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Abstract

In this paper, we will investigate the global existence of solutions for the one-dimensional compressible Navier–Stokes equations
when the density is in contact with vacuum continuously. More precisely, the viscosity coefficient is assumed to be a power function
of density, i.e., μ(ρ) = Aρθ , where A and θ are positive constants. New global existence result is established for 0 < θ < 1 when
the initial density appears vacuum in the interior of the gas, which is the novelty of the presentation.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we will study the free boundary problem of the one-dimensional compressible Navier–Stokes equa-
tions with density-dependent viscosity in the Eulerlian coordinates{

ρτ + (ρu)ξ = 0,

(ρu)τ + (
ρu2 + P(ρ)

)
ξ

= (
μ(ρ)uξ

)
ξ
, a(τ ) < ξ < b(τ), τ > 0,

(1.1)

with the initial data

(ρ,u)(ξ,0) = (
ρ0(ξ), u0(ξ)

)
, a = a(0) � ξ � b(0) = b, (1.2)

where ρ(ξ, τ ), u(ξ, τ ) and P(ρ) = Bργ denote the density, velocity, and pressure of the flows, respectively;
μ(ρ) = Aρθ is the viscosity coefficient. Without loss of generality we assume that A = B = 1. a(τ) (b(τ)) is the
free boundary defined by

a′(τ ) = u
(
a(τ), τ

)
, b′(τ ) = u

(
b(τ), τ

)
,
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and satisfied(−P(ρ) + μ(ρ)uξ

)
(ξ, τ ) = 0, ξ = a(τ), b(τ ). (1.3)

As it is known, a real gas is well approximated by an ideal gas within moderate temperature and density when the
conductivity k and viscosity μ are constants. However, the conductivity k and viscosity coefficient μ vary with the
temperature and the density at high temperature. There are extensive discussions and experimental evidence in [16]
and [17]. In mathematics, Hoff and Serre [12] showed the failure of the continuous dependence on the initial data
of solutions to the Navier–Stokes equations with vacuum and constant viscosity coefficient. T.P. Liu, Z. Xin and
T. Yang [11] pointed out the main reason came from the independence of the kinematic viscosity coefficient on the
density and proved that the system was local well-posedness when the viscosity coefficient depends on the density. On
the other hand, one can find the viscosity depends on the temperature if the Navier–Stokes equations can be derived
from the Boltzman equation by exploiting Chapaman–Buskog expansion up to the second-order. For isentropic flows,
however, the viscosity depends on the density.

In order to solve the free boundary problem (1.1)–(1.3) more conveniently, we introduce the Lagrangian coordinates
by transformation as in [1–10]

x =
ξ∫

a(τ)

ρ(z, τ ) dz, t = τ. (1.4)

Then the free boundaries ξ = a(τ) and ξ = b(τ) become x = 0 and x = ∫ b(τ)

a(τ)
ρ(z, τ ) dz = ∫ b

a
ρ0(z) dz by the con-

servation of mass, respectively. Without loss of generality we assume
∫ b

a
ρ0(z) dz = 1. Therefore, the system (1.1)

becomes in the Lagrangian coordinates{
ρt + ρ2ux = 0,

ut + P(ρ)x = (
μ(ρ)ρux

)
x
, 0 < x < 1, t > 0,

(1.5)

with boundary conditions instead of (1.3)(−P(ρ) + ρ1+θux

)
(d, t) = 0, d = 0,1, (1.6)

and the initial data

(ρ,u)(x,0) = (
ρ0(x), u0(x)

)
, 0 � x � 1. (1.7)

Thus the free boundary problem (1.1)–(1.3) becomes the mixed problem (1.5)–(1.7).
The existence and uniqueness of a generalized global-in-time solution for the initial boundary problem (1.5)–

(1.7) were studied by many authors. Among them, T.P. Liu, Z. Xin and T. Yang [11] obtained the local existence of
weak solutions to the Navier–Stokes equations when the initial density connects to vacuum with discontinuities, i.e.,
inf[0,1] ρ0(x) > 0. M. Okada, S̆. Matus̆u̇-Nec̆asová and T. Makino [6] proved the global existence of weak solutions
in the case of isentropic flow for 0 < θ < 1

3 . Following [6], T. Yang, Z. Yao and C.J. Zhu [9] obtained the global
existence result for 0 < θ < 1

2 . Recently, S. Jiang, Z. Xin and P. Zhang [5] improved the results in [6,9] to the case
0 < θ < 1. D.Y. Fang and T. Zhang [3] investigated the discontinuous solutions with the same scope of θ as in [5].

When the density connects to vacuum continuously, the boundary condition should be replaced by

ρ(0, t) = ρ(1, t) = 0. (1.8)

There are also many investigations on the problem (1.5), (1.7)–(1.8). For example, the authors in [1] and [2] gave the
global existence of weak solutions for 0 < θ < 2

9 and 0 < θ < 1
3 , respectively. D.Y. Fang and T. Zhang [4] generalized

the result to 0 < θ < 1
2 under some additional restrictions on the initial data. In addition, M. Okada [7] obtains the

global existence if 0 < θ < 1
4 and if one boundary is fixed and the other is free. The common of these papers is that

the initial density’s vacuum only appears on the boundary.
However, the initial density may vanish in the interior of the gas for more general realistic model. Obviously, this

generality is more delicate than the previous works [1,2,4,6,7,9] in which the initial density ρ0(x) has a positive lower
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bound or only degenerates on the boundary. To the best of our knowledge, there is no result on (local or global)
existence of weak solutions when the viscosity depends on density with vacuum in the interior of the gas. In addition,
there are also some relevant results when the viscosity μ is constant, see for example [13–15,18].

The main feature of this paper is the initial density is degenerate in the interior of the gas when the viscosity depends
on density, which is an important case from the physical point of view. Motivated by [1,2], we obtain the lower bound
of density dominated by the initial density. On the other hand, the density persists vacuum on the boundary for ever.
To achieve the aim, we establish some new and novel a priori estimates in Section 2. Moreover, the interval of θ

requested here is larger than that of previous works.
Throughout paper, we make the following assumptions on the initial data:

(H1) 0 < θ < 1 < γ .

(H2) ρ0(0) = ρ0(x0) = ρ0(1) = 0, ρ0(x) > 0, ∀x ∈ (0,1) \ (x0) for some x0 ∈ (0,1), (ρθ
0 )x(x) ∈ C[0,1].

(H3) u0(x) ∈ L∞[0,1].

Now we give the main result of this paper.

Theorem 1.1. Suppose the hypotheses of (H1)–(H3) are satisfied with the system (1.5), (1.7)–(1.8), then there exists
a global weak solution in the sense

C1ρ
k
0 (x) � ρ(x, t) � C2, (x, t) ∈ [0,1] × [0, T ], (1.9)

ρ(0, t) = ρ(1, t) = 0, (1.10)

ρ ∈ L∞([0,1] × [0, T ]) ∩ C
1
2
([0, T ];L2[0,1]), (1.11)

u ∈ L2([0, T ];L2[0,1]), (1.12)

ux ∈ L2([0, T ];L2([δ, x0 − δ] ∪ [x0 + δ,1 − δ])), (1.13)

ρ1+θux ∈ L2([0, T ];L2[0,1]), (1.14)

for any T > 0, k > max{ 2(1+θ)
1−θ

,1 + 2
1−θ

}, δ ∈ (0,1/2) and for some positive constants Ci (i = 1,2) depending on k,
and the following equations hold:

ρt + ρ2ux = 0, ρ(x,0) = ρ0(x), for a.e. x ∈ (0,1) and t � 0, (1.15)

and
T∫

0

1∫
0

(
uφt + (

P(ρ) − μρux

)
φx

)
dx dt +

1∫
0

u0(x)φ(x,0) dx = 0 (1.16)

for any φ(x, t) ∈ C∞
0 (Ω) with Ω = {(x, t): 0 � x � 1, 0 � t � T }.

Remark 1.1. We note that the set of initial data ρ0(x) satisfying all the assumptions in Theorem 1.1 contains a quite

general family of functions. For example, we can choose ρ0(x) = [x(x − x0)
2(1 − x)] 1

θ for some x0 ∈ (0,1).

In the next section, we will give the proof of Theorem 1.1. To get rid of the degeneracy of the initial density in the
interior of the gas, we will mollify the initial data and consider the corresponding approximation problem (2.9)–(2.11)
(see below). We establish a series of new a priori estimates for the approximation solution, a key one of among which
shows that the approximation density can be dominated by the approximation initial density. Then we will take limit
to the approximation solution and prove the limits satisfy (1.9)–(1.16).

2. Proof of Theorem 1.1

2.1. The approximation of the Navier–Stokes equations

For simplicity, we still denote by (ρ0(x), u0(x)) the extension of (ρ0(x), u0(x)) in R, i.e.,
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ρ0(x) :=
⎧⎨
⎩

ρ0(1), x > 1,

ρ0(x), x ∈ [0,1],
ρ0(0), x < 0,

u0(x) :=
{

u0(x), x ∈ [0,1],
0, otherwise.

Similar to [5], we define the approximate initial data

ρ0ε(x) = (
jε ∗ ρθ

0

) 1
θ (x) + ε,

u0ε(x) = (u0 ∗ jε)(x)
[
1 − ϕε(x) − ϕε(1 − x)

] + (u0 ∗ jε)(0)ϕε(x) + (u0 ∗ jε)(1)ϕε(1 − x)

+ (
ρ0ε(0)

)γ−θ−1
x∫

0

ϕε(y) dy − (
ρ0ε(1)

)γ−θ−1
1∫

x

ϕε(1 − y)dy, (2.1)

where 0 < ε < 1, jε(x) denotes the Friedrichs mollifier, and ϕε(x) = ϕ(x/ε) defined by ϕ(x) ∈ C∞
0 (R) satisfying

ϕ(x) = 1 when |x| < 1, and ϕ(x) = 0 when |x| > 2. Clearly, ρ0ε(x) ∈ C1+α[0,1], u0ε(x) ∈ C2+α[0,1] for any α ∈
(0,1). Moreover ρ0ε(x) and u0ε(x) are compatible with the boundary conditions (2.10) and satisfy∣∣u0ε(x)

∣∣∞ � C, (2.2)∣∣(ρθ
0ε(x)

)
x

∣∣∞ � C, (2.3)

for some positive constants C independent of ε. In addition, we have

ρ0ε(x) → ρ0(x), uniformly in [0,1], as ε → 0,

and

u0ε(x) → u0(x) in L2n(0,1). (2.4)

Indeed, by the definition of Friedrichs mollifier and noticing θ ∈ (0,1), we get

∣∣∣∣∣(ρ0ε(0)
)γ−θ−1

x∫
0

ϕε(y) dy

∣∣∣∣∣ = (
ρ0ε(0)

)γ−θ−1
ε

∣∣∣∣∣
x
ε∫

0

ϕ(z) dz

∣∣∣∣∣

= (
ρ0ε(0)

)γ−1
ε1−θ

(
ε

ρ0ε(0)

)θ
∣∣∣∣∣

x
ε∫

0

ϕ(z) dz

∣∣∣∣∣
� Cε1−θ → 0 (ε → 0). (2.5)

Similarly, we find

(
ρ0ε(1)

)γ−θ−1
1∫

x

ϕε(1 − y)dy → 0 (ε → 0). (2.6)

On the other hand, we obtain

∣∣(u0 ∗ jε)(0)
∣∣2n

1∫
0

ϕ2n
ε (x) dx � Cε → 0 (ε → 0), for all n ∈N . (2.7)

Similarly, we discover

∣∣(u0 ∗ jε)(1)
∣∣2n

1∫
0

ϕ2n
ε (1 − x)dx → 0 (ε → 0), for all n ∈N . (2.8)

Collecting (2.5)–(2.8) implies (2.4).
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We consider the following approximation Navier–Stokes equations:{
ρεt + ρ2

ε uεx = 0,

uεt + P(ρε)x = (
μ(ρε)ρεuεx

)
x
, 0 < x < 1, t > 0,

(2.9)

with the boundary conditions

ργ
ε (d, t) = ρ1+θ

ε uεx(d, t), d = 0,1, (2.10)

and the initial data

(ρε, uε)(x,0) = (
ρ0ε(x), u0ε(x)

)
, 0 < x < 1. (2.11)

For any θ ∈ (0,1), by the same argument as in [4], we can obtain a unique solution (ρε, uε) with ρε,ρεx, ρεt , ρεtx,

uε, uεx, uεt , uεxx ∈ Cβ,β/2(Ωt ) for some β ∈ (0,1) and with ρε > 0 in Ωt := (0,1) × (0, t).
In the sequel, the letter C(C(T )) will denote a generic positive constant independent of ε.

Lemma 2.1. One has the following equalities:

ρθ
ε (x, t) + θ

t∫
0

ργ
ε (x, s) ds = (

ρθ
0ε

)
(x) − θ

x∫
0

uε(y, t) dy + θ

x∫
0

u0ε(y) dy, (2.12)

[
ρθ

ε (x, t)
]
x

+ θ

t∫
0

(
ργ

ε

)
x
(x, s) ds = (

ρθ
0ε

)
x
(x) − θuε(x, t) + θu0ε(x), (2.13)

ρε(d, t) = ρ0ε(d)

(
1

(γ − θ)t + ρ
θ−γ

0ε (d)

) 1
γ−θ

, d = 0,1, (2.14)

for 0 � x � 1 and 0 � t � T .

Proof. The proofs of (2.12)–(2.14) can be found in [8]. �
In the following, we will give some a priori estimates for (ρε(x, t), uε(x, t)).

Lemma 2.2. There hold
1∫

0

(
u2

ε + ργ
ε

)
dx +

t∫
0

1∫
0

ρ1+θ
ε u2

εx dx ds � C, (2.15)

1∫
0

[(
ρθ

ε

)
x

]2n
(x, t) dx � C, (2.16)

1∫
0

u2n
ε dx + n(2n − 1)

t∫
0

1∫
0

u2n−2
ε ρ1+θ

ε u2
εx dx ds � C, (2.17)

for any ε ∈ (0,1), t ∈ [0, T ] and n ∈ N ,

Proof. There are detailed proofs of (2.15)–(2.17) in [5] and [8]. �
The following lemma gives the uniform upper bound of approximation density ρε .

Lemma 2.3. We have

ρε(x, t) � C, (x, t) ∈ [0,1] × [0, T ]. (2.18)
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Proof. From (2.12), we deduce that

ρθ
ε � ρθ

0ε − θ

x∫
0

uε(y, t) dy + θ

x∫
0

u0ε(y) dy.

Using Hölder’s inequality and noticing (2.2) and (2.15), we obtain

ρθ
ε � ρθ

0ε − θ

x∫
0

uε(y, t) dy + θ

x∫
0

|u0ε|dy

� ρθ
0ε + C

( 1∫
0

u2
ε(x, t) dx

) 1
2

+ C � C.

The lemma follows. �
The next lemma embodies some relation between the approximate density and velocity.

Lemma 2.4. For any ε0 > 0 and for any 0 < t � T , we have
t∫

0

∥∥ρε0
ε uε

∥∥∞ ds � C. (2.19)

Proof. We observe that there holds for any n ∈ N ,
t∫

0

∥∥ρε0
ε uε

∥∥∞ ds =
t∫

0

∥∥ρnε0
ε un

ε

∥∥ 1
n∞ ds. (2.20)

From the embedding theorem W 1,1([0,1]) ↪→ L∞([0,1]), we obtain

∥∥ρnε0
ε un

ε

∥∥∞ �
1∫

0

∣∣ρnε0
ε un

ε

∣∣dx +
1∫

0

∣∣(ρnε0
ε un

ε

)
x

∣∣dx

�
1∫

0

ρnε0
ε |uε|n dx + nε0

1∫
0

ρnε0−1
ε |ρεx ||uε|n dx + n

1∫
0

ρnε0
ε |uε|n−1|uεx |dx.

Using (2.17)–(2.18) and Cauchy–Schwartz inequality, we have

∥∥ρnε0
ε un

ε

∥∥∞ � 1

2

1∫
0

ρ2nε0
ε dx +

1∫
0

u2n
ε dx + nε0

2

1∫
0

ρ2(nε0−1)
ε ρ2

εx dx + n

2

1∫
0

ρ2nε0
ε u2(n−1)

ε u2
εx dx + C

� C + nε0

2

1∫
0

ρ2(nε0−1)
ε ρ2

εx dx + n

2

1∫
0

ρ2nε0
ε u2(n−1)

ε u2
εx dx. (2.21)

This leads to
t∫

0

∥∥ρε0
ε uε

∥∥∞ ds �
t∫

0

(
C + nε0

2

1∫
0

ρ2(nε0−1)
ε ρ2

εx dx + n

2

1∫
0

ρ2nε0
ε u2(n−1)

ε u2
εx dx

) 1
n

ds

� C + C

t∫ 1∫
ρ2(nε0−1)

ε ρ2
εx dx ds + C

t∫ 1∫
ρ2nε0

ε u2(n−1)
ε u2

εx dx ds, (2.22)
0 0 0 0
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where we used (2.20) and Young’s inequality. From Lemmas 2.2 and 2.3, we find

1∫
0

ρ2(nε0−1)
ε ρ2

εx dx � C,

t∫
0

1∫
0

ρ2nε0
ε u2(n−1)

ε u2
εx dx ds � C, (2.23)

since there exists n ∈ N , such that 2nε0 � 1+θ . Combing (2.22) and (2.23), we complete the proof of the lemma. �
Lemma 2.5. Let ε0 > 0 and n ∈ N such that θ + ε0

2n
� γ . Then for any 0 < t � T , there holds

t∫
0

[(
ρ

θ+ ε0
2n

ε

)
x

]2n
ds � C(T ). (2.24)

Proof. By simple calculations, we arrive at

t∫
0

[(
ρ

θ+ ε0
2n

ε

)
x

]2n
ds = (θ + ε0

2n
)2n

θ2n

t∫
0

ρε0
ε

[(
ρθ

ε

)
x

]2n
ds. (2.25)

Noticing (2.13), we obtain

t∫
0

ρε0
ε

[(
ρθ

ε

)
x

]2n
ds =

t∫
0

ρε0
ε

[(
ρθ

0ε

)
x

− θuε + θu0ε − θ

s∫
0

(
ργ

ε

)
x
dτ

]2n

ds.

Using Cauchy–Schwartz inequality, we discover

t∫
0

ρε0
ε

[(
ρθ

ε

)
x

]2n
ds � C

t∫
0

ρε0
ε

((
ρθ

0ε

)2n

x
+ u2n

ε + u2n
0ε +

s∫
0

[(
ργ

ε

)
x

]2n
dτ

)
ds

� C

t∫
0

ρ2ε0
ε ds + C

t∫
0

(
ρθ

0ε

)4n

x
ds + C

t∫
0

u2n
0ε ds

+ C

t∫
0

∥∥ρε0
ε u2n

ε

∥∥∞ ds + C

t∫
0

ρε0
ε

s∫
0

[(
ργ

ε

)
x

]2n
dτ ds

� C

t∫
0

ρ2ε0
ε ds +

t∫
0

(
ρθ

0ε

)4n

x
ds +

t∫
0

u2n
0ε ds

+ C

t∫
0

∥∥ρ
ε0
2n
ε uε

∥∥2n

∞ ds + C

t∫
0

ρε0
ε

s∫
0

[(
ργ

ε

)
x

]2n
dτ ds.

Following (2.2)–(2.3) and (2.18)–(2.19), we get

t∫
0

ρε0
ε

[(
ρθ

ε

)
x

]2n
ds � C + C

t∫
0

s∫
0

[(
ργ

ε

)
x

]2n
dτ ds. (2.26)

By (2.25) and (2.26), we have
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t∫
0

[(
ρ

θ+ ε0
2n

ε

)
x

]2n
ds � C

t∫
0

ρε0
ε

[(
ρθ

)
x

]2n
ds

� C + C

t∫
0

s∫
0

[(
ργ

ε

)
x

]2n
dτ ds

� C + C

t∫
0

s∫
0

∣∣ρ2n[γ−(θ+ ε0
2n

)]
ε

∣∣[(ρθ+ ε0
2n

ε

)
x

]2n
dτ ds

� C + C

t∫
0

s∫
0

[(
ρ

θ+ ε0
2n

ε

)
x

]2n
dτ ds, (2.27)

which and Gronwall’s inequality imply (2.24). Thus the proof of the lemma is completed. �
Lemma 2.6. For any α � 1 and k > 2

1−θ
(0 < θ < 1), there holds

1∫
0

(
ρk

0ε(x)

ρε(x, t)

)α

dx � C, ∀0 < t � T . (2.28)

Proof. We replace ρε by vε = 1
ρε

in the first equation of (2.9), and find(
vα
ε

)
t
= αvα−1

ε uεx. (2.29)

Multiplying (2.29) by ρkα
0ε (x) and integrating it over [0,1] × [0, t], we obtain

1∫
0

ρkα
0ε vα

ε dx = α

t∫
0

1∫
0

vα−1
ε uεxρ

kα
0ε dx ds +

1∫
0

ρkα
0ε vα

0ε dx.

Integrating by parts for the second term of the above integral equality leads to

α

t∫
0

1∫
0

vα−1
ε uεxρ

kα
0ε dx ds

= α

t∫
0

(
vα−1
ε ρkα

0ε uε

)
(x, s)

∣∣∣1

0
ds − α

t∫
0

1∫
0

uε

(
vα−1
ε ρkα

0ε

)
x
dx ds

= α

t∫
0

(
vα−1
ε ρkα

0ε uε

)
(x, s)

∣∣∣1

0
ds − α(α − 1)

t∫
0

1∫
0

uεv
α−2
ε vεxρ

kα
0ε dx ds − kα2

t∫
0

1∫
0

uεv
α−1
ε ρkα−1

0ε ρ0εx dx ds

= I1 + I2 + I3.

By (2.14) and (2.19) (taking ε0 = 1), we get

I1 =
t∫

0

vα
ε ρkα

0ε ρεuε(x, s)

∣∣∣1

0
ds

=
t∫ (

vα
ε ρkα

0ε ρεuε

)
(1, s) − (

vα
ε ρkα

0ε ρεuε

)
(0, s) ds
0
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� C

t∫
0

‖ρεuε‖∞ ds � C. (2.30)

Recalling (2.13), we obtain

I2 = −α(α − 1)

t∫
0

1∫
0

uεv
α−2
ε vεxρ

kα
0ε dx ds

= α(α − 1)

θ

t∫
0

1∫
0

uεv
α+θ−1
ε

(
ρθ

ε

)
x
ρkα

0ε dx ds

= α(α − 1)

θ

t∫
0

1∫
0

uεv
α+θ−1
ε

(
ρθ

0ε

)
x
ρkα

0ε dx ds − α(α − 1)

t∫
0

1∫
0

u2
εv

α+θ−1
ε ρkα

0ε dx ds

+ α(α − 1)

t∫
0

1∫
0

uεu0εv
α+θ−1
ε ρkα

0ε dx ds − α(α − 1)

t∫
0

1∫
0

uεv
α+θ−1
ε ρkα

0ε

s∫
0

(
ργ

ε

)
x
dτ dx ds,

and by Young’s inequality, we find

I2 � 3

4
α(α − 1)

t∫
0

1∫
0

u2
εv

α+θ−1
ε ρkα

0ε dx ds − α(α − 1)

t∫
0

1∫
0

u2
εv

α+θ−1
ε ρkα

0ε dx ds

+ α(α − 1)

t∫
0

1∫
0

vα+θ−1
ε Aερ

kα
0ε dx ds

� −1

4
α(α − 1)

t∫
0

1∫
0

u2
εv

α+θ−1
ε ρkα

0ε dx ds + α(α − 1)

t∫
0

1∫
0

vα+θ−1
ε Aερ

kα
0ε dx ds

where Aε = (
(ρθ

0ε(x))x
θ

)2 + u2
0ε(x) + (

∫ s

0 (ρ
γ
ε )x dτ)2. From (2.2), (2.3) and (2.24), there holds Aε � C for (x, t) ∈

[0,1] × [0, T ]. Therefore,

I2 � −1

4
α(α − 1)

t∫
0

1∫
0

u2
εv

α+θ−1
ε ρkα

0ε dx ds + Cα(α − 1)

t∫
0

1∫
0

vα+θ−1
ε ρkα

0ε dx ds. (2.31)

By (H2) and Young’s inequality, we arrive at

I3 = −kα2

t∫
0

1∫
0

uεv
θ+α−1
ε ρθ

ε ρkα−1
0ε ρ0εx dx ds

� C(k,α)

t∫
0

1∫
0

uεv
θ+α−1
ε ρkα−1

0ε dx ds

� α(α − 1)

8

t∫ 1∫
u2

εv
α+θ−1
ε ρkα

0ε dx ds + C(k,α)

t∫ 1∫
vα+θ−1
ε ρkα−2

0ε dx ds
0 0 0 0
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� α(α − 1)

8

t∫
0

1∫
0

u2
εv

α+θ−1
ε ρkα

0ε dx ds + C(k,α)

t∫
0

1∫
0

(
vερ

k
0ε

)α+θ−1
ρ

k(1−θ)−2
0ε dx ds.

Since k > 2
1−θ

, we obtain

I3 � α(α − 1)

8

t∫
0

1∫
0

u2
εv

α+θ−1
ε ρkα

0ε dx ds + C(k,α)

t∫
0

1∫
0

(
vερ

k
0ε

)α+θ−1
dx ds. (2.32)

Using the above estimates (2.30)–(2.32), we get

1∫
0

(
ρk

0εvε

)α
dx + α(α − 1)

8

t∫
0

1∫
0

u2
εv

α+θ−1
ε ρkα

0ε dx ds � C + C(k,α)

t∫
0

1∫
0

(
ρk

0εvε

)α+θ−1
dx ds,

which implies Lemma 2.6 by Gronwall’s inequality. �
Lemma 2.7. For any k > max{ 2(1+θ)

1−θ
,1 + 2

1−θ
}, there holds

ρε(x, t) � Cρk
0ε(x), (x, t) ∈ [0,1] × [0, T ].

Proof. From the imbedding theorem W 1,1([0,1]) ↪→ L∞([0,1]), we have

ρk
0ε

ρε

�
1∫

0

ρk
0ε

ρε

dx +
1∫

0

∣∣∣∣
(

ρk
0ε

ρε

)
x

∣∣∣∣dx

� C +
1∫

0

∣∣∣∣kρ
k−1
0ε ρ0εx

ρε

∣∣∣∣dx +
1∫

0

∣∣∣∣ρk
0ερεx

ρ2
ε

∣∣∣∣dx

� C +
1∫

0

∣∣∣∣kρ
k−1
0ε ρ0εx

ρε

∣∣∣∣dx + 1

θ

1∫
0

∣∣∣∣ρk
0ε(ρ

θ
ε )x

ρ1+θ
ε

∣∣∣∣dx.

Using the inequality ab � 1
2 (a2 + b2) (a, b ∈ R), we obtain

ρk
0ε

ρε

� C + C

1∫
0

ρk−1
0ε

ρε

dx + 1

2θ

1∫
0

[(
ρk

0ε

ρ1+θ
ε

)2

+ (
ρθ

ε

)2
x

]
dx

� C, by (2.3), (2.16) and (2.28).

This completes the proof of the lemma. �
2.2. The limit process of the approximation solution

By virtue of Lemmas 2.1–2.7 and (2.9), we obtain

C1ρ
k
0ε(x) � ρε(x, t) � C2, (x, t) ∈ [0,1] × [0, T ],

1∫
0

u2n
ε dx +

1∫
0

[(
ρθ

ε

)
x

]2n
dx � C, t ∈ [0, T ], (2.33)

t∫ 1∫ (
ρεt

)2
dx dt +

t∫ 1∫
ρ1+θ

ε u2
εx dx dt � C, (2.34)
0 0 0 0
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T∫
0

x0+δ∫
δ

u2
εx dx ds +

T∫
0

1−δ∫
x0+δ

(uεx)
2 dx ds � Cδ,

where n ∈ N , δ ∈ (0, 1
2 ), C and Cδ are positive constants independent of ε. Then we can extract a subsequence

of (ρε, uε), still denoted by (ρε, uε), such that as ε → 0,

uε ⇀ u weak-∗ in L∞([0, T ];L2n[0,1]), (2.35)

uεx ⇀ ux weakly in L2(0, T ;L2([δ, x0 − δ] ∪ [x0 + δ,1 − δ])) (2.36)

and

ρε ⇀ ρ weak-∗ in L∞([0, T ];W 1,2n[0,1]),
ρεt ⇀ ρt weakly in L2([0, T ];L2[0,1]).

From the embedding theorem W 1,2n(0,1) ↪→ C1− 1
2n [0,1], we have∣∣ρε(x1, t) − ρε(x2, t)

∣∣ � C|x1 − x2|1− 1
2n , ∀x1, x2 ∈ [0,1], t ∈ [0, T ]. (2.37)

From Lions–Aubin’s lemma and (2.34), we obtain∥∥ρε(t1) − ρε(t2)
∥∥

L∞ � δ
∥∥ρε(t1) − ρε(t2)

∥∥
W 1,p + Cδ

∥∥ρε(t1) − ρε(t2)
∥∥

L2

� 2δ
∥∥ρε(t)

∥∥
W 1,p + Cδ|t1 − t2| 1

2 ‖ρεt‖L2([0,T ];L2)

� Cδ + Cδ|t1 − t2| 1
2 . (2.38)

Since (2.37), (2.38) and the triangle inequality, we deduce that ρε(x, t) is equicontinuous on [0,1] × [0, t]. Thus, we
can extract a subsequence by Arzelà–Ascoli’s lemma and a diagonal process if necessary, such that

ρε(x, t) → ρ(x, t) strongly in C0([0,1] × [0, T ]). (2.39)

Furthermore, we discover from (2.38)

ρ ∈ C
1
2
([0, T ];L2(0,1)

)
.

Recalling (2.33)–(2.34) and 0 < θ < 1, we have

t∫
0

1∫
0

(
ρ

1+θ
2

ε uε

)2
x
dx ds =

t∫
0

1∫
0

[
ρ

1+θ
2

ε uεx + (
ρ

1+θ
2

ε

)
x
uε

]2
dx ds

� 2

t∫
0

1∫
0

(
ρ1+θ

ε u2
εx + (

ρ
1+θ

2
ε

)2
x
u2

ε

)
dx ds

� C. (2.40)

This shows that, as ε → 0,

(
ρ

1+θ
2

ε uε

)
x

⇀
(
ρ

1+θ
2 u

)
x

weakly in L2([0,1] × [0, T ]). (2.41)

Multiplying (2.9) by ϕ ∈ C∞
0 ((0,1) × (0, T )), we obtain

t∫
0

1∫
0

(
uεϕt + (

ργ
ε − ρ1+θ

ε uεx

)
ϕx

)
dx ds +

1∫
0

u0ε(x)ϕ(x,0) dx = 0.

It is easy to see that, as ε → 0,
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t∫
0

1∫
0

uεϕt dx ds →
t∫

0

1∫
0

uϕt dx ds,

1∫
0

u0ε(x)ϕ(x,0) dx →
1∫

0

u0(x)ϕ(x,0) dx.

We claim that, as ε → 0,

t∫
0

1∫
0

(
ργ

ε − ρ1+θ
ε uεx

)
ϕx dx ds →

t∫
0

1∫
0

(
ργ − ρ1+θux

)
ϕx dx ds. (2.42)

Firstly it yields

Aε �
t∫

0

1∫
0

(
ρ1+θ

ε uεx − ρ1+θux

)
ϕx dx ds

=
T∫

0

δ∫
0

(
ρ1+θ

ε uεx − ρ1+θux

)
ϕx dx ds +

T∫
0

x0−δ∫
δ

(
ρ1+θ

ε uεx − ρ1+θux

)
ϕx dx ds

+
T∫

0

x0+δ∫
x0−δ

(
ρ1+θ

ε uεx − ρ1+θux

)
ϕx dx ds +

T∫
0

1−δ∫
x0+δ

(
ρ1+θ

ε uεx − ρ1+θux

)
ϕx dx ds

+
T∫

0

1∫
1−δ

(
ρ1+θ

ε uεx − ρ1+θux

)
ϕx dx ds

� Aδ
ε1 + Aδ

ε2 + Aδ
ε3 + Aδ

ε4 + Aδ
ε5.

Using (2.40)–(2.41) and Hölder’s inequality, we find

∣∣Aδ
ε1

∣∣ =
∣∣∣∣∣

T∫
0

δ∫
0

(
ρ1+θ

ε uεx − ρ1+θux

)
φx dx ds

∣∣∣∣∣
� C

( t∫
0

1∫
0

(
ρ1+θ

ε uεx − ρ1+θux

)2
dx ds

) 1
2

(T δ)
1
2

� Cδ
1
2 .

Similarly we have

∣∣Aδ
ε3

∣∣ =
∣∣∣∣∣

T∫
0

x0+δ∫
x0−δ

(
ρ1+θ

ε uεx − ρ1+θux

)
φx dx ds

∣∣∣∣∣ � Cδ
1
2 ,

∣∣Aδ
ε5

∣∣ =
∣∣∣∣∣

T∫
0

1∫
1−δ

(
ρ1+θ

ε uεx − ρ1+θux

)
φx dx ds

∣∣∣∣∣ � Cδ
1
2 .

Thus we obtain∣∣Aδ
∣∣ + ∣∣Aδ

∣∣ + ∣∣Aδ
∣∣ � Cδ1/2,
ε1 ε3 ε5
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and hence, there exists δ0 > 0 for any η > 0 such that∣∣Aδ0
ε1

∣∣ + ∣∣Aδ0
ε3

∣∣ + ∣∣Aδ0
ε5

∣∣ < η/2.

Furthermore, it follows from (2.34) and (2.38) that there exists ε0 > 0 for the above fixed δ0 > 0, such that∣∣Aδ0
ε2

∣∣ + ∣∣Aδ0
ε4

∣∣ < η/2, ∀ε < ε0.

Thus the claim (2.42) holds, and we have

t∫
0

1∫
0

(
uϕt + (

ργ − ρ1+θux

)
ϕx

)
dx ds +

1∫
0

u0(x)ϕ(x,0) dx = 0.

To complete the proof of Theorem 1.1, it only remains to show that ρ(1, t) = ρ(0, t) = 0. From (2.11), we have

ρθ
ε (1, t) � ρθ

0ε(1) −
1∫

0

(
uε(x, t) − u0ε

)
(x) dx = ρθ

0ε(1).

Then ρ(1, t) = 0 by taking limit to the above inequality as ε → 0. Similarly, ρ(0, t) = 0. Thus (ρ,u) is a weak
solution, and the proof of Theorem 1.1 is completed.
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