
Computers and Electronics in Agriculture 125 (2016) 12–28

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier .com/locate /compag
Original papers
A reference architecture for Farm Software Ecosystems
http://dx.doi.org/10.1016/j.compag.2016.04.011
0168-1699/� 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Information Technology, Wageningen University,
Hollandseweg 1, PO Box 8130, 6700 EW Wageningen, The Netherlands.

E-mail address: janwillem.kruize@wur.nl (J.W. Kruize).
1 A farm enterprise can be an arable farm, livestock farm or horticultural farm. In

this paper we focus on arable farm enterprises however it is expected that the
concept Farm Software Ecosystem can address software integration challenges for the
other type of farms as well.
J.W. Kruize a,b,⇑, J. Wolfert a,b, H. Scholten a, C.N. Verdouw a,b, A. Kassahun a, A.J.M. Beulens a

a Information Technology, Wageningen University, Hollandseweg 1, 6706 KN Wageningen, The Netherlands
bWageningen UR, Agricultural Economics Research Institute, Alexanderveld 5, 2585 DB Den Haag, The Netherlands
a r t i c l e i n f o

Article history:
Received 11 June 2015
Received in revised form 24 December 2015
Accepted 16 April 2016
Available online 4 May 2016

Keywords:
Farm Management Information Systems
Software Ecosystems
Open Software Enterprise
Interoperability
Precision agriculture
Smart farming
a b s t r a c t

Smart farming is a management style that includes smart monitoring, planning and control of agricul-
tural processes. This management style requires the use of a wide variety of software and hardware sys-
tems from multiple vendors. Adoption of smart farming is hampered because of a poor interoperability
and data exchange between ICT components hindering integration. Software Ecosystems is a recent
emerging concept in software engineering that addresses these integration challenges. Currently, several
Software Ecosystems for farming are emerging. To guide and accelerate these developments, this paper
provides a reference architecture for Farm Software Ecosystems. This reference architecture should be
used to map, assess design and implement Farm Software Ecosystems. A key feature of this architecture
is a particular configuration approach to connect ICT components developed by multiple vendors in a
meaningful, feasible and coherent way. The reference architecture is evaluated by verification of the
design with the requirements and by mapping two existing Farm Software Ecosystems using the Farm
Software Ecosystem Reference Architecture. This mapping showed that the reference architecture pro-
vides insight into Farm Software Ecosystems as it can describe similarities and differences. A main con-
clusion is that the two existing Farm Software Ecosystems can improve configuration of different ICT
components. Future research is needed to enhance configuration in Farm Software Ecosystems.

� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Agri-food supply chain networks are confronted with a growing
world population and increasing prosperity and associated chang-
ing demands. These developments are challenging because the
demand on food is increasing while there are stricter requirements
regarding food safety, sustainable food production and transparent
supply chains. Therefore, farm enterprises1 are pushed to improve
their production processes by smart monitoring and control. Smart
monitoring, -planning and -control of production processes, which
can be referred to as smart farming, can be supported by a broad
spectrum of technologies, ICT components, and their constituent
hard- and software systems (Aubert et al., 2012; Cox, 2002; Lamb
et al., 2008; Wolfert et al., 2010). Examples of these ICT components
are all kinds of sensors, terminals, implement assemblies, computers
and software applications. For smart monitoring and control an
integrated information system is required that enables seamless
interaction and sharing of data between different ICT components.
However, a lack of interoperability is currently severely hindering
smart farming because ICT components of multiple vendors do not
operate as one integrated farm information system (Aubert et al.,
2012; Fountas et al., 2005; Pedersen et al., 2004; Pierce and
Nowak, 1999).

To overcome this, Wolfert et al. (2014) identified five main chal-
lenges (i) handling the increasingly large amounts of data, espe-
cially from all kind of agricultural equipment, (ii) interoperability
between various systems at farm level and in the whole supply
chain network surrounding the farm, (iii) standardization of data,
(iv) go beyond the small scale and the regional focus of farm soft-
ware development while at the same time (v) comply with
national or regional differences in farming practices. More specifi-
cally for interoperability, the systematic analysis of Kruize et al.
(2013) showed that ICT components used within the same farm
enterprise (i) have partly overlapping and partly unique services,
functions and interfaces, (ii) are missing required application ser-
vices, functions and interfaces, (iii) have separated data reposito-
ries and (iv) have inadequate and incomplete data exchange. In
conclusion, most of the available ICT components are lacking both
technical and semantic interoperability, resulting in data sharing

https://core.ac.uk/display/82808882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2016.04.011&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.compag.2016.04.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:janwillem.kruize@wur.nl
http://dx.doi.org/10.1016/j.compag.2016.04.011
http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag

J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28 13
issues and non-coherent user interfaces (Kruize et al., 2013). Con-
sequently, current ICT components often hamper farm enterprise
integration as they do not sufficiently support the monitoring,
planning and control processes to enable smart farming. Support-
ing these processes by making a combination of multiple ICT Com-
ponents is currently challenging. In addition, the creation of one
overarching system developed by one software vendor that over-
comes all mentioned challenges is neither a feasible nor – from a
competitive point of view – a desirable solution. Hence, a promis-
ing method to achieve such integrated solutions is a best of breed
approach, which allows users to configure customized software
systems from standardized components that are supplied by mul-
tiple vendors (Light et al., 2001; Verdouw et al., 2010). As a conse-
quence, software systems are not supplied by single companies,
but by a set of independent actors which collaborate and can com-
pete via an integration platform (Light et al., 2001). This integra-
tion approach requires an advanced infrastructure that covers
both organizational and technological aspects (Wolfert et al.,
2010). An organizational infrastructure is required that enables
and facilitates both collaboration and competition between actors.
In such infrastructure, actors collaborate in their development to
provide interoperable ICT components that are based on their core
competences and compete with ICT components that provide sim-
ilar functionalities. A technological infrastructure is required that
can support the linkage of ICT components into integrated FMISs.
Both the organizational and technological infrastructure should
enable and ensure a sustainable collaboration and competition in
which all actors, including software developers, farm enterprises,
contractors, technology providers and others, can flourish.

A concept that addresses such an infrastructure is nowadays
called a Software Ecosystem. Currently, Software Ecosystems are
becoming more widespread as they are increasingly considered
to provide an effective way to construct large software systems
on top of a software platform by combining components, devel-
oped by actors that are part of different organizations (Bosch,
2009; Manikas and Hansen, 2013; te Molder et al., 2011). Examples
of current Software Ecosystems are, among others, Eclipse, Linux/
Linux kernel and Android (Manikas and Hansen, 2013). At the
moment there are no well-established Software Ecosystems for
farming available, although several developments go into this
direction. Large agricultural machinery vendors have setup their
own proprietary platforms (e.g. John Deere’s Farmsight2 or AGCO’s
Fuse Technology3). With these platforms it is still difficult to estab-
lish interoperability with other components that come from other
manufacturers. Several multi-vendor platforms (e.g. 365FarmNet4,
Crop-R, AgroSense, FIspace) are recently introduced, but these are
still in an early stage of development and sometimes regionally
oriented lacking a large international user base.

To gain deeper insights into these developments and to support
further development of Farm Software Ecosystems, this paper pro-
poses a reference architecture that can be used to map, assess,
design and implement Farm Software Ecosystems that contribute
to integrated FMISs. The purpose of the reference architecture is
to improve communication and collaboration between multiple
actors that are part of real-world Farm Software Ecosystems. It will
help them to understand Software Ecosystems and enable them to
join, form or improve Farm Software Ecosystems that lead to
integrated farm information systems.

The remainder of this paper first introduces literature about
Software Ecosystems and the relation to software development
for farming. Second, the methodology for designing the reference
architecture for Farm Software Ecosystems is described. Next, the
2 www.myjohndeere.deere.com.
3 www.agcotechnologies.com.
4 www.365farmnet.com.
requirements for the reference architecture, the reference architec-
ture itself and an example farm information system that can result
from a Farm Software Ecosystem is described. This is followed by
an evaluation to verify the Reference Architecture based on the
requirements and to validate if it can map existing Farm Software
Ecosystems to provide insight how it matches and in what extend.
This paper concludes with a discussion and outlook for future
research and development.
2. Software Ecosystems and software development for farming

In the Internet of Services (IoS) software components are avail-
able as interoperable services on the internet. The IoS allows to
decouple the possession and ownership of software from its usage
and thus to use Software as a Service (Turner et al., 2003). Users do
not need to buy and install a large software system, but required
functionality is delivered as a set of distributed web services that
can be configured and executed when needed. In contrast to tradi-
tional non-modular software systems, it is no longer necessary that
components are delivered by the same software vendor. Software
companies can concentrate on the development of components
that fit best to their core competences. Users can configure cus-
tomized software systems from standardized components that
are supplied by multiple vendors that interact via a common tech-
nological platform. Such collaborative environments are nowadays
referred to as Software Ecosystems. Software Ecosystems are
defined as the interaction of a set of actors on top of a common
technological platform that results in a coherent set of ICT compo-
nents or services (Manikas and Hansen, 2013). These components
include hardware, software and service modules, along with an
architecture that specifies how they fit together (Eisenmann
et al., 2008).

In practice, a Software Ecosystem is usually started by a single-
or a group of software producing organizations that open up their
business processes to become an Open Software Enterprise (Jansen
et al., 2012). Such an Open Software Enterprise provides a technical
platform and additional (collaboration) artefacts that are essential
for the coherence of the software components and for collabora-
tion between multiple actors (Seichter et al., 2010). There are var-
ious reasons why actors with different perspectives would like to
collaborate in such an environment (Bosch, 2009; Wolfert et al.,
2010):

� It increases the value of the core offering to existing users and
increases the attractiveness for new users.

� Increase ‘‘stickiness” of the technology platform, i.e. it is harder
to change the platform when it is widely used (cf. PC operating
systems e.g. Windows, iOS, etc.).

� It creates and facilitates a structural and independent environ-
ment, developed by partners in the ecosystem that potentially
offers a large critical mass of users (once success has been
proven).

� Share the costs of innovation by collaborating with other actors
and accelerate innovation through open innovation in the
ecosystem.

� Decrease total costs of ownership and risks for commoditizing
functionality by sharing the maintenance with networking
partners.

The concept of Software Ecosystems is new for the agricultural
domain. Related literature focuses on the integrating capabilities of
farm ICT components by proposing a standardized infrastructure
that supports the integration of ICT components of multiple
vendors (Iftikhar and Pedersen, 2011; Kaloxylos et al., 2012;
Nash et al., 2009; Steinberger et al., 2009; Wolfert et al., 2010).

http://www.myjohndeere.deere.com
http://www.agcotechnologies.com
http://www.365farmnet.com

14 J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28
Most of these papers focus on semantic aspects of the data to
improve interoperability of application components (Iftikhar and
Pedersen, 2011; Nash et al., 2009; Steinberger et al., 2009). Exam-
ples of available standards for the agricultural domain that facili-
tates data exchange between application components are the
international ISO-11783 standard5, the Dutch EDI-Teelt standard6,
and the German AgroXML standard7. Most papers also focus on
application integration in which there is a focus on the design of
an integrated FMIS (Kaloxylos et al., 2012; Kaloxylos et al., 2014;
Nikkilä et al., 2010; Sørensen et al., 2010a; Sørensen et al., 2010b).
A recent implementation of a platform that can be used to develop
an integrated Farm Management Information System (FMIS) is
described in Kaloxylos et al. (2012) and Kaloxylos et al. (2014).
Yet, this literature misses a specification on how to operationalize
and organize a Farm Software Ecosystem. The reference architecture
in this paper will address this shortcoming.

Furthermore, the Software Ecosystem literature is in an
early stage since the concept is coined relatively recently
(Messerschmitt and Szyperski, 2005). There is still little consensus
on what precisely constitutes a Software Ecosystem, a few analyt-
ical models of Software Ecosystems exist, and little research is
done in the context of real-world Software Ecosystems (Manikas
and Hansen, 2013). Hence, this paper also aims to contribute to
the theoretical basis of Software Ecosystems in general.

3. Material and methods

3.1. The Future Internet Program and existing Farm Software
Ecosystems

The research presented in this paper was carried out as a part of
SmartAgriFood and FIspace project which are part of the European
Future Internet Public–Private Partnership programme (FI-PPP)8. In
SmartAgriFood, the needs from the agri-food sector for Future Inter-
net ICTs were identified while at the same time the capabilities of
Future Internet were described by potential use case scenarios in
agri-food (Eigenmann et al., 2012; Sebök et al., 2012). This has
resulted in a conceptual platform architecture and several prototype
applications. The FIspace project is currently implementing these
concepts into a software platform for business collaboration for
the agri-food, transport and logistics domain. This platform and its
architecture will enable collaboration of application components
and can be a basis to form several Software Ecosystems. More
detailed background information about these projects can be found
in Kruize et al. (2014), Verdouw et al. (2014) and Wolfert et al.
(2014).

As a conceptual validation to test the mapping functionality of
the reference model two Dutch initiatives in which Farm Software
Ecosystems are being established were selected: Crop-R and
AgroSense. Crop-R is a Dutch organization developing an online
platform offering GIS-based crop-recording applications on the
web, smartphones and tablets. The system has currently more than
one thousand users such as farm enterprises and contractors.
AgroSense is an open source platform on which a modular and
open source FMIS can be configured. The modules can come from
different independent organizations.

3.2. Methodology

The reference architecture for Farm Software Ecosystems was
developed by a design-oriented research approach (March and
5 http://dictionary.isobus.net/isobus/.
6 www.agroconnect.nl.
7 www.agroxml.de.
8 See www.fi-ppp.eu.
Smith, 1995). Aligned with the guidelines and framework of
Hevner et al. (2004), the reference architecture was designed in
four steps: (i) ontology definition, (ii) requirements analysis, (iii)
development of a basic design and (iv) evaluation of this design
within case studies (see Fig. 1).

Ontologies are important tools to enable seamless communica-
tion and mutual understanding about a domain and can reduce
misunderstanding between people and enable interoperability
between software components, e.g. apps, data, etc. (Scholten
et al., 2007). In this research an initial basis for an ontology has
been laid down and is used to describe the requirements analysis,
basic design and the application of the design. The ontology has
been iteratively developed within this research of which the basis
was the architectural language ArchiMate (TheOpenGroup, 2011).
The ontology is available in the Appendix and all words in capitals
are referring to this ontology.

The requirements analysis started with the identification and
definition of the scope the object system for Farm Software Ecosys-
tems based on Sørensen et al. (2010b) and Wolfert et al. (2010).
Next, the requirements for Farm Software Ecosystems were
derived from the research that was carried out in the SmartA-
griFood and FIspace projects. In SmartAgriFood a survey was car-
ried out to assess the user’s expectations on future internet
Functions and Services. In total 135 questionnaires in 6 countries
and 8 focus group discussions with 69 participants in 5 countries
have been performed and analyzed, collecting feedback on the
interpretation of the future internet capabilities from the user’s
perspective, the current use of internet applications in their daily
work and today’s problems or limitations resulting in expectations
and requirements for the future internet. These were compared to
the Future Internet’s capabilities that were identified in the
FIWARE project9. FIWARE provides enhanced OpenStack-based
cloud hosting capabilities and a rich library of components – so-
called Generic Enablers (GEs) – implementing a number of added-
value functions offered ‘as-a-service’. The Generic Enablers concern
among others Context Management, easy connection to the Internet
of Things, Open Data support and Big Data processing and analysis. A
technical team consisting of a number of software architects from
leading ICT companies and technical universities - including the
authors – developed the conceptual architecture into the FIspace
platform. A detailed documentation of this platform can be found
online10. Beside the empirical results from these projects, a literature
analysis was done on the development of Software Ecosystems in
relation to smart farming. Based on the ontology and the require-
ments analysis, the reference architecture for Farm Software Ecosys-
tems was designed.

The evaluation of the Reference Architecture contains two parts.
First the Reference Architecture was verified based on the require-
ments. Second, as a conceptual validation the mapping functional-
ity of the Reference Architecture was tested using two existing
Farm Software Ecosystems. These mappings are based on semi-
structured interview with the CTO’s of AgroSense and Crop-R.
4. Requirements analysis

4.1. Object system

To define the scope for Farm Software Ecosystems, the object
system of this study should be defined. For that purpose Farm
Enterprises are considered as the Business Systems with basic
inputs and outputs for which agricultural software is developed
that virtualize the objects (Fig. 2). Virtualization allows to decouple
9 See www.fiware.org.
10 https://bitbucket.org/fi-space/doc/wiki/Home.

http://dictionary.isobus.net/isobus/
http://www.agroconnect.nl
http://www.agroxml.de
http://www.fi-ppp.eu
http://www.fiware.org
https://bitbucket.org/fi-space/doc/wiki/Home

Fig. 1. Research approach.

Fig. 2. The object system that is identified for Farm Software Ecosystems. Input, output and generic software components are considered to come from outside the system.

J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28 15
physical flows from information aspects of operations (Clarke,
1998; Verdouw et al., 2013). The core of the object system is
formed by a number of Farm Enterprises that consist of production
units (e.g. fields and its crops), resources (e.g. humans, Devices,
buildings, etc.) and its management. To manage the production
units all kind of resources are used for the production that take
place in these fields ranging from big tractors, combine-
harvesters to small sensors. Farm management aims to control
crop production using resources that should operate as an inte-
grated system. Raw materials (seeds, fertilizers, pesticides, etc.)
are primary inputs for the production processes. Support services
can be all kind of advice that helps the farmer in managing the
whole Farm Enterprise (e.g. weather information, crop status). At
the output side products come from the fields that can be tem-
porarily stored in buildings. Farm management results into admin-
istration about the products produced and the usage of resources
needed in supply chains (e.g. certificates), but also more general
administration at farm level that is needed for public administra-
tion and other purposes.

It can be observed that virtualization plays an important role to
represent input, output production units and resources. Providers
of inputs such as raw materials, technology devices and support
services are trying to add value to their products by selling
software and information in combination with their products.
Processors of products and retailers try to get more control on
the outputs from Farm Enterprises (e.g. certification information)
by introducing their software at the farm. Similarly, public admin-
istrations are introducing software for farmers to streamline the
information they need (e.g. for subsidies). At this moment the soft-
ware for farm management is usually produced by companies to
whom the farming domain is their core business. The software that
is involved at the input- and output side is usually provided by
third parties ranging from big established software companies to
small, innovative start-ups. All this software is specifically focuss-
ing on the Farm Enterprise and thus included in the farm object
system. Software producing companies are generally using generic
software components that according to Fig. 2 are considered to
come from outside the farm object system (e.g. FIWARE Generic
Enablers, Operating Systems etc.). Companies that are involved at
the input/output side (e.g. chemical companies, processors) also
have software to support their own production processes. These
software applications can have Application Interfaces to enable
data exchange with software applications used at the farm.

4.2. Functional requirements for a Farm Software Ecosystem

A Software Ecosystem was previously defined as the interaction
between Actors on top of a common technological Platform result-

11 www.isa.org.
12 http://www.opengeospatial.org/standards.

16 J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28
ing in a coherent set of ICT Products or Services. The previous sec-
tion described the object system that a Farm Software Ecosystems
has to focus on. The main question is how to operationalize and
organize a Farm Software Ecosystem around a common technolog-
ical Platform in order to meet and overcome the challenges intrin-
sic to the farm object system and mentioned in the introduction. To
answer this question functional requirements are derived within
the SmartAgriFood project, the FIspace project and an additional
literature analysis. In SmartAgriFood the users’ needs and expecta-
tions were derived and mapped onto the FIWARE GEs. This
resulted in a number of use case scenarios in particular for smart
farming that are previously published by Kaloxylos et al. (2012).
Based on these results, literature both on Software Ecosystems
and smart- and precision farming and the development of the
FIspace platform the following main functional requirement cate-
gories for Farm Software Ecosystem can be identified, which are:

� smooth data handling and seamless data exchange between ICT
Components (Kaloxylos et al., 2012; Kruize et al., 2013);

� a configuration approach to link ICT Components to each other
in a meaningful and coherent way (Kaloxylos et al., 2012;
Verdouw et al., 2014);

� interoperability of different ICT Components (Kaloxylos et al.,
2012; Kruize et al., 2013);

� an Open Software Enterprise that smoothly facilitates the previ-
ous points (Jansen et al., 2012).

The next subsections will describe these functional requirement
categories in more detail.

4.2.1. Data handling and seamless data exchange supported by
Standards

In general, but also in agriculture, the amount of available data
is exploding due to the introduction of all kind of sensing and mon-
itoring Devices. One aspect of this increasing amount of data in
agriculture is its storage and the transport capacity of the network.
Especially this transportation of data in agriculture is challenging
due to lack of connectivity and bandwidth in the remote areas
and the mobile ICT Components in farm environments. The storage
of farm data is mostly done in data repositories located at multiple
sites (e.g. at the farm or in different cloud repositories). Locating all
these data to one central place to add intelligence is difficult
because this data is often acquired by different ICT Components
(e.g. sensors, monitoring Devices or Application Components). Still,
farmers need integrated solutions in which access to data located
in distributed repositories with multiple Application Components
is required. This requires a Farm Software Ecosystem to support
the development of Application Components that are able to
exchange messages that contain data between distributed data
repositories. For seamless data exchange data lifecycle considera-
tions have to be taken into account (e.g. data collection, processing,
sharing).

To exchange data between different applications the Applica-
tion Programming Interfaces (API’s) must enable sending and
receiving messages. These messages must be based on technolo-
gies and semantics that are known by the other API’s. Technology
standards including the syntax are currently well standardized
(e.g. web-service technology using XML or Json as a syntax). Fur-
thermore, semantic standards are available although in agriculture
semantic standards or its implementation are often missing, mak-
ing data exchange between ICT Components cumbersome (Kruize
et al., 2013). The result is that farmers are not able to exchange
data between different ICT Components (e.g. data exchange
between FMIS and sensors) and are affected by a vendor lock-in
hindering farmers changing ICT Components (e.g. to change their
FMIS) (Kruize et al., 2013). In some cases, farmers would need
advanced data handling skills to make data exchange between
components work, which is a not desirable situation. Hence, Appli-
cation Components developed within a Farm Software Ecosystem
should be able to share data in an automated manner (Kruize
et al., 2013; Sørensen et al., 2010b). The sharing of data between
different Application Components should be organized in a robust
manner because new Application Components emerge over time,
needing data from existing ones. Therefore transfer of data
between Application Components should be facilitated based on
a shared Implementation of a communication protocol. Such a
communication protocol is based on both technical and data
semantic agreements. To enable the re-use of data from a semantic
perspective Application Interfaces require data that is tagged with
metadata or require certain data attributes. These metadata or data
attributes enable that data, saved in a data repository (e.g. data-
base) can be reused by multiple Application Components to sup-
port multiple Business Processes. This metadata should
additionally describe for what kind of purposes the data can be
used to resolve the fit for use aspect of data. From a technical per-
spective the integration of Application Components and their dis-
tributed data repositories requires a aligned technical
architecture (e.g. a Service Oriented Architecture) (Wolfert et al.,
2010).

Currently, there are multiple standardisation organizations that
organize data exchange between Application Components by pro-
viding technical and semantic standards. Examples are ISO Stan-
dards, ISA Standards11, OGC Standards12 and farm specific
Standards such as EDI-Teelt or AgroXML. The use of these standards
should be stimulated by Farm Software Ecosystems to enable data
exchange between Application Components of multiple vendors.
When existing standards are not proficient ad-hoc standards should
be implemented to enable data exchange between the Application
Components. The Farm Software Ecosystem should provide docu-
mentation about these ad-hoc standards. The documentation of
these ad-hoc standards can be provided to software developers
within the Farm Software Ecosystem to enable data exchange. Fur-
thermore, the documentation can be used to adapt existing
standards.

The exchange of data between different Application Compo-
nents is related to the next main requirement for Farm Software
Ecosystems: a configuration approach to link ICT Components to
each other that fit to the needs of the supported business process.
4.2.2. Flexible configuration of ICT Components
Every Farm Enterprise is unique in its specific Business Pro-

cesses and in the connections with other Actors at the input and
output side (see Fig. 2). Moreover, farm business can be very
dynamic because of changing situations (e.g. fluctuating markets,
weather changes, resources, etc.). These factors are influenced by
regional differences and different farming practices. At the same
time, at higher abstraction levels there are many similarities
between Farm Enterprises and their Business Processes. The chal-
lenge for Farm Software Ecosystems is to deliver customized ICT
Components based on both generic and specific Application Com-
ponents. For Farm Enterprises the configuration of an aligned and
integrated system, consisting of components of multiple vendors,
is required (Aubert et al., 2012; Fountas et al., 2005; Pedersen
et al., 2004; Pierce and Nowak, 1999). Farm Software Ecosystems
should therefore provide Artefacts that support software develop-
ers to develop interoperable ICT Components that can be config-
ured by farmers – or their service providers – into an aligned
Composite Application Component that dynamically supports cer-

http://www.isa.org
http://www.opengeospatial.org/standards

J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28 17
tain Business Processes and can be customized for their specific
circumstances. Such a configured ICT Component should have a
coherent look and feel regarding the User Interface to enable farm-
ers to participate in dynamic business networks and support a
variety of farm Business Processes and management goals.

A known configuration approach in software development that
fits to this requirement is called ICT mass customization. ICT mass
customization combines efficient standard software and flexible
customized software allowing the configuration of standardized
ICT Components into a customer-specific assembly (Verdouw
et al., 2010). To enable such a mass customization approach the
Farm Software Ecosystem must fulfil multiple functional require-
ments (Verdouw et al., 2014):

� Software Modularity – ICT products consist of loosely coupled
modules for which policy, input–output data, and Application
Interfaces are well defined and that can be easily substituted
by other modules;

� Information Integration Platform – deployed environment that
enacts the execution of modules and enables/manages the
exchange of information between them;

� Component Availability – all required components should be
readily available to configure the right Products that are
required by the customer;

� Configuration Support – adequate tools that guide users interac-
tively through the Product specification process at different
abstraction levels accounting for the fact that different configu-
ration steps can take place at different moments in time by dif-
ferent people;

� Reference Information Models – standardized taxonomies that
represent all possible configuration options of Product Instances
and the interdependencies that exist between Components or
features, including rules for permitted combinations.

In the current situation some ICT Components can exchange
data. However, services that support farmers in configuring ICT
Components into an integrated Farm Information System are
hardly available (Kruize et al., 2013). In a Farm Software Ecosystem
a common platform should enable integration of ICT Components
into an integrated system by dynamic orchestration of Application
Services, i.e. organizing, maintaining and managing. This requires
substantial knowledge about the customer that will use it. An over-
view of required Application Services -grouped as Functions – are
for example automated advisory, task plan analyser, crop availabil-
ity, etc. (Kaloxylos et al., 2012). To operationalize ICT mass
customization, ICT Components need to be interoperable such that
the components collaborate as they are one aligned and integrated
system.
4.2.3. Interoperability between ICT Components
Interoperability of ICT components is understood as compo-

nents that have a shared Implementation of a communication pro-
tocol (e.g. a transfer protocol, an Application Interface) to
communicate properly13. Interoperability enables that components
are able to share data and can collaborate as if they were compo-
nents of one aligned and integrated system. Such an integrated sys-
tem should be configured in which the actual farm Business
Processes are the foundation of the configuration process and the
selected ICT Components (Wolfert et al., 2010).

To create an aligned and integrated system that can cover and
support Business Processes of multiple Farm Enterprises a large
variety of Application Services is required. However (i) currently,
not all required Application Services are available and can be real-
13 Based on https://wiki.oasis-open.org/tab/InteropGuide.
ized by the ICT Components and (ii) ICT Components currently
used in a single arable Farm Enterprise have partly overlapping
and partly unique Application Services and Application Interfaces
(Kruize et al., 2013). Therefore, Farm Software Ecosystems should
enable that multiple vendors can develop interoperable Applica-
tion Components offering Application Services. These Application
Components can offer similar Application Services to stimulate
competition within a Farm Software Ecosystem or different Appli-
cation Services to offer enough functionality. The best fitting Appli-
cation Components can be selected in a configuration process. To
enable configuration each component should have a detailed sup-
plementary description in what kind of configuration the Applica-
tion Component can be used, what kind of input data is required
and what output data it provides. Additionally, the description of
the Application Component should describe the performance (e.g.
idle time) to ensure that the configuration works as a coherent sys-
tem. Such descriptions should show which Application Compo-
nents are interoperable and for what kind of configurations they
can be used. The Farm Software Ecosystem should provide guid-
ance to enable interoperability between ICT Components and pro-
vide a format for the description of each Application Component.

An overview of general requirements regarding seamless inter-
operability in collaborative-competitive economic networked
environments can be found in Chituc et al. (2009). These require-
ments focus on establishing collaborations with external Actors
regarding data exchange (e.g. weather data, input data).

Besides these aspects the Farm Software Ecosystem should pro-
vide an organizational structure that support the development of
interoperable ICT Components.

4.2.4. Organization
To develop interoperable ICT Components that can be used by

Farm Enterprises different Actors, with aligned incentives, per-
forming different roles are required to collaborate. To facilitate col-
laboration Farm Software Ecosystems should provide an
organization (Open Software Enterprise) (Jansen et al., 2012). This
Open Software Enterprise should enable the development of inter-
operable Application Components, the configuration process and
the operation of the configured Application Components in run-
time.

For this run-time environment a technological (cloud) infras-
tructure should be available to host the platform and which is able
to connect to all Application Components. Furthermore, it should
provide a revenue and cost sharing model as software developers,
infrastructure providers and configuration service providers are
using each other’s components and services. To facilitate this, basic
support for e.g. Contracts, payments, etc. is required. Furthermore,
when possible disputes arise the governance structure should pro-
vide a resolving mechanism.

For the development of interoperable Application Components
in a distributed environment a basic level of governance is required
and the collaborating Actors should agree on the use of both tech-
nical standards as semantic standards that are publicly available or
specific for a Software Ecosystem.

Overall, it is important that the Open Software Enterprise of a
Farm Software Ecosystem enables that costs are reduced so that
End-Users (e.g. farmers, contractors) can buy software functional-
ities that make their enterprises more advanced. Especially as
farms are relatively small enterprises and are not able to invest
large amounts of money in software. Therefore it will be required
that all kind of Actors, having aligned incentives, are able to
become part of a Farm Software Ecosystem to stimulate competi-
tion within the platform. Hence the Open Software Enterprise of
a Farm Software Ecosystem should be open and avoid domination
by large players that could cause vendor lock-ins, which ultimately
will hamper innovation (Gawer and Cusumano, 2002). According

https://wiki.oasis-open.org/tab/InteropGuide

18 J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28
to Eisenmann et al. (2008) a Software Ecosystem is ‘open’ when (i)
no restrictions are placed on participation in its development, com-
mercialization or use and (ii) any restrictions are applied uniformly
to all potential platform participants (e.g. requirements to conform
to technical standards or pay licensing fees are reasonable and
non-discriminatory). Still, other forms of governance of Open Soft-
ware Enterprises, for example with a more dominant player, can as
well result in successful Software Ecosystems.
4.2.5. Technical/non-functional requirements
Beside the functional requirements that are mentioned so far,

there are several functional requirements to be addressed, such
as user management, data security, routing of information or
machine-to-machine communication. Although these require-
ments are very important in the end, they are considered to go
beyond the scope of this paper because they are not very specific
for Farm Software Ecosystems.
4.3. Specifications for Farm Software Ecosystems

The requirements from the previous section are summarized in
Table 2 which can be found in the Appendix. Based on these
requirements specifications for Farm Software Ecosystems are
derived that can improve farm enterprise integration. These spec-
ifications supported designing the reference architecture for Farm
Software Ecosystems and are::

� The ecosystem should provide functional ICT Components for
farming that
– can be based on Application Components developed by var-

ious Actors independently;
– allow for distributed data exchange in an automated, seam-

less manner;
– use existing standards or be able to exchange data with ICT

Components using other standards to enable data exchange.
– support a configuration approach of the aforementioned

interoperable Application Components that can be deployed
in a distributed manner

� The ecosystem should enable Actors to perform different roles
to enable that different Business Services for farming are
offered that support:
– software configuration
– software development
– software hosting

� The main categories of Actor roles are providers of ICT Compo-
nents (Software Vendors), Agricultural Service Providers, Provi-
ders of the Infrastructure and users of these Services and the ICT
Components. These Actor should be able to:
– join the ecosystem;
– influence the ecosystem and enable innovation;
– form a critical mass of users and providers to make the

ecosystem efficient and effective;
� A common and open Platform is needed:
– to facilitate collaboration between various Actors using the

ICT Components and its Application Services;
– that provides consistent standards for this collaboration that

in the future will not create restrictions for exploitation
(backwards- and forwards compatibility) so that multiple
ecosystems around the same platform are possible;

– that supports:
o development of ICT Components according to the plat-

form standards;
o development of cohesive User-Interfaces to improve the

user experience;
o configuration of ICT Components into integrated systems
in an easy but consistent manner, using reference infor-
mation models.

� An Open Software Enterprise should:
– provide the actual (cloud) infrastructure to make the ecosys-

tem possible;
– orchestrate the whole collaboration process and resolve pos-

sible disputes;
– be neutral toward the other Actors in the ecosystem or at

least transparent in case they also participate as provider
of services and/or ICT Components;

– not be dominated by a single organization;
– manage the platform in such a way that it is affordable for

SMEs to participate;
– ensure that Application Components are developed accord-

ing to the Platform Architecture (e.g. a service-oriented
architecture) to facilitate configuration and collaboration;

– ensure that Application Components contain an description
to enable the use of it in various configurations;

– ensure that the data shared between Application Compo-
nents are tagged.

5. Basic design of a Farm Software Ecosystem reference
architecture

A reference architecture for a Farm Software Ecosystem
describes the generic structure (concepts and relations) of specific
Farm Software Ecosystems. In this section a Farm Software Ecosys-
tem reference architecture is described according to the require-
ments and specifications that were defined in Section 4. At the
end an illustrative example is provided to show how the different
components fit together in practice. A table containing all the com-
ponents and sub-components that are part of the Farm Software
Ecosystem reference architecture can be found in Section 6.2
Table 1. This table is used to map the existing Farm Software
Ecosystems.

5.1. High-level description of the reference architecture

Fig. 3 provides a high-level view of the Farm Software Ecosys-
tem reference architecture design. The architecture comprises five
main components: (i) Actors, (ii) Platform, (iii) Open Software
Enterprise, (iv) Business Services and (v) ICT Components. Actors
provide or use ICT Components and Business Services. The Plat-
form includes ICT Components for End-Users. The relation between
the Actors and the Platform is managed by the Open Software
Enterprise (organization). The following subsections will describe
various components of the design in more detail.

5.2. Platform

A platform is a set of stable components that supports diversity
and evolution in a system by constraining the linkages among the
other components (Baldwin and Woodard, 2008). These compo-
nents are integrated and work as an integrated system. These com-
ponents include software and service modules, along with an
architecture that specifies how they fit together (Eisenmann
et al., 2008). A Platform used within Farm Software Ecosystems
must be able to support four Actor roles which are; end-users
(e.g. farmers, contractors), software vendors/developer (e.g. app
developer), agricultural services providers (e.g. a configurator of
different systems) and the Platform orchestrator that among others
runs the Platform. With such a Platform a configurator should be

Table 1
Mapping of the Farm Software Ecosystem reference architecture components and sub-components on the Farm Software Ecosystems Crop-R and AgroSense.

Components of the Farm Software Ecosystem reference architecture Sub-Components Part of AgroSense Part of Crop-R

Open Software Enterprise Open Software Enterprise structure Yes Yes
A partnership model/Actor model No Yes
IP Strategy Documentation Yes No
Technology Vision Yes Yes
Technology research vision Yes Yes
Technical Architecture Documentation Yes Yes
Farm Information Model - -
Actor Model Yes No
Business Control Models No Yes
Business Process Model No No
Data Model Yes Yes
Application Programming Interface Yes Yes
Collaborative tools Yes Yes
Configuration Support documentation No No

Actors Orchestrator Role Yes Yes
Niche Player Role Yes Yes
External Actor Role Yes Yes
Vendor/Value Added Reseller Role Yes Yes
End-User/Customer Role Yes Yes
Software Vendor Role Yes Yes
Agriculture Service Provider Role Yes Yes
Infrastructure Provider Role Yes Yes
Customer/End-User Yes Yes

Business Services Business Services Offered Yes Yes

Platform Operating System Yes Yes
Orchestration Module Partly No
System and Data integration module Yes Yes
Security Privacy Trust Framework Yes Yes
Development Kit Yes No

ICT Component Atomic Application Components Yes Yes
Composite Application Components Yes Yes

Pla�orm

ICT Components

Business Services

Actors

1

*

*

*

-is used by

-Provide

-Is used by

Open So�ware Enterprise

1

-Is used by

*

-Provide

1

Farm So�ware Ecosystem

-provide * *

*

Fig. 3. High-level view of the Farm Software Ecosystem reference architecture.

J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28 19
enabled to configure an ICT Component for a farmer using Applica-
tion Components of multiple vendors. More details regarding these
roles can be found in Section 5.3.

According to the requirements and specifications that were
defined in Section 4 platform modules are defined. Each of these
modules has independently value for the actor roles using the Plat-
form. These modules can be found in Fig. 4 that provides the basic
architecture. In this platform architecture five modules are
defined; Operating System, Development Kit, Orchestration, Secu-
rity, Privacy & Trust framework and System & Data Integration.

The system & data integration module must provide API’s to
enable smooth data exchange between Application Components
and enables access to distributed data repositories. To enable
smooth data exchange it should contain mechanisms for data

Fig. 4. Basic architecture of a platform for a Farm Software Ecosystem. Adapted
from the FIspace platfor.

20 J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28
mediation to be able to handle heterogeneous data from various
sources. Additionally, Payment of Application Services should be
handled within this module.

The security privacy & trust framework manages all the connec-
tions. These connections can be with external data and systems or
with human users. To manage these connections secure authenti-
cation and authorization methods that meet required levels of
security assurance are used.

An orchestration module enables configuration. In this module
linkages between different Application Services of Atomic Applica-
tion Components (or Platforms) can be defined14. After configuring
Application Services of Atomic Application Components the module
intermediates between status and events of each individual Applica-
tion Component. The technical specifications of this configuration
are not provided in this paper and will be presented in future
research. In this paper there is a focus on the organizational aspect
of configuration which will be described in more detail in
Section 5.4.

A software development kit is available to enable software
developers to develop Application Component that can become
part of the Farm Software Ecosystem. It supports the development
of Application Components that can be connected to the orchestra-
tion module and should stimulate that the Application Compo-
nents have a coherent look and feel regarding the User Interface.

The operating system module is needed to ensure the technical
interoperability and communication between the different Plat-
form components so that it operates as a consistent whole. One
aspect is the execution of the configured ICT Components.

Regarding the deployment of the Platform and the configured
ICT Components we do not provide a detailed description. Some
Platforms are instantiated on a cloud Node, others on a server that
is part of an enterprise and others are instantiated on a client such
as a personal computer at a farm. The deployment of such a Plat-
form and the associated ICT Components can differ for each Farm
14 Within a Farm Software Ecosystem one or more Platforms can be present. In the
case of configuration, one Platform will be in charge of the orchestration by
connecting Application Services offered by Atomic Application Components and/or
Platforms. In the case of competition between Farm Software Ecosystems and its
Platforms, data from one Platform should be exported to another. In such case a data
broker could be useful to exchange (and maybe store) data used by both platforms.
Software Ecosystem. A detailed description of a specific Platform
for farming can be found in Kaloxylos et al. (2012) and Kaloxylos
et al. (2014). A description of how the platform in the FIspace pro-
ject was developed can be found in Verdouw et al. (2014).

5.3. Actors and their relationships

In a Farm Software Ecosystem multiple Actors collaborate hav-
ing different organizational and operational roles. The five organi-
zational roles are (Manikas and Hansen, 2013):

� Orchestrator – manages the software ecosystem and is responsi-
ble for its overall functioning and performance; runs the Plat-
form, creating and applying rules, processes, business
procedures, setting and monitoring quality standards and/or
orchestrating the Actor relationships determining the openness.

� Niche Player – develops or adds ICT Components to the technical
Platform, producing functionality that customers or End-Users
require.

� External Actor – makes use of the possibilities of the Farm Soft-
ware Ecosystem and providing indirect value to the ecosystem
(e.g. by testing the platform and Application Components or
by providing business services to End-Users).

� Vendor/Value Added Reseller – makes profit from selling the ICT
Components to End-Users or other vendors/value added
resellers.

� End-User/Customer – purchases or obtains a complete or partial
Product which is a service and/or a configuration of ICT Compo-
nents (e.g. farmers, agronomists).

From an operational point of view Actors part of Farm Software
Ecosystems can be classified into four main roles (Handoyo et al.,
2013):

� Software Vendor (Software Developer) – is developing the techni-
cal platform, the Application Components and the Devices/
Nodes.

� Agricultural Service Provider – provides organizational Business
Services including selling, customization, deployment and
maintenance of ICT Components and operational services
including End-User oriented functions and data. Examples of
Business Services are requirements engineering, configuration
and orchestration support of ICT Components.

� Infrastructure Provider – provides a technical infrastructure (e.g.
servers, networks).

� Customer/End-User – uses ICT Components or Services that are
offered by the Software Ecosystem (e.g. farmers, agronomists).

In practice, organizational and operational roles can be played
by one and the same company.

5.4. ICT Components, configuration and orchestration

The end-user roles (e.g. farmers, contractors, agronomists) are
supported in their Business Processes by ICT Components. These
ICT Components will usually be a configuration of several sub-
components that should collaborate seamlessly and support
dynamic business collaboration processes. Therefore it is necessary
to define these components in a more detailed way. The relation-
ship between several components is presented in Fig. 5.

An ICT Component is an Application Component that is
deployed on a Node (e.g. local computer, internet, etc.) which sup-
ports one or more Business Processes of a company. An example of
an ICT Components is the hard- and software of a terminal or PC
that supports a spraying process. An Application Component is a
modular, deployable, and replaceable piece of software system that

Composite Applica�on ComponentAtomic Applica�on Component

1-parts * composi�on 1

+parts

*

composi�on

Applica�on Component

Agri-Food Company

ICT Component Node

Device

+hosted in

*

+so�ware

*

Informa�on System

+integrated with1

+used SECO components*

+account in

*

+users

*

Service

Configura�on

*-configured ICT component

1

Pla�orm

1

*

Fig. 5. A UML Class diagram describing the relationships between various components in the Farm Software Ecosystem. Further explanation can be found in the text.

J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28 21
encapsulates its behavior and data and exposes these through a set
of Application Interfaces (Wiederhold, 1992), for example a soft-
ware module for spraying that needs to be deployed on a Node.
ICT Components can be either based on Atomic Application Com-
ponents or Composite Application Components. An Atomic Appli-
cation Component is a piece of software, not able to share data
automatically with other Application Components, e.g. a loose
App on a smartphone that provides weather information. A Com-
posite Application Component is a configuration of Atomic Appli-
cation Components that performs collective behavior and has a
coherent user-interface, in which data is automatically exchanged
between (Atomic) Application Components. The orchestration
module of the Platform makes them work together seamlessly as
if it was one system. Therefore, the Composite Application Compo-
nents require that each individual component keeps to be main-
tained and stays operational. When one component fails the
whole composite component might fail. This requires the Farm
Software Ecosystem organization to provide functionalities that
covers these issues.

In a configuration process Application Services of different
Application Components are selected and configured that can sup-
port Business Processes of a specific farm. The ICT Components can
be offered by actors within the Farm Software Ecosystem roles
software vendor or agricultural service provider and are based on
various (Atomic or Composite) Application Components. A config-
ured ICT Component can be instantiated multiple times and, in this
way, support similar Business Processes. For example, an actor
having the agricultural service provider role configures a Compos-
ite Application Component that can support crop protection pro-
cesses. This Composite Application Component can then be
instantiated on different Devices (e.g. a computer or the hardware
of a Terminal) so that the resulting ICT Component can support
similar Business Processes at different Farm Enterprises. Addition-
ally, an instantiation of the Application Component part of an ICT
Component can take place several times at the same Farm Enter-
prise. In this case, a Farm Enterprise can be supported in the crop
protection Business Process, basically returning every season, with
the same Application Component that is instantiated and cus-
tomized to the actual situation (e.g. field, crop, etc.) of each season.

Maintenance support – a role that can be played by an agricul-
tural service provider - is needed because (Atomic) Application
Components will usually be offered by different vendors or Agri-
cultural Service Providers. If one (Atomic) Application Component
stops working, a whole (Composite) Application Component and
ultimately the ICT Component and Service might malfunction as
well. Therefore, a monitoring service is required that checks if each
component is working correctly and if not repair or replace it with
another one. These situations should also be carefully described in
agreements between the users and providers of components. That
will be discussed in the next section.

5.5. Business Services and Contracts

Farmers require a variety of Business Services for support. An
example of an Business Service that should be offered by an agri-
cultural service provider in a Farm Software Ecosystem is the sup-
port of a configuration process (Kruize et al., 2013). Configuration
processes are knowledge intensive because the functionality of
multiple Application Components and possible configurations
need to be known. Therefore, a farmer might not be able to config-
ure a Composite Application Component himself, requiring an agri-
cultural service provider to help. In Fig. 6 the relationship between

Business Service

Pla�orm

Ag. Service Provider

*

1 1

*

* *

Configura�on

Fig. 6. Relationship between the role Agricultural Service Provider, and its Business
Service (Configuration). Further explanation is in the text.

22 J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28
the agricultural service provider role, the Business Service ‘Config-
uration’ and the use of the Platform to enable a configuration pro-
cess is described.

To enable collaboration between Actors that perform different
roles contractual arrangements are required to support collabora-
tion using a Contract. Contracts can be formal when two roles col-
laborate that are part of different legal entities or less formal when
two roles collaborate that are part of the same legal entity. The
relationships between Actors in a certain role in which a Contract
forms the formal connection are described in Fig. 7.

Fig. 7 describes three possible contractual agreements; in real-
ity there can be more. The first one is between a software vendor
that provides a licence to an agricultural service provider to use
an Application Component in a configuration Service. The Contract
describes e.g. how much is paid on what basis, use and ownership
of the data that is involved, etc. The second one is about collabora-
tion between an agricultural service provider and an agri-food
company. The agricultural service provider configures an
So�ware Vendor

Infrastructure Provider

Contract

applica�on component customers

co
nt

ra
ct

s

Applica�on Component

contracts

hosts customers

contracts

ICT component

So�ware vendors provide
Applica�on components to
Service provides following
contractual agreements

Infrastructu
ICT Compon
Companies
agreements

Fig. 7. Relationships between several Actors of a Farm Softw
Application Component which is bought by an agri-food company.
This Contract contains agreements about the costs, service level,
data use, etc. In the third example an agri-food company collabo-
rates with an infrastructure provider. The agri-food company pays
an infrastructure provider to host an ICT Component and eventu-
ally to provide data storage. Beside collaboration of Actors with dif-
ferent operational roles Actors can collaborate with Actors having
the same operational role. For example, an agricultural service pro-
vider, offering a data services, can collaborate with another agricul-
tural service provider that aggregates data into new data.
5.6. Open Software Enterprise

In a Farm Software Ecosystem Actors, which are part of various
legal entities at different geographical locations, need to collabo-
rate and develop software across organizational boundaries. The
Open Software Enterprise that has to facilitate and orchestrate
the ecosystem should fulfil this role. Different Farm Software
Ecosystems can implement such an Open Software Enterprise in
different ways. For example, an Open Software Enterprise can be
orchestrated by a single company or a joint venture of companies
that facilitates the ecosystem and possibly also the platform infras-
tructure. Because of these variation in implementation of Open
Software Enterprises we cannot provide an exact blueprint of
how they should be organized, but at least they should enhance
innovation and collaboration by covering the following aspects,
based on Jansen et al. (2012): (i) Governance, (ii) Research and
Development, (iii) Software Product Management, (iv) Marketing
and Sales and (v) Consulting and Support Services. The following
subsections will describe this in more detail.
5.6.1. Governance of a Farm Software Ecosystem
An Open Software Enterprise governs a Farm Software Ecosys-

tem that involves the assignment of roles and decisions rights, as
well as the measures and policies that enable continuation of the
ecosystem. The processes that are part of the governance process
group will be performed by Actors having an orchestrator role.
The ability of other Actors to participate in the ecosystem and
Ag. Service Provider

Agri-Food Company

custom
ers

ICT Com
ponent

Ag. Service providers configures
Applica�on Components into
ICT Component for Agrifood
Companies following
 contractual agreements

re providers host
ents for Agrifood
following contractual

are Ecosystem in which a Contract plays a central role.

J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28 23
the decision making aspects of the governance determines the
openness of each individual Farm Software Ecosystem. Indepen-
dent of the openness of each ecosystem, an orchestrator must
allow multiple Actors to develop and build ICT Components and
Services using the Farm Software Ecosystem Platform. Two impor-
tant aspects should be taken into account:

� Partnership Model – describes the organizational model of the
Farm Software Ecosystem and makes governance policies
explicit.

� IP Strategy Documentation – describes how to use and reuse
source code, data libraries, etc. which is an important basis for
the contracts between Actors.

5.6.2. Research and development
Farm Software Ecosystems will develop continuously and

should follow the state of the art in technology developments. A
research and development strategy is therefore important in which
the direction of the Platform, the Application Components and the
ICT Components is determined and should address:

� Technology Vision – identifies the upcoming challenges that are
relevant to the domain on which the software business
focusses;

� Technology Research Vision – defines the research priorities that
the Actors of the Farm Software Ecosystem will focus on for the
next two to three years;

� Documentation of the architecture – describes the platform archi-
tecture as the fundamental organization of a system embodied
in its components, their relationships to each other and to the
environment, and the principles guiding its design and evolu-
tion (IEEE 1471:2000);

� Farm information model – describes the organization of Farm
Enterprises providing a systematic representation from differ-
ent viewpoints and at various abstraction levels (Verdouw
et al., 2010). The most important information model levels are
actor- business control-, business process- and data models that
describe the semantics (Wolfert et al., 2010);

� Application programming interfaces documentation – defines and
describes how a particular Application Component could and
should be used by other components, including semantic
specifications;

� Development of Collaborative Tools – required for collaborative
software development (e.g. communication, project manage-
ment, issue tracking, bug tracking, globally accessible backlog,
burn down chart tools etc.) (Hossain et al., 2009).

5.6.3. Software Product Management and configuration support
documentation

Software Product Management is a process of managing Prod-
ucts (ICT Components), taking lifecycle considerations into
account. Software Product Management focusses on the details of
the Products such as the requirements, quality, development and
marketing (Jansen et al., 2012) and will be mostly performed by
Actors that have an agricultural service provider role. Actors col-
laborating in software product management processes should
ensure that a variety of modular Application Components is avail-
able that can be configured into farm specific ICT Components,
which contain Composite Application Components.

Because configuration of different Application Components is a
key asset of Farm Software Ecosystems, it should be carefully doc-
umented how to do this. The available Application Components
and their additional descriptions should be documented. This
documentation can be supported by the farm information model
that describes – or possibly prescribes – certain processes or work-
flows in farming and the type of Application Components that
could – or should – be used. Examples and tutorials will help soft-
ware developers to adopt these principles quicker.

5.6.4. Marketing and sales
Processes of the marketing and sales process group focus on the

marketing of the Products. Actors with a software vendor role or
agricultural service provider role that sell Composite Application
Components will perform most of these Business Processes. Mar-
keting and sales of a Farm Software Ecosystem is essential to
attract a large amount of end-users. A large amount of end-users
makes the ecosystem more viable and attracts vendors to offer
new Application Components.

5.6.5. Consulting and Support Services
Consulting and support service focuses on supporting end-users

with implementing and using their ICT Components. These pro-
cesses will be mostly performed by Actors having an agricultural
service provider- or infrastructure provider role. They should pro-
vide implementation services, in which they support other Actors
in configuring a Service or ICT Component e.g. by providing docu-
mentation, reference information models, tutorials, example con-
figurations, etc.

5.7. Example of a Farm Software Ecosystem

In the example Farm Software Ecosystem ‘Alfa’ different fictive
actors collaborate. This collaboration results into an illustrational
implementation of which the layout is presented in Fig. 8. In this
example a farm enterprise is supported in crop protection by a
FMIS that is configured, using a platform, from different compo-
nents that are provided by different Actors.

The farm Information System contains three Atomic Application
Components, each offering specific Application Services. Atomic
Application Component 1 offers a sensor-based field monitoring
service that provides the climate conditions of a specific field.
Atomic Application Component 3 can receive these sensor data
and is able to analyse this data to provide insight into the risk of
some diseases. Atomic Application Component 3 requires basic
crop data (e.g. crop, planting time, soil type of field) that is pro-
vided by Atomic Application Component 2. The disease analysis
is presented to the farmer using a coherent user interface in a Com-
posite Application Component that is configured from Atomic
Application components 2 and 3. The components are deployed
through the Internet by a cloud Node into ICT Component I that
can be used by the farmer as an FMIS to support a crop protection
process. As indicated in Fig. 8, ICT Component I is offered to the
farmer by an agricultural service provider. This agricultural service
provider has configured Atomic Application Components from
Software Vendor A and B into a Composite Application Component.
It should be noted that only ICT Component I is part of a platform
that is hosted by an infrastructure provider, but through an Appli-
cation Interface it can use the sensor data from ICT Component II.
As indicated, the Sensor (ICT Component II) can also be used stand-
alone by the farmer if necessary or in similar ways to support other
processes (e.g. fertilization) that requires the same sensor data.

If one of the three Atomic Application Components is not work-
ing according to the requirements of the farmer it can be replaced
by a similar one that is offered within Farm Software Ecosystem
Alfa. This process is supported by an independent agricultural ser-
vice provider. In such case a reconfiguration is needed. This can

Fig. 8. Layout of the farm software ecosystem ‘Alfa’ showing how different components and Actors roles are related to each other. Further explanation is in the text (The
model can be downloaded using the following link: http://tinyurl.com/gwbpdco).

24 J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28
prevent a vendor lock-in as an Application Component from a ven-
dor can be replaced by an Application Component from another
vendor. Moreover, the farmer can not only change the software
vendors that offer Atomic Application Components, he can change
the infrastructure provider or agricultural service providers as
well. This enables the Farm Enterprise to configure an Information
System that is flexible and can fulfil specific requirements over
time.

The Farm Software Ecosystem concept can prevent vendor lock-
in as multiple vendors can compete within the same Ecosystem
and specific Application Components can be exchanged. Still, the
farmers could be locked into a specific Farm Software Ecosystem.
To reduce the risk on a Farm Software Ecosystem lock-in the use
of data standards within Farm Software Ecosystems is recom-
mended. This would enable transferring data from one Farm Soft-
ware Ecosystem to another.
6. Evaluation

This section describes the evaluation of the Farm Software
Ecosystems reference architecture. First, the reference architecture
is verified by checking the requirements with the design. Second, a
conceptual validation is presented in which the reference architec-
ture is used for mapping the existing Farm Software Ecosystems
AgroSense and Crop-R. The evaluation misses a verification regard-
ing the usefulness of the reference architecture to asses, design and
implement Farm Software Ecosystems.
15 The description of each Farm Software Ecosystem can be found on: http://
tinyurl.com/gwbpdco.
6.1. Requirements verification

In Section 4.2 requirements regarding Farm Software Ecosys-
tems are presented. Software Ecosystems fulfilling these require-
ments should resolve current integration challenges in farming
and enable Farm Enterprise integration. To contribute to Farm
Enterprise Integration this research has designed a Reference
Architecture for Farm Software Ecosystems. This architecture can
be used to map, asses, design and implement real worlds Farm
Software Ecosystems that fulfil the requirements presented in Sec-
tion 4.2. As a verification these requirements and our design are
compared, see Table 2 that can be found in the Appendix. For each
requirement we describe what part of the reference architecture
addresses the requirement. Based on this verification we conclude
that all requirements are addressed by the reference architecture
for Farm Software Ecosystems.
6.2. Validation of the reference architecture by mapping existing Farm
Software Ecosystems

As a conceptual validation, the Farm Software Ecosystem refer-
ence architecture was used to map the existing Farm Software
Ecosystems AgroSense and Crop-R. Based on such a mapping simi-
larities and differences between real-world Farm Software Ecosys-
tems should become visible. Additionally it provides a comparison
between the reference architecture and real-world Farm Software
Ecosystems. Too create a mapping the components (Open Software
Enterprise, Platform, ICT Components, Actors and Business Services)
and sub-components provided in the referencearchitecture areused
to describe the real world Farm Software Ecosystem. The results of
the mapping can be found in Table 1. A more detailed description
of both Farm Software Ecosystems can be found online15.

The mapping of the real-world farm Software Ecosystems on
the reference architecture shows that many components and
sub-components of the reference architecture are part of real-
world Farm Software Ecosystems. Both Farm Software Ecosystems
together provide a more encompassing mapping. This shows that
the reference architecture can be used to map the real-world Farm
Software Ecosystems.

The interviews with the CTO’s showed that this mapping pro-
vides insight into real-world Farm Software Ecosystems as similar-
ities and differences can be found that depend on the scope and
objectives. Crop-R focusses more on combining data from multiple
sources to provide information to farmers. Their focus is less on
configuration and system integration and the orchestration of ser-
vices is coded in the platform. AgroSense has more focus on inte-
gration aspects and provides a software development kit and
modules can be added by other software developer to the Platform.
These modules provide specific functionalities and include the
coded orchestration of services. Both Platforms do not yet provide
a flexible configuration approach. Consequently, both existing
ecosystems AgroSense and Crop-R do not provide documentation
for configuration support. This indicates that configuration, and
how this should be done, is not yet well developed although it is
identified as a major requirement for Farm Software Ecosystems
(see Section 4.2). An extensive configuration approach is currently
missing in both Farm Software Ecosystems. However, it should be
noted that these ecosystems are still developing and that new parts
are becoming available in the near future.

http://tinyurl.com/gwbpdco
http://tinyurl.com/gwbpdco
http://tinyurl.com/gwbpdco

J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28 25
7. Discussion and conclusions

This paper proposed a reference architecture for Farm Software
Ecosystems that contributes to software development to enable
smart farming. Seamless data exchange and dynamic interoper-
ability of different Application Components to enable configuration
were identified as the most important challenges. A suitable con-
figuration approach is necessary to link Application Components
to each other in a meaningful and coherent way. The resulting
Composite Application Component needs to be deployed at Farm
Enterprises and be supported by a agricultural service provider.
An Open Software Enterprise governs and facilitates the ecosystem
and the collaboration between Actors. The reference architecture
can be used to map current real-world Farm Software Ecosystems
and it is expected to be able to design and implement future Farm
Software Ecosystems.

It was demonstrated how Farm Software Ecosystems can
align software development with multiple Actors in a distributed
environment. In such an ecosystem small players can focus on
development of small Application Components while relying on
larger ICT players that provide general infrastructural compo-
nents (data storage, servers, etc.) or more complex analyses
(e.g. super computers, big data) by generic software components
(see Fig. 2). In this way innovation can be stimulated giving
small start-up companies a fair chance to accelerate their inno-
vative product and gain market share. This approach is currently
stimulated in the FIWARE accelerator program16, which is partly
connected with the FIspace Platform, and in which agriculture is
an important focus area. For end-users in the ecosystem it is
expected that the alignment of software development will lead
to better and more affordable solutions because innovation costs
are shared. Additionally, the solution can become more flexible
because end-users can change the different sub-components of
an integrated solution, which will stimulate competition at that
level.

For integration of different sub-components it is important that
the configuration process is supported in an appropriate and
well-defined manner. It was concluded that both evaluated Farm
Software Ecosystems, AgroSense and Crop-R, are lacking such a
support. The FIspace Ecosystem and platform provides a business
collaboration core for that purpose (Kruize et al., 2014; Verdouw
et al., 2014), although this platform and its ecosystem is still being
established. Reference information models - especially Business
Process models – could play an important role in a configuration
process by describing the farm Business Processes at various levels
and from different viewpoints (Verdouw et al., 2010). Such refer-
ence information models are also still poorly defined in the current
FIspace architecture. They should also refer to common standards
as much as possible to ensure interoperability at higher integration
levels and acceptation by many users at a global level. The refer-
ence models and standards could be offered by an (agricultural)
service provider to one or more Farm Software Ecosystems. Future
research should focus on developing these information models for
Farm Software Ecosystems to provide knowledge about software
configuration.

The reference architecture presented in this paper is supposed
to be a common basis for various Instances of Farm Software
Ecosystems that could compete with each other. However, the
Open Software Enterprises should prevent ecosystem lock-ins, i.e.
that End-Users are hindered in substituting components from
one ecosystem to the other. To that end, a kind of federated struc-
ture between the different Farm Software Ecosystems is needed.
16 www.fiware.org/fiware-accelerator-programme.
This can be reached by using common standards mainly focussing
on platform and semantic interoperability.

Although the general market principles and business models
for Farm Software Ecosystems will not be fundamentally different
in comparison to the past, there are definitely new modes of col-
laboration emerging that make it necessary for companies to
reconsider their strategies (Porter and Heppelmann, 2014). Devel-
opers of application and ICT Components should realize that their
solution will be part of larger integrated solutions at a higher
level. As a consequence, they should not focus at the final end-
user so much but establish collaboration with agricultural service
providers supporting configuration and other Application Compo-
nent developers. It also becomes more important to comply with
common standards as much as possible to increase the potential
usage of a component at a global level. Agricultural Service provi-
ders could focus on specific end-users groups (e.g. farmers, input
suppliers) combining personal advice and communication with
the best customized configuration of ICT- and Application Compo-
nents based on flexible Contracts. These are just a few examples
of developments in new business models that can be expected
from Farm Software Ecosystem development. Examples from
other sectors show that successful business models emerge grad-
ually as the ecosystem develops (Van ’t Spijker, 2014). An essen-
tial issue in these developments is about data ownership,
security, privacy and trust. Although the importance was empha-
sized in this paper, further research is needed on how to deal
with this topic in the context of open dynamic Farm Software
Ecosystems.

From this discussion it can be concluded that there are still
technical challenges to be met, especially in the configuration of
different components into integrated solutions. It is also clear that
there are still many organizational developments needed to suc-
cessfully develop Farm Software Ecosystems. The reference archi-
tecture in this paper can help to guide these developments,
which can enrich the architecture.

Acknowledgements

This project was partly funded by the Dutch Program on Preci-
sion Agriculture (PPL) and the FIspace project, which is a FI-PPP
phase 2 project, granted by the EC in FP7 under grant agreement
n� 604123. Furthermore we want to thank all the persons who con-
tributed to the case studies, especially Ivor Bosloper, Nicole Bar-
telds and Timon Veenstra. Thanks are due to Dr. John McBreen
for valuable editorial contributions.
Appendix A. Requirements table

See Table 2.
Appendix B. Ontology

In this research a first version of an ontology has been devel-
oped to describe our research object: Farm Software Ecosystems.
This ontology can be found in Table 3, and is based on literature
(See http://tinyurl.com/gwbpdco). It is developed iteratively dur-
ing this research and open for improvements in future. The ontol-
ogy provides descriptions of concepts and Artefacts and should
describe the research object Farm Software Ecosystems from a
farm perspective and from a software development perspective.
In these descriptions italic words denote to other concepts or Arte-
facts defined within the ontology. This ontology is used to describe
the requirements, basic design and case studies. In the basic design
relations between some of these concepts and Artefacts are
presented.

http://tinyurl.com/gwbpdco
http://www.fiware.org/fiware-accelerator-programme

Table 2
Requirements and design verifications.

Category # Requirement Design verification

Data handling and
seamless data
exchange

1.1 Enable message (data) exchange between
distributed systems

Message exchange is address in the architectures part:
� Open Software Enterprise, specifically R&D
o Stimulates to use standards and the development of an Information model
o Defining API’s
� Platform
o Stimulates linking Application Components (configuration)
o Proposing System and Data integration module
� ICT Components
o Describe configuration

1.2 Provide technical and semantic standards to
facilitate data exchange

Providing technical and semantic standards is done in the architecture part:
� Open Software Enterprise, R&D;
o Stimulating the use of existing standards
o Defining API’s

1.3 Enable the re-use of data The re-use of data is addressed in the architecture part:
� Open Software Enterprise, specifically R&D and Governance
o Stimulates to use standards and the development of an Information model
o Defining API’s
o Provide IP Strategy Documentation
� Platform
o Stimulates linking Application Components (configuration)
o Proposing System and Data integration module
� ICT Components
o Describe configuration

1.4 Stimulate the use of existing standards Stimulating the use of standards is addressed in the architecture parts:
� Open Software Enterprise, specifically R&D:
o Stimulates to use standards and the development of an Information model

Configuration of ICT
Components

2.1 Deliver customized ICT Component configurations Customization of ICT Components is addressed in all the architecture parts:
� Open Software Enterprise
� ICT Components
� Platform
� Actor descriptions
� Business Services

2.2 Provide artefacts supporting a multi-vendor
software development

This is addressed in the part about the Open Software Enterprise; the artefacts
to stimulate collaboration are listed

2.3 Develop integrated systems with a coherent User
Interface regarding the look and feel

The development of integrated systems in addressed in the parts about:
� the Open Software Enterprise
� Platform
� ICT Components

2.4 Enable software modularity Software modularity is addressed in the parts about:
� the Open Software Enterprise
� Platform
� ICT Components

2.5 Provide an information integration platform This is addressed in the part about the Platform
2.6 Component availability This is addressed in the parts:

� Open Software Enterprise, Marketing and sales where is described how
this can stimulated actors to join a Software Ecosystem

2.7 Configuration support This is addressed in the part
� Business Services
� Actors
� Open Software Enterprise, Consulting and Support Services

2.8 Reference Information model This is addressed in the part:
� Open Software Enterprise, R&D

Interoperability of ICT
Components

3.1 Provide meta data about Application Components
(e.g. performance etc.)

This is addressed in the part:
� ICT Components
� Open Software Enterprise, Product Management

Open Software
Enterprise’s

4.1 Provide an Open Software Enterprise This is addressed in the part:
� Open Software Enterprise

4.2 Provide hosting for the platform This is addressed in the part:
� Actors, by describing the different roles actors can take in a Farm Software

Ecosystem
4.3 Enable collaboration between multiple vendors This is addressed in all parts of the reference architecture
4.4 Enable competition between actors within Farm

Software Ecosystems
This is addressed in the part:
� Open Software Enterprise,
o Governance, proving a Partnership Model

4.5 Stimulate innovation This is addressed in the part:
� Open Software Enterprise,
o Governance, by proving a Partnership Model and IP strategy Information
o Research and development
� Software Product Management

26 J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28

Table 3
First version of an ontology for Farm Software Ecosystems. The references of these definitions can be found online (http://tinyurl.com/gwbpdco).

Concepts Definition

Active Structure element An entity that is capable of performing behavior
Actor An organizational entity that is capable of performing behavior
Application Interface An Interface where an Application Service, as part of an Application Component, is made available to an End-User or another Application

Component
Application Service A Service that exposes automated behavior
Artefact An object made by a human being to support a software engineering process
behavioral element A unit of activity performed by one or more active structure elements
Business Process A behavioral Element that groups behavior based on an ordering of activities. It is intended to produce a defined set of Products or

Business Services
Business System Information System, Business Processes, Policy Statements, Activities, Standards, and People which together implement a Function
Component Component is a part or element of a larger whole
Contract A formal or informal specification of agreement between actors that are part of different legal entities that specifies the rights and

obligations associated with a Product
End-User Actors who ultimately uses ICT Products or Services to support their Business Processes
Farm Enterprise A Farm Enterprise is a Business Actor which has agricultural production as its main activity
Farm Information System An Information System that is part of a Business System that is part of a Farm Enterprise
Farm Management

Information System
A Farm Management Information System (FMIS) is an ICT Component, consisting out of one or more Application Components, for
collecting, processing, storing and disseminating of data in the form of information needed to carry out the operational functions of the
farm

Farm Software Ecosystem A Software Ecosystem that has Farm Enterprises and its collaborating Actors as End-Users
Function An intentional activity of a System
Implementation The process to create an Instance
Information System A computer based system to support organizational processes of an Actor
Instance A realization of an Artefact in its environment
Product A coherent collection of Services or Artefacts, accompanied by a Contract and usage documentation which is offered as a whole to

customers
Service A unit of functionality that a system exposes to its environment, while hiding internal operations, which provides a certain value

(monetary or otherwise)
Software Ecosystem The interaction of a set of Actors on top of a common technological Platform that result in a coherent set of ICT Products or Services
Software Producing

Organization
A Business Actor developing ICT Components

System A collection of Components organized to accomplish a specific Function or set of functions

Artefacts Definition
Application Component A modular (Wiederhold, 1992), deployable, and replaceable part of an Information System that encapsulates its behavior and data and

exposes these through a set of Interfaces. Its instance that is deployed on a Device is named an ICT Component
Device A hardware resource upon which Application Components may be stored or deployed for execution
ICT Component An ICT Component is an Application Component (Composite Application Component or Atomic Application Component) that is deployed on a

Node and which supports one or more Business Processes of a Business Actor
Atomic Application

Component
An Atomic Application Component, deployed on a Device, is part of an Information System however not able to share data automatically
with other Application Components

Composite Application
Component

A composition of Atomic Application Components, which is created by ICT Customization using a configuration process (Verdouw et al.,
2010), that performs collective behavior by exchanging data automatically between the Atomic Application Components and which
can be deployed on a Device

ICT Product A Product including a Contract, ICT Component, Configuration support (Verdouw et al., 2010) and usage support that is offered by an
Actor

Node A computational resource upon which Application Components may be stored or deployed for execution
Platform A set of stable Components that supports variety and evolution in a system by constraining the linkages among the other components.

These components include hardware, software and service modules, along with an architecture that specifies how they fit together
Software Ecosystem Instance A real-world and operational Software Ecosystem
Standard A Standard is something used as a measure, norm, or Model in comparative evaluations. There are four standards classifications in ICT

Development: Business Standards, Data Standards, Application Standards and Technology Standards

J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28 27
References

Aubert, B.A., Schroeder, A., Grimaudo, J., 2012. IT as enabler of sustainable farming:
an empirical analysis of farmers’ adoption decision of precision agriculture
technology. Decis. Supp. Syst. 54, 510–520.

Baldwin, C.Y., Woodard, C.J., 2008. The architecture of platforms: a unified view.
Harvard Business School Finance Working Paper.

Bosch, J., 2009. From software product lines to software ecosystems. In: Proceedings
of the 13th International Software Product Line Conference. Carnegie Mellon
University, pp. 111–119.

Chituc, C.-M., Azevedo, A., Toscano, C., 2009. A framework proposal for seamless
interoperability in a collaborative networked environment. Comput. Ind. 60,
317–338.

Clarke, M.P., 1998. Virtual logistics: an introduction and overview of the concepts.
Int. J. Phys. Distrib. Logist. Manage. 28, 486–507.

Cox, S., 2002. Information technology: the global key to precision agriculture and
sustainability. Comput. Electron. Agric. 36, 93–111.

Eigenmann, R., Vucic, N., Dillinger, M., Viola, K., Meyer, F., Quesada Pimentel, D.,
Verhoosel, J., Kaloxylos, A., Lampropoulou, I., Gábor, I., Perea Escribano, C.,
Sundmaeker, H., 2012. Inventory of future capabilities of Internet to meet future
long and short term needs of the food sector (D700.2), In: Wolfert, J. (Ed.),
SmartAgriFood reports, Munich, p. 84.
Eisenmann, T.R., Parker, G., Van Alstyne, M.W., 2008. Opening platforms: how, when
and why? This paper has been published under the same title as Chapter 6 in
Platforms, Markets & Innovation (ed. Gawer, 2009) pp 131–162; Harvard
Business School Entrepreneurial Management Working Paper No. 09–030, pp.
131–162.

Fountas, S., Pedersen, S.M., Blackmore, S., 2005. ICT in Precision Agriculture–
diffusion of technology. In: Gelb, E., Offer, A. (Eds.), ICT in agriculture:
perspective of technological innovation, <http://departments.agri.huji.ac.il/
economics/gelb-main.html>.

Gawer, A., Cusumano, M.A., 2002. Platform Leadership: How Intel, Microsoft, and
Cisco drive Industry Innovation. Harvard Business School Press, Boston.

Handoyo, E., Jansen, S., Brinkkemper, S., 2013. Software ecosystem roles
classification, Software Business. From Physical Products to Software Services
and Solutions. Springer, pp. 212–216.

Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. Design science in information
systems research. MIS Quart. 28, 75–105.

Hossain, E., Babar, M.A., Paik, H.-Y., 2009. Using scrum in global software
development: a systematic literature review. In: Global Software
Engineering, 2009. ICGSE 2009. Fourth IEEE International Conference on. IEEE,
pp. 175–184.

Iftikhar, N., Pedersen, T.B., 2011. Flexible exchange of farming device data. Comput.
Electron. Agric. 75, 52–63.

http://refhub.elsevier.com/S0168-1699(16)30129-6/h0005
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0005
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0005
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0015
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0015
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0015
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0020
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0020
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0020
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0025
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0025
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0030
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0030
http://departments.agri.huji.ac.il/economics/gelb-main.html
http://departments.agri.huji.ac.il/economics/gelb-main.html
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0050
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0050
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0055
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0055
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0055
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0060
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0060
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0065
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0065
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0065
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0065
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0070
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0070
http://tinyurl.com/gwbpdco

28 J.W. Kruize et al. / Computers and Electronics in Agriculture 125 (2016) 12–28
Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L., 2012. Shades of gray: opening
up a software producing organization with the open software enterprise model.
J. Syst. Softw. 85, 1495–1510.

Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C.,
Dillinger, M., Lampropoulou, I., Antoniou, E., Pesonen, L., 2012. Farm
management systems and the Future Internet era. Comput. Electron. Agric.
89, 130–144.

Kaloxylos, A., Groumas, A., Sarris, V., Katsikas, L., Magdalinos, P., Antoniou, E.,
Politopoulou, Z., Wolfert, S., Brewster, C., Eigenmann, R., 2014. A cloud-based
Farm Management System: architecture and implementation. Comput.
Electron. Agric. 100, 168–179.

Kruize, J.W., Robbemond, R.M., Scholten, H., Wolfert, J., Beulens, A.J.M., 2013.
Improving arable farm enterprise integration – review of existing technologies
and practices from a farmer’s perspective. Comput. Electron. Agric. 96, 75–89.

Kruize, J.W., Wolfert, J., Goense, D., Scholten, H., Beulens, A.J.M., Veenstra, T., 2014.
Integrating ICT applications for farm business collaboration processes using
FIspace. In: Global Conference (SRII), 2014 Annual SRII. IEEE, San Jose, CA, USA,
pp. 232–240.

Lamb, D.W., Frazier, P., Adams, P., 2008. Improving pathways to adoption: putting
the right P’s in precision agriculture. Comput. Electron. Agric. 61, 4–9.

Light, B., Holland, C.P., Wills, K., 2001. ERP and best of breed: a comparative analysis.
Bus. Process Manage. J. 7, 216–224.

Manikas, K., Hansen, K.M., 2013. Software ecosystems–a systematic literature
review. J. Syst. Softw. 86, 1294–1306.

March, S.T., Smith, G.F., 1995. Design and natural science research on information
technology. Decis. Supp. Syst. 15, 251–266.

Messerschmitt, D.G., Szyperski, C., 2005. Software Ecosystem: Understanding An
Indispensable Technology and Industry, vol. 1. MIT Press Books.

Nash, E., Dreger, F., Schwarz, J., Bill, R., Werner, A., 2009. Development of a model of
data-flows for precision agriculture based on a collaborative research project.
Comput. Electron. Agric. 66, 25–37.

Nikkilä, R., Seilonen, I., Koskinen, K., 2010. Software architecture for farm
management information systems in precision agriculture. Comput. Electron.
Agric. 70, 328–336.

Pedersen, S.M., Fountas, S., Blackmore, B.S., Gylling, M., Pedersen, J.L., 2004.
Adoption and perspectives of precision farming in Denmark. Acta Agric.
Scandinavica, Sect. B – Plant Soil Sci. 54, 2–8.

Pierce, F.J., Nowak, P., 1999. Aspects of precision agriculture. Adv. Agronomy 67, 1–
85.

Porter, M.E., Heppelmann, J.E., 2014. How smart, connected products are
transforming competition. Harvard Bus. Rev., 65–88, November 2014

Scholten, H., Kassahun, A., Refsgaard, J.C., Kargas, T., Gavardinas, C., Beulens, A.J.,
2007. A methodology to support multidisciplinary model-based water
management. Environ. Modell. Softw. 22, 743–759.
Sebök, A., Viola, K., Gábor, I., Homolka, F., Hegyi, A., 2012. Inventory of long and
short term future needs of food chain users for future functions of internet
(D700.1), In: Wolfert, J. (Ed.), SmartAgriFood reports, Budapest, p. 80.

Seichter, D., Dhungana, D., Pleuss, A., Hauptmann, B., 2010. Knowledge
management in software ecosystems: software artefacts as first-class citizens.
In: Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume. ACM, pp. 119–126.

Sørensen, C.G., Fountas, S., Nash, E., Pesonen, L., Bochtis, D., Pedersen, S.M., Basso, B.,
Blackmore, S.B., 2010a. Conceptual model of a future farm management
information system. Comput. Electron. Agric. 72, 37–47.

Sørensen, C.G., Pesonen, L., Fountas, S., Suomi, P., Bochtis, D., Bildsøe, P., Pedersen, S.
M., 2010b. A user-centric approach for information modelling in arable farming.
Comput. Electron. Agric. 73, 44–55.

Steinberger, G., Rothmund, M., Auernhammer, H., 2009. Mobile farm equipment as a
data source in an agricultural service architecture. Comput. Electron. Agric. 65,
238–246.

te Molder, J., van Lier, B., Jansen, S., 2011. Clopenness of systems: the interwoven
nature of ecosystems. In: Third International Workshop on Software
Ecosystems (IWSECO-2011), pp. 52–64.

TheOpenGroup, 2011. TOGAF Version 9.1, first ed. Van Haren Publishing.
Turner, M., Budgen, D., Brereton, P., 2003. Turning software into a service. Computer

36, 38–44.
Van ’t Spijker, A., 2014. The New Oil – using Innovative Business Models to Turn

data into Profit. Technics Publications, Basking Ridge.
Verdouw, C., Beulens, A., Van Der Vorst, J., 2013. Virtualisation of floricultural

supply chains: a review from an Internet of Things perspective. Comput.
Electron. Agric. 99, 160–175.

Verdouw, C.N., Beulens, A.J.M., Trienekens, J.H., Verwaart, T., 2010. Towards
dynamic reference information models: readiness for ICT mass customisation.
Comput. Ind. 61, 833–844.

Verdouw, C.N., Beulens, A.J.M., Wolfert, J., 2014. Towards software mass
customization for business collaboration. In: Global Conference (SRII), 2014
Annual SRII. IEEE, pp. 106–115.

Wiederhold, G., 1992. Mediators in the architecture of future information systems.
Computer 25, 38–49.

Wolfert, J., Sørensen, C.G., Goense, D., 2014. A future internet collaboration platform
for safe and healthy food from farm to fork. In: Global Conference (SRII), 2014
Annual SRII. IEEE, San Jose, CA, USA, pp. 266–273.

Wolfert, J., Verdouw, C.N., Verloop, C.M., Beulens, A.J.M., 2010. Organizing
information integration in agri-food–A method based on a service-oriented
architecture and living lab approach. Comput. Electron. Agric. 70, 389–405.

http://refhub.elsevier.com/S0168-1699(16)30129-6/h0075
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0075
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0075
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0080
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0080
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0080
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0080
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0085
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0085
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0085
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0085
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0090
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0090
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0090
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0095
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0095
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0095
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0095
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0100
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0100
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0105
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0105
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0110
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0110
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0115
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0115
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0120
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0120
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0125
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0125
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0125
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0130
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0130
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0130
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0135
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0135
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0135
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0140
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0140
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0145
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0145
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0150
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0150
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0150
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0160
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0160
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0160
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0160
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0165
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0165
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0165
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0165
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0170
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0170
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0170
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0170
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0170
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0175
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0175
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0175
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0180
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0180
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0180
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0185
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0190
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0190
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0195
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0195
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0200
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0200
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0200
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0205
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0205
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0205
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0210
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0210
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0210
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0215
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0215
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0220
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0220
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0220
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0220
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0225
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0225
http://refhub.elsevier.com/S0168-1699(16)30129-6/h0225

	A reference architecture for Farm Software Ecosystems
	1 Introduction
	2 Software Ecosystems and software development for farming
	3 Material and methods
	3.1 The Future Internet Program and existing Farm Software Ecosystems
	3.2 Methodology

	4 Requirements analysis
	4.1 Object system
	4.2 Functional requirements for a Farm Software Ecosystem
	4.2.1 Data handling and seamless data exchange supported by Standards
	4.2.2 Flexible configuration of ICT Components
	4.2.3 Interoperability between ICT Components
	4.2.4 Organization
	4.2.5 Technical/non-functional requirements

	4.3 Specifications for Farm Software Ecosystems

	5 Basic design of a Farm Software Ecosystem reference architecture
	5.1 High-level description of the reference architecture
	5.2 Platform
	5.3 Actors and their relationships
	5.4 ICT Components, configuration and orchestration
	5.5 Business Services and Contracts
	5.6 Open Software Enterprise
	5.6.1 Governance of a Farm Software Ecosystem
	5.6.2 Research and development
	5.6.3 Software Product Management and configuration support documentation
	5.6.4 Marketing and sales
	5.6.5 Consulting and Support Services

	5.7 Example of a Farm Software Ecosystem

	6 Evaluation
	6.1 Requirements verification
	6.2 Validation of the reference architecture by mapping existing Farm Software Ecosystems

	7 Discussion and conclusions
	Acknowledgements
	Appendix A Requirements table
	Appendix B Ontology
	References

