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In this paper we present a relation among the multiple zeta values which generalizes
simultaneously the ``sum formula'' and the ``duality'' theorem. As an application, we
give a formula for the special values at positive integral points of a certain zeta function
of Arakawa and Kaneko in terms of multiple harmonic series. � 1999 Academic Press

The multiple zeta values (or Euler�Zagier sums) seem to be related to
many kind of mathematical subjects. Recently A. Granville, D. Zagier, and
others proved a conjecture known as the ``sum formula'' (or ``sum conjec-
ture'') (cf. [2, 4]) which gives a remarkable relation between the multiple
zeta values and special values of Riemann zeta function. In this note we
prove a generalization of the ``sum formula'' which is at the same time a
generalization of another remarkable identity referred to as the ``duality''
theorem (cf. [9]).

The multiple zeta values are defined for integers k1 , ..., kn&1�1 and
kn�2 by

`(k1 , k2 , ..., kn)= :
0<m1<m2< } } } <mn

1
mk1

1 mk2
2 } } } mkn

n

.

For any index set (k1 , k2 , ..., kn) satisfying the condition above and any
integer l�0, we define

Z(k1 , k2 , ..., kn ; l )= :

\cj�0
c1+c2+ } } } +cn=l

`(k1+c1 , k2+c2 , ..., kn+cn).
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For any integer s�1 and a1 , b1 , a2 , b2 , ..., as , bs�1, we define two index
sets which are ``dual'' to each other by

k=(1, ..., 1
a1&1

, b1+1, 1, ..., 1
a2&1

, b2+1, ..., 1, ..., 1
as&1

, bs+1)

and

k$=(1, ..., 1
bs&1

, as+1, 1, ..., 1
bs&1&1

, as&1+1, ..., 1, ..., 1
b1&1

, a1+1).

Our main theorem is then the following.

Theorem 1. Z(k$; l )=Z(k; l ).

Remark. For l=0, this is just the duality theorem `(k$)=`(k) (cf. [9]),
while in the case

k=(n+1), k$=(1, ..., 1
n&1

, 2), l=k&n&1

(i.e., s=a1=1, b1=n) Theorem 1 specializes to the ``sum formula'' (cf.
[2, 4])

:

k1+k2+ } } } +kn=k
k1, k2, ..., kn&1>0, kn>1,

`(k1 , k2 , ..., kn)=`(k).

Theorem 1 also contains Theorem 5.1 in M. Hoffman [4] as a special case
when l=1.

As an application of Theorem 1, we get following Theorem 2.
Recently T. Arakawa and M. Kaneko [1] defined for k�1 the function

!k(s) by

!k(s)=
1

1(s) |
�

0

ts&1

et&1
Lik(1&e&t) dt,

where Lik(z) denotes the k th polylogarithm ��
m=0 (zm�mk). The integral

converges for Re(s)>0 and the function !k(s) continues to an entire func-
tion of s. They proved that the special values of !k(s) at non-positive
integers are given by poly-Bernoulli numbers and established a connection
between !k(s) and the multiple zeta values. Our theorem gives an expres-
sion of special values of !k(s) at positive integers.
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Theorem 2. For integers k�1 and n�1, we have

!k(n)= :
0<m1�m2� } } } �mn

1
m1m2 } } } mn&1 mk+1

n

.

Now, we sketch our proofs.

Proof of Theorem 1. First, we review the definition of ``Drinfel'd integral''
following Zagier [9]. For =1=1, =k=0 and =2 , ..., =k&1 # [0, 1], we define

I(=1 , ..., =k)= | } } } |
dt1

A=1
(t1)

} } }
dtk

A=k
(tk)

,
0<t1< } } } <tk<1

where we denote A0(t)=t and A1(t)=1&t. It is known that there is an
identity between the multiple zeta values and ``Drinfel'd integral,'' namely

`(k)=I(1, ..., 1
a1

, 0, ..., 0
b1

, 1, ..., 1
a2

, 0, ..., 0
b2

, ..., 1, ..., 1
as

, 0, ..., 0
bs

, ).

For integers li�0 (i=1, ..., s) satisfying l1+ } } } +ls=l and for integers
di satisfying 1�di�a i+li (i=1, ..., s), we put Sk as

Sk (d1 , ..., ds ; l1 , ..., ls)

= :

=1, 2 , ..., =i, ai+li
# [0, 1] for \i

=i, 2+ } } } +=i, ai+li
=di&1

I(1, =1, 2 , ..., =1, a1+l1
, 0, ..., 0

b1

,

1, =2, 2 , ..., =2, a2+l2
, 0, ..., 0

b2

, ..., 1, =s, 2 , ..., =s, as+ls
, 0, ..., 0

bs

).

Then we have

Z(k; l )= :

li�0 for \i
l1+l2+ } } } +ls=l

Sk (a1 , ..., as ; l1 , ..., ls).

We make a generating function of Sk as

:
1�di�ai+li for \i \Sk (d1 , ..., ds ; l1 , ..., ls) `

s

j=1

X dj&1
j + .

Following the manner of Zagier's proof of the ``sum formula,'' we calculate
the generating function. We put t2s+1=1. Then we get the following
expression of Sk :
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Sk (a1 , ..., as ; l1 , ..., ls)

=\`
s

i=1

(l i !(ai&1)! (b i&1)!)+
&1

| } } } | `
s

i=1
\\log

t2i

t2i&1+
li

0<t1<t2< } } } <t2s<1

_\log
1&t2i&1

1&t2i +
ai&1

\log
t2i+1

t2i +
bi&1

+ dt1 dt2 dt3 } } } dt2s

(1&t1) t2(1&t3) } } } t2s
.

We can write Z(k; l ) as

Z(k; l )=\l ! `
s

i=1

((ai&1)! (b i&1)!)+
&1

_ | } } } | \log \`
s

i=1

t2i

t2i&1++
l

0<t1<t2< } } } <t2s<1

_ `
s

i=1
\\log

1&t2i&1

1&t2i +
ai&1

\log
t2i+1

t2i +
bi&1

+
_

dt1 dt2 dt3 } } } dt2s

(1&t1) t2(1&t3) } } } t2s
.

We change the variables for i=1, 2, ..., s by

x2i&1=log
1&t2i&1

1&t2i
, x2i=log

t2i+1

t2i
, and

dt1 dt2 dt3 } } } dt2s

(1&t1) t2(1&t3) } } } t2s
=dx1 dx2 } } } dx2s

and put f (x1 , ..., x2s)=�2s
j=0((&1) j exp(� j

r=1, r: odd xr+�2s
r= j+1, r: even xr))

=(>s
i=1(t2i �t2i&1))&1. Then we get

Z(k; l )=\l ! `
s

i=1

((ai&1)! (bi&1)!)+
&1

_ | } } } | (log( f (x1 , x2 , ..., x2s)
&1)) l

xi>0, 1�i�2s,
f (x, x2 , ..., x2s)>0

_ `
s

i=1

(xai&1
2i&1

xbi&1
2i ) dx1 dx2 } } } dx2s .

Since we have f (x2s , x2s&1 , ..., x1)= f (x1 , x2 , ..., x2s), the change of variables
(x2s , x2s&1 , ..., x1) W (x1 , x2 , ..., x2s) leads us to Theorem 1. Q.E.D
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Proof of Theorem 2. For integers k�1 and n�1, the expression given
by Arakawa and Kaneto [1] means

!k(n)= :

\aj�0
a1+a2+ } } } +ak=n&1

(ak+1) `(a1+1, a2+1, ..., ak&1+1, ak+2)

= :
n

t=1

:

\aj�0
a1+a2+ } } } +ak=n&t

`(a1+1, a2+1, ..., ak&1+1, ak+t+1).

So we use Theorem 1 in case of

k=(1, ..., 1
k&1

, t+1), k$=(1, ..., 1
t&1

, k+1), l=n&t

(i.e., s=1, a1=k, b1=t), and we get Theorem 2. Q.E.D

Remark. As Zagier pointed out, Theorem 2 can also be proved directly
without using the result of Arakawa and Kaneko and Theorem 1.
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