm, n ≠ 1.
First suppose that J is a prime, then k = 1, n = J , andm =

J+1
2 (since n ≠ 1). In this case, however, J+1

2 < J , contradicting
the condition n ≤ m; hence this is impossible.

Next assume that J = pq, where p, q are odd primes with q > 3p. If k = p or q, then (2m − n)n is a prime, and so we are
back in the situation above. Then k = 1, n = p, and 2m−p = q, meaning thatm = (p+q)/2 > 2p = 2n, which contradicts
the conditionm ≤ 2n; hence this is impossible.

Finally, suppose that J = 2p, where p is an odd prime. If k = 2 or p, then (2m − n)n is a prime, and so we are back in the
situation above. Then k = 1, n = 2, and 2m − 2 = p, which is not possible since p is odd. �

Using Lemma5.1,we can immediately eliminatemanyof the small values of the index, such as J = 2, 5, 6, 10, 11, 14, 17, 22,
23, 26, 29, 33, 34, 38, 41, 46, 47, 53, 59, etc. In the Table 1, we exhibit a few examples we computed for some small values
of J not in the form (5.5), for which WR sublattices of Λh of index J exist.
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In fact, there exists an easy test to check our work: if Γ ∈ WR(Λh) with |Λh : Γ | = J and |Γ | = M , then Γ ∈ Ch(θ) with

cos θ =


4M2 − 3J2

2M
∈ Q. (5.6)

It is now easy to verify that for any value M of |Γ | larger than those in the Table 1, the expression in (5.6) would not be
rational.
Considering Question 3: As above, suppose that Γ ∈ Ch(θ) for some θ ∈ Ch is a lattice with |Λh : Γ | = J where J is fixed.
Recall that the total interference of Γ is given by EΓ (2), where EΓ (s) is as in (1.8), and SNR(Γ ) is defined in (1.9). Here
we show that Question 3 can be reduced to Question 2. Notice that this is not generally so for any (not necessarily WR)
sublattices of Λh, as indicated in [3].

Lemma 5.2. A WR sublattice Γ ⊆ Λh maximizes SNR(Γ ) among all WR sublattices of Λh of index J if and only if it maximizes
|Γ |.

Proof. LetM = |Γ |, and let QΓ (x, y) be the quadratic form of Γ corresponding to a minimal basis, then

QΓ (x, y) = M(x2 + y2 + 2xy cos θ).

The Epstein zeta-function of Γ is then given by

EΓ (s) =

−
x,y∈Z\{0}

QΓ (x, y)−s
=

1
Ms

gΓ (θ),

where gΓ (θ) =
∑

x,y∈Z\{0}
1

(x2+y2+2xy cos θ)s
. Then

d
d(cos θ)

gΓ (θ) =

−
x,y∈Z\{0}

2sxy
(x2 + y2 + 2xy cos θ)s+1

=

−
x,y∈Z>0


4sxy

(x2 + y2 + 2xy cos θ)s+1
−

4sxy
(x2 + y2 − 2xy cos θ)s+1


< 0,

meaning that gΓ (θ) is a decreasing function of cos θ for θ ∈ [π/3, π/2). Now cos θ is given by (5.6), and is easily seen to be
an increasing function ofM . Therefore for all real values of s > 1, EΓ (s) is a decreasing function ofM , in particular meaning
that the total interference of Γ is minimized (and hence SNR(Γ ) is maximized) if and only if |Γ | is maximized. �

Lemma 5.2 now implies that in order to find a WR sublattice of Λh of fixed index that maximizes SNR, we can follow the
algorithmic procedure described in our consideration of Question 2 above.

6. Combinatorial structure in the Eisenstein triples

As a part of the parameterization of similarity classes of WR sublattices of Z2 in [7], it has been shown that the set of
these similarity classes has the structure of a non-commutative monoid generated by an infinite family of matrices from
GL3(Z). The corresponding matrices can be characterized as words of a certain shape in three particular matrices that can
be used to generate all primitive Pythagorean triples from (3, 4, 5) by left multiplication. The existence of these generating
matrices for primitive Pythagorean triples has long been known (see [7] for details). In this section we will investigate a
similar generating family of matrices for primitive Eisenstein triples, and use them to explore the combinatorial structure
of the set of similarity classes of WR sublattices of Λh.

Let PE be the set of all primitive Eisenstein triples as defined in Section 4. Let also GE = ⟨U,M1,M2,M3⟩ be the non-
commutative monoid generated by the 3 × 3 matrices U,M1,M2,M3 ∈ GL3(Z), defined as follows:

U =


−1 1 0
0 1 0
0 0 1


, M1 =

3 −4 4
7 −7 8
6 −6 7


, M2 =


−4 3 4
−7 7 8
−6 6 7


, M3 =

1 3 4
0 7 8
0 6 7


.

Lemma 6.1. GE acts on the set PE by left multiplication:

M(a, b, c) = M

a
b
c


, (6.1)

for every M ∈ GE and (a, b, c) ∈ PE .



L. Fukshansky et al. / Discrete Mathematics 310 (2010) 3287–3302 3301

Fig. 3. Structure of the set PE induced by the action of the monoid G′

E .

Proof. A direct verification (for instance, using Maple or SAGE mathematical software packages) shows that for every
1 ≤ i ≤ 3 and (a, b, c) ∈ PE,Mi(a, b, c) ∈ PE ; also U(a, b, c) = (b − a, b, c) ∈ PE . Since GE is generated by U,M1,M2,M3,
it follows that for everyM ∈ GE and (a, b, c) ∈ PE , we haveM(a, b, c) ∈ PE . �

Remark 6.1. Computational evidence (using SAGE) suggests that perhaps all primitive Eisenstein triples can be obtained in
this way, starting from (0, 1, 1); in other words, it seems likely that for each (a, b, c) ∈ PE there exists M ∈ GE such that
M(0, 1, 1) = (a, b, c). One matrix from the monoid GE has previously been found in [2].

The action of Lemma 6.1 induces an action on the set of similarity classes of WR sublattices of Λh. The similarity classes
however are parameterized not by the set PE of primitive Eisenstein triples (a, b, c), but by the set of associated pairs of
these triples ⟨a, b, c⟩ as defined in Section 4 (see Lemma 4.3 and definition right before it); let us write PE for this set. Recall
that the elements of an associated pair are related by (b − a, b, c) = U(a, b, c). Hence we can think of the set PE as the
set PE modulo the equivalence relationship: (a′, b′, c ′) ∼ (a, b, c) when (a′, b′, c ′) = U(a, b, c). For each associated pair in
PE , let us call the triple with b > 2a the upper triple, denoted (a, b, c)u, and the one with b < 2a the lower triple, denoted
(a, b, c)l. Now let us write M4 = M1U,M5 = M2U and define a sub-semigroup of GE,G′

E = ⟨M1,M2,M3,M4,M5⟩. For each
M ∈ G′

E, ⟨a, b, c⟩ ∈ PE define

M⟨a, b, c⟩ = ⟨M(a, b, c)u⟩ , (6.2)

whereM(a, b, c)u is as in (6.1) for the vector corresponding to the upper triple of ⟨a, b, c⟩, and soM⟨a, b, c⟩ is the associated
pair of the triple corresponding to the vectorM(a, b, c)u in PE .

Lemma 6.2. G′

E acts on PE by M⟨a, b, c⟩ for every M ∈ G′

E, ⟨a, b, c⟩ ∈ PE .

Proof. This follows immediately by combining Lemma 6.1 with definition (6.2). �

Computational evidence (using SAGE) suggests that there are no relations between the generatorsM1, . . . ,M5 of G′

E , and
that every element of PE can be obtained from ⟨0, 1, 1⟩ by the action of some M ∈ G′

E . In fact, let γ1, γ2 be the larger and
the smaller roots of the polynomial 143t2 − 252t + 111, respectively, and for each (a, b, c)u ∈ PE with a > 0 define

(x, y, z) =


M−1

1 (a, b, c)u if γ1 < c/b
M−1

4 (a, b, c)u if 7/8 ≤ c/b < γ1

M−1
5 (a, b, c)u if γ2 < c/b < 7/8

M−1
2 (a, b, c)u if 13/15 ≤ c/b < γ2

M−1
3 (a, b, c)u if c/b < 13/15.

In each of these cases, computational evidence (using SAGE) suggests that (x, y, z) is a primitive upper Eisenstein triple with
z < c , meaning that PE is the orbit of ⟨0, 1, 1⟩ under the action of G′

E (and so PE is the orbit of (0, 1, 1) under the action of
GE). These observations conjecturally imply a nice combinatorial structure on the set PE (and hence on the set of similarity
classes of WR sublattices of Λh) of two quinary trees joint at the roots, as illustrated in Fig. 3.
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