A Generalization of the Duality and Sum Formulas on the Multiple Zeta Values

Yasuo Ohno
Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
E-mail: ohno@math.sci.osaka-u.ac.jp
Communicated by D. Zagier

Received September 29, 1997; revised July 13, 1998

Abstract

In this paper we present a relation among the multiple zeta values which generalizes simultaneously the "sum formula" and the "duality" theorem. As an application, we give a formula for the special values at positive integral points of a certain zeta function of Arakawa and Kaneko in terms of multiple harmonic series. © 1999 Academic Press

The multiple zeta values (or Euler-Zagier sums) seem to be related to many kind of mathematical subjects. Recently A. Granville, D. Zagier, and others proved a conjecture known as the "sum formula" (or "sum conjecture") (cf. [2,4]) which gives a remarkable relation between the multiple zeta values and special values of Riemann zeta function. In this note we prove a generalization of the "sum formula" which is at the same time a generalization of another remarkable identity referred to as the "duality" theorem (cf. [9]).

The multiple zeta values are defined for integers $k_{1}, \ldots, k_{n-1} \geqslant 1$ and $k_{n} \geqslant 2$ by

$$
\zeta\left(k_{1}, k_{2}, \ldots, k_{n}\right)=\sum_{0<m_{1}<m_{2}<\cdots<m_{n}} \frac{1}{m_{1}^{k_{1}} m_{2}^{k_{2}} \cdots m_{n}^{k_{n}}} .
$$

For any index set $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ satisfying the condition above and any integer $l \geqslant 0$, we define

$$
Z\left(k_{1}, k_{2}, \ldots, k_{n} ; l\right)=\sum_{\substack{c_{1}+c_{2}+\ldots \cdots+c_{n}=l \\ \forall c_{j} \geqslant 0}} \zeta\left(k_{1}+c_{1}, k_{2}+c_{2}, \ldots, k_{n}+c_{n}\right) .
$$

For any integer $s \geqslant 1$ and $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{s}, b_{s} \geqslant 1$, we define two index sets which are "dual" to each other by

$$
\mathbf{k}=(\underbrace{1, \ldots, 1}_{a_{1}-1}, b_{1}+1, \underbrace{1, \ldots, 1}_{a_{2}-1}, b_{2}+1, \ldots, \underbrace{1, \ldots, 1}_{a_{s}-1}, b_{s}+1)
$$

and

$$
\mathbf{k}^{\prime}=(\underbrace{1, \ldots, 1}_{b_{s}-1}, a_{s}+1, \underbrace{1, \ldots, 1}_{b_{s-1}-1}, a_{s-1}+1, \ldots, \underbrace{1, \ldots, 1}_{b_{1}-1}, a_{1}+1) .
$$

Our main theorem is then the following.
Theorem 1. $Z\left(\mathbf{k}^{\prime} ; l\right)=Z(\mathbf{k} ; l)$.
Remark. For $l=0$, this is just the duality theorem $\zeta\left(\mathbf{k}^{\prime}\right)=\zeta(\mathbf{k})$ (cf. [9]), while in the case

$$
\mathbf{k}=(n+1), \quad \mathbf{k}^{\prime}=(\underbrace{1, \ldots, 1}_{n-1}, 2), \quad l=k-n-1
$$

(i.e., $s=a_{1}=1, b_{1}=n$) Theorem 1 specializes to the "sum formula" (cf. $[2,4])$

$$
\sum_{\substack{k_{1}, k_{2}, \ldots, k_{n-1}>0, k_{n}>1, k_{1}+k_{2}+\cdots+k_{n}=k}} \zeta\left(k_{1}, k_{2}, \ldots, k_{n}\right)=\zeta(k) .
$$

Theorem 1 also contains Theorem 5.1 in M. Hoffman [4] as a special case when $l=1$.

As an application of Theorem 1, we get following Theorem 2.
Recently T. Arakawa and M. Kaneko [1] defined for $k \geqslant 1$ the function $\xi_{k}(s)$ by

$$
\xi_{k}(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s-1}}{e^{t}-1} L i_{k}\left(1-e^{-t}\right) d t
$$

where $L i_{k}(z)$ denotes the k th polylogarithm $\sum_{m=0}^{\infty}\left(z^{m} / m^{k}\right)$. The integral converges for $\operatorname{Re}(s)>0$ and the function $\xi_{k}(s)$ continues to an entire function of s. They proved that the special values of $\xi_{k}(s)$ at non-positive integers are given by poly-Bernoulli numbers and established a connection between $\xi_{k}(s)$ and the multiple zeta values. Our theorem gives an expression of special values of $\xi_{k}(s)$ at positive integers.

Theorem 2. For integers $k \geqslant 1$ and $n \geqslant 1$, we have

$$
\xi_{k}(n)=\sum_{0<m_{1} \leqslant m_{2} \leqslant \cdots \leqslant m_{n}} \frac{1}{m_{1} m_{2} \cdots m_{n-1} m_{n}^{k+1}} .
$$

Now, we sketch our proofs.
Proof of Theorem 1. First, we review the definition of "Drinfel'd integral" following Zagier [9]. For $\varepsilon_{1}=1, \varepsilon_{k}=0$ and $\varepsilon_{2}, \ldots, \varepsilon_{k-1} \in\{0,1\}$, we define

$$
I\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)=\int_{0<t_{1}<\cdots<t_{k}<1} \cdots \int_{\varepsilon_{1}} \frac{d t_{1}}{A_{\varepsilon_{1}}\left(t_{1}\right)} \cdots \frac{d t_{k}}{A_{\varepsilon_{k}}\left(t_{k}\right)},
$$

where we denote $A_{0}(t)=t$ and $A_{1}(t)=1-t$. It is known that there is an identity between the multiple zeta values and "Drinfel'd integral," namely

$$
\zeta(\mathbf{k})=I(\underbrace{1, \ldots, 1}_{a_{1}}, \underbrace{0, \ldots, 0}_{b_{1}}, \underbrace{1, \ldots, 1}_{a_{2}}, \underbrace{0, \ldots, 0}_{b_{2}}, \ldots, \underbrace{1, \ldots, 1}_{a_{s}}, \underbrace{0, \ldots, 0}_{b_{s}},) .
$$

For integers $l_{i} \geqslant 0(i=1, \ldots, s)$ satisfying $l_{1}+\cdots+l_{s}=l$ and for integers d_{i} satisfying $1 \leqslant d_{i} \leqslant a_{i}+l_{i}(i=1, \ldots, s)$, we put $S_{\mathbf{k}}$ as

$$
\begin{aligned}
& S_{\mathbf{k}}\left(d_{1}, \ldots, d_{s} ; l_{1}, \ldots, l_{s}\right) \\
& =\sum_{\substack{\left.\varepsilon_{i, 2}+\cdots+\varepsilon_{i, a_{i}+l_{i}=d_{i}-1} \\
\varepsilon_{1,2}, \ldots, \varepsilon_{i, 2} a_{i}+l_{i} \in 0,1\right\} \\
\text { for } \forall i}} I(1, \varepsilon_{1,2}, \ldots, \varepsilon_{1, a_{1}+l_{1}}, \underbrace{0, \ldots,}_{b_{1}} 0, \\
& 1, \varepsilon_{2,2}, \ldots, \varepsilon_{2, a_{2}+l_{2}}, \underbrace{0, \ldots, 0}_{b_{2}}, \ldots, 1, \varepsilon_{s, 2}, \ldots, \varepsilon_{s, a_{s}+l_{s}}, \underbrace{0, \ldots, 0}_{b_{s}}) \text {. }
\end{aligned}
$$

Then we have

$$
Z(\mathbf{k} ; l)=\sum_{\substack{l_{1}+l_{2}+\ldots+l_{s}=l \\ l_{i} \geqslant 0 \text { for } \forall i}} S_{\mathbf{k}}\left(a_{1}, \ldots, a_{s} ; l_{1}, \ldots, l_{s}\right) .
$$

We make a generating function of $S_{\mathbf{k}}$ as

$$
\sum_{1 \leqslant d_{i} \leqslant a_{i}+l_{i} \text { for } \forall i}\left(S_{\mathbf{k}}\left(d_{1}, \ldots, d_{s} ; l_{1}, \ldots, l_{s}\right) \prod_{j=1}^{s} X_{j}^{d_{j}-1}\right) .
$$

Following the manner of Zagier's proof of the "sum formula," we calculate the generating function. We put $t_{2 s+1}=1$. Then we get the following expression of $S_{\mathbf{k}}$:
$S_{\mathbf{k}}\left(a_{1}, \ldots, a_{s} ; l_{1}, \ldots, l_{s}\right)$

$$
\begin{aligned}
= & \left(\prod _ { i = 1 } ^ { s } (l _ { i } ! ((a _ { i } - 1) ! (b _ { i } - 1) !)) ^ { - 1 } \quad \int _ { 0 < t _ { 1 } < t _ { 2 } < \cdots < t _ { 2 s } < 1 } \prod _ { i = 1 } ^ { s } \left(\left(\log \frac{t_{2 i}}{t_{2 i-1}}\right)^{l_{i}}\right.\right. \\
& \left.\times\left(\log \frac{1-t_{2 i-1}}{1-t_{2 i}}\right)^{a_{i}-1}\left(\log \frac{t_{2 i+1}}{t_{2 i}}\right)^{b_{i}-1}\right) \frac{d t_{1} d t_{2} d t_{3} \cdots d t_{2 s}}{\left(1-t_{1}\right) t_{2}\left(1-t_{3}\right) \cdots t_{2 s}} .
\end{aligned}
$$

We can write $Z(\mathbf{k} ; l)$ as

$$
\begin{aligned}
Z(\mathbf{k} ; l)= & \left(l!\prod_{i=1}^{s}\left(\left(a_{i}-1\right)!\left(b_{i}-1\right)!\right)\right)^{-1} \\
& \times \int_{0<t_{1}<t_{2}<\cdots<t_{2 s}<1}\left(\log \left(\prod_{i=1}^{s} \frac{t_{2 i}}{t_{2 i-1}}\right)\right)^{l} \\
& \times \prod_{i=1}^{s}\left(\left(\log \frac{1-t_{2 i-1}}{1-t_{2 i}}\right)^{a_{i}-1}\left(\log \frac{t_{2 i+1}}{t_{2 i}}\right)^{b_{i}-1}\right) \\
& \times \frac{d t_{1} d t_{2} d t_{3} \cdots d t_{2 s}}{\left(1-t_{1}\right) t_{2}\left(1-t_{3}\right) \cdots t_{2 s}} .
\end{aligned}
$$

We change the variables for $i=1,2, \ldots, s$ by

$$
\begin{aligned}
x_{2 i-1}=\log \frac{1-t_{2 i-1}}{1-t_{2 i}}, \quad x_{2 i} & =\log \frac{t_{2 i+1}}{t_{2 i}}, \quad \text { and } \\
\frac{d t_{1} d t_{2} d t_{3} \cdots d t_{2 s}}{\left(1-t_{1}\right) t_{2}\left(1-t_{3}\right) \cdots t_{2 s}} & =d x_{1} d x_{2} \cdots d x_{2 s}
\end{aligned}
$$

and put $f\left(x_{1}, \ldots, x_{2 s}\right)=\sum_{j=0}^{2 s}\left((-1)^{j} \exp \left(\sum_{r=1, r \text { : odd }}^{j} x_{r}+\sum_{r=j+1, r: \text { even }}^{2 s} x_{r}\right)\right)$ $=\left(\prod_{i=1}^{s}\left(t_{2 i} / t_{2 i-1}\right)\right)^{-1}$. Then we get

$$
\begin{aligned}
Z(\mathbf{k} ; l)= & \left(l!\prod_{i=1}^{s}\left(\left(a_{i}-1\right)!\left(b_{i}-1\right)!\right)\right)^{-1} \\
& \times \int_{\substack{x_{i}>0,0,1 \leq i \leq 2 s, f\left(x, x_{2}, \ldots, x_{2 s}\right)>0}}\left(\log \left(f\left(x_{1}, x_{2}, \ldots, x_{2 s}\right)^{-1}\right)\right)^{l} \\
& \times \prod_{i=1}^{s}\left(x_{2 i-1}^{a_{i}-1} x_{2 i}^{b_{i}-1}\right) d x_{1} d x_{2} \cdots d x_{2 s} .
\end{aligned}
$$

Since we have $f\left(x_{2 s}, x_{2 s-1}, \ldots, x_{1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{2 s}\right)$, the change of variables $\left(x_{2 s}, x_{2 s-1}, \ldots, x_{1}\right) \leftrightarrow\left(x_{1}, x_{2}, \ldots, x_{2 s}\right)$ leads us to Theorem 1.
Q.E.D

Proof of Theorem 2. For integers $k \geqslant 1$ and $n \geqslant 1$, the expression given by Arakawa and Kaneto [1] means

$$
\begin{aligned}
\xi_{k}(n) & =\sum_{a_{1}+a_{2}+\underset{\substack{ \\
\forall a_{j} \geqslant 0}}{ }\left(a_{k}=n-1\right.}\left(a_{k}+1\right) \zeta\left(a_{1}+1, a_{2}+1, \ldots, a_{k-1}+1, a_{k}+2\right) \\
& =\sum_{t=1}^{n} \sum_{\substack{a_{1}+a_{2}+\ldots+a_{k}=n-t \\
\forall a_{j} \geqslant 0}} \zeta\left(a_{1}+1, a_{2}+1, \ldots, a_{k-1}+1, a_{k}+t+1\right) .
\end{aligned}
$$

So we use Theorem 1 in case of

$$
\mathbf{k}=(\underbrace{1, \ldots,}_{k-1}, t+1), \quad \mathbf{k}^{\prime}=(\underbrace{1, \ldots, 1}_{t-1}, k+1), \quad l=n-t
$$

(i.e., $s=1, a_{1}=k, b_{1}=t$), and we get Theorem 2.

Remark. As Zagier pointed out, Theorem 2 can also be proved directly without using the result of Arakawa and Kaneko and Theorem 1.

ACKNOWLEDGMENTS

The author expresses his sincere thanks to his adviser Professor Tomoyoshi Ibukiyama, who gave him helpful advice. The author also thanks Professor Masanobu Kaneko who introduced him to poly-Bernoulli numbers which motivated the present work.

REFERENCES

1. T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J., in press.
2. T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, in "Proceedings, Symposium in Tsudajyuku Univ., 1997," Vol. 2, pp. 133-144. [In Japanese]
3. D. Borwein, J. M. Borwein, and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. 38 (1995), 277-294.
4. M. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275-290.
5. J. G. Huard, K. S. Williams, and Zhang Nan-Yue, On Tornheim's double series, Acta Arith. 75, No. 2 (1996), 105-117.
6. M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1997), 221-228.
7. T. Q. T. Le and J. Murakami, Kontsevich's integral for the Homfly polynomial and relations between values of multiple zeta functions, Topology Appl. 62 (1995), 193-206.
8. L. Lewin, "Polylogarithms and Associated Functions," Tata, Bombay, 1980.
9. D. Zagier, Values of zeta functions and their applications, in ECM volume, Progr. Math. 120 (1994), 497-512.
