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Abstract

Let T be an acyclic graph without perfect matching ab@r) be its Hosoya index; |ef, be thenth Fibonacci number. It is
proved in this work thaZ (T) < 2FymFom+1 whenT has order #h with the equality holding if and only it = T1 om—1.2m—1.
and thatZ(T) < F§m+2 + FomFom41 whenT has order #h + 2 with the equality holding if and only i = Ty om41,2m—1,
wherem is a positive integer andly st is a graphobtained by joining an isolated vertex with an edge to ($e- 1)-th vertex
(according to its natural ordering) of pafa ¢ 1.
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1. Introduction

A molecular graph is the topology of some molecule or potential molecule (which has not been compounded bu
possibly), so it is connected with small maximum degree. The Hosoya index of a moleculafgimghfined to be
the totalnumber of its matchingsl], where a matching is a subget of the edge-set of with the property that no
two different edges oM share a&common vertex. If denote b¥ (T) the Hosow index of T andm(T, k) thenumber
of its k-matchings, matchings consistingloédges each, then

n/2]
Z(TM)y=>_ mT,k
k:O
wheren stands for the order of, thenumber of its vertices, angdh/2] is the integr part ofn/2. It is conenient to
setm(T, 0) = 1 andm(T, 1) = ¢, thenumber of the edges of grafh By its definition, wededuce thain(T, k) = 0
whenk > |n/2]. The Hosga index has a close re¢lanship with the totalr-electron energy; whef is an acyclic
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molecular graph, according t@][its total =-electron energy can be expresssduwithin the framework of the HMO
approximation)

o [0 n/2]
E(T) = _/ x2In <1+ Z m(T, k)x2k> dx.
T Jo

k=1

And so, for acycligraphs, those that have extremal Hosoya indices are the same ones as have extrerreldotiain

energy. Applications of the extremal Hosoya index to the inverse structure—property problem have been observed b
many chemistsd]. Many results have also been obtained on the acyclic molecular graphs with minimal Hosoya index
[4-7], but very few on the other extremal case that candaehed although it was established long ago that the path

P, is the ungque graph that has maximal Hosoya index among acyclic grahBuyrthermore, almost all of these
known results focus on graphs that have perfect matching. In this work, we study the maximal Hosoya index of acyclic
graphs that contain no perfect matchings and the extremal topology.

To state the mainesults, we need to define a class of graphs firstTi.et be the acyclic graph obtained by joining
an isolated vertex with an edge to ttee+ 1)-th vertex of the (s + t + 1)-vertex pathPs;t+1, SOT1 st and Tyt s are
one and the same. For clarity, graph$m—1.2m—1 andT1 2m+1,2m—1 are depicted irfrig. 1.

Let Fy stand for thenth Fibonacci number. Since paBy is the ungque extremal acyclic graph that has maximal
Hosoya hdex andP, contains no perfect matchings whers odd, when studying the extremal acyclic graphs with
maximal Hosoya index and without perfect matchings one need only consider the case where these graphs both ha
even order. We present explicit expressions for the maximal Hosoya indices and characterize the extremal topolog
by showing the following two theorems.

Theorem 1. Let m be a positive integer and T be an acyclic graph of order 4m. If T contains no perfect matching,
then Z(T) < 2FomFam+1 With the equality holding if and only if T = T1,2m—1,2m—1.

Theorem 2. Let m bea positiveinteger and T bean acyclic graph of order 4m+2. If T containsno perfect matching,
then Z(T) < F22m+2 + FomPFom+1 with the equality holding if and only if T = T1 2m+1,2m—1.

For ann-vertex graphT, let A(T) stand for its adjacency matrix. Defi®&T) = A(T) + | to be the neighbor
matiix of graphT, wherel is the unit matrix of orden. For other graph theoretical notation and terminology not
defined here, we follow that of].

2. Proofs

Let G andT be two graphs of the same ordéris calledm-smaller thanT if m(G, k) < m(T, k) holds for every
nonnegative integek, written asG < T or T > G; G is strictly m-smdler thanT if G is m-smdler thanT and
m(G, k) < m(T, k) holds for some integd¢[4,5].

Lemmal ([6]). Let P, beapathof order n =4s+r,0 <r < 3. Then

Phn> PoUPh_2> PaUPn_a> - > PosUPosyr = Pagi1 U Posir_1

>~
> Pos_1UPosqry1 >+ = P3UP_3 > PLUPy_1.

Lemma 2 ([8]). Let T be an n-vertex tree (connected acyclic graph). Then Z(T) < Z(P,) = Fny1, with the equality
holding if and only if T = P,,.
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Lemma3. If m is a positive integer, then Z(T12m-1.2m-1) = 2FomFom+1 and Z(T12mi1.2m-1) = F22m+2 +
Fom I:2m+1-

Proof. Label the vertices of1 om—1,2m—1 just as inFig. 1 Then its neighbor matriB(T1 2m—1.2m—1) iS @ guare
matrix of order 4n that hashe following form:

1 2 3 4 5 6 - 2m1
1 1100 0 O 0O OO0 O OO O0: 0 0O
2 11100 O0- 0O OO0 OO0 OO0 - 0 0 1
3 01110 O0- 0O OO0 OO0 OO0 - 0 0O
4 00111 0- 0O OO0 OO0 OO0 - 0 0O
2m 0 0 0O OO 1 11 0 0 0 O - 0 0O
0 0 0 O0O0O 0O 11 0 0 0 O 0 0 O
0 0 00O0O 0O 00110 0: 0 0O
0 0 0 O0O0UO 0O 00111 0-: 0 0 O
0 0 0 O0O0UO 0O 00 O0OO0OO0OTO O 111
01 00 O00O0 0O 00 O0OO0O0OTO 0 1 1
where th %ﬁ::::gmﬁ -minor is the neighbor matrix of patPpy, 1, and th Smﬁ:gmingm-minoristhe neighbor

matix of path Pom_1. In order to pove the lemma, & shall &pand the permanemer (B(T1 2m—1.2m—1)) in two
different ways. Firstly, we expand it along the first two rows and obtain

Per (B(Ty,2m-1,2m-1))

1100000000000
1110--000000--000
0000 --111000-:-000
0000011000000
= 0000--000110--000
0000--000111--000
0000 000000 11 1
0000 000000 011}4m72
1100--000000 0 0 0
0110--000000 000
0111000000 000
0000--111000-:-0200
+Prl0 0 0O0--011000--00 0
000O0--000110--000
0000--000111--000
000O0--000000:-- 111
1000-.--000000 01 1

4m—2
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1110 000000-: 000
0111:-000000--000
0000:-111000-000
0000:-011000--000
+Per{0 000000110000
0000:-000111- 000
0000:-000000--111
0000:-000000--011
1000--000000--00 v,

Noting that the entries lie in the intersections of the first-21 rows and the firsti2— 1 columns of the first permanent
form B(Pym—1), from Lemma 2we deduce that the first permanent equal$tg, Fom. Similarly, expanding the second
and third permanents along the first column, welggt_1 Fom and Fom Fom—1, resgectively. Consequently,

Per (B(T1,2m-1,2m-1)) = 2FomFom + 2FomFam—1 = 2FomFomy1. (1)
Secondly, we expanBer (B(T1,2m—1.2m—1)) according to the definition of the permanent and get

Per(B(T1.2m-12m-1)) = Y b1o). - - - bamocam
o

wherebj; stends for the element in thigh row andjth column ofB(T1 om-1,2m—1) ando goes over the symmetric
group of order #. SinceTy om—1,2m—1 is acyclic, the terrT]"[f’L”l bi »i) = 0 if andonly if eithero contains a cycle of
length more than 2 or, for some# o (i), vertexv; is not adjacent to vertex; . Therefore, every non-zero term of
Per (B(T1,2m-1.2m—1)) corresponds to a matching ®f om—1.2m—1. And so

Per (B(Ty,2m-1.2m-1)) = Z(T1,2m-1,2m-1)- ¥

The first part ol.,emma 3follows from the commation of Eqs(1) and(2). With a similar tetinique one can get

Z(T1,2m+1,2m-1) = 2FomPomy2 + Fam—1Fom+2 + FamFamy1
= Fini2 + FomFomi1.
The second part also follows. O

Lemmad. Let T be a 4m-vertex tree and k be a nonnegative integer. If T contains no perfect matching, then
m(T, k) < m(T1,2m—1,2m—1, K) with equality holding if and only if T = T1 2m—1,2m-1-

Proof. SinceT contains no perfect matching, it is not a path and so has maximum vertex dégree> 3. Letw
be one of its maximum degree vertices anal 1-degee vertex nearest 0, denote byv the unique neighbor ofi. If

vertexw has degred(w) > 4, thenT \ u, thegraph obtained by deleting vertexand the edge incident witlnfrom
T, has a ertex of degree at least 3. And $0\ U # Psm—1. FromLemma lwe deduce that whek > 1

mM(T,k) = m(T \ {u,v},k—2) + m(T \ u, k)
< M(Pom—1U Pom_1, K — 1) + M(Pam-1, k)
= M(Ty2m-1,2m-1, K). (3

And soLemma 4follows in this case from the combination (&) and the well-known result that if thevertex tree
T # P, thenm(P,, k) > m(T, k) holds for every nonnegative integerand the inequality strictly holds for some
integerk. SinceT \ U # Psm—1 is also true when eithef(w) = 3 andT contains another vertex of degree 3uois
theunique vertex with maximum degree 3 hu$ w, Lemma 4follows in every case. O

By a similar technique to that employed in the proof.einma 4 one can prove with ease the following

Lemmab. Let T be a 4m + 2-vertex tree and k be a nonnegative integer. If T contains no perfect matching, then
m(T, k) < m(T1,2m+1,2m—1, K) with equality holdingif and only if T = T1 omt+1.2m—1. O
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Now, Theorem Ifollows from the canbinaion of Lemma 4and the first part cfemma 3andTheorem Zollows
from the comination ofLemma 5and the second part tEmma 3
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