

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Computation of blowing-up solutions for second-order differential equations using re-scaling techniques

Nabil R. Nassif^{a,*}, Noha Makhoul-Karam^b, Yeran Soukiassian^a

^a Mathematics Department, American University of Beirut, Lebanon

^b IRISA, Campus Beaulieu, Université de Rennes I, Rennes, France

ARTICLE INFO

Article history: Received 27 November 2007 Received in revised form 19 March 2008

Keywords: Second-order differential equations Blow-up behavior Re-scaling End-of-slice condition Time-slices Similarity

ABSTRACT

This paper presents a new technique to solve efficiently initial value ordinary differential equations of the second-order which solutions tend to have a very unstable behavior. This phenomenon has been proved by Souplet et al. in [P. Souplet, Critical exponents, special large-time behavior and oscillatory blow-up in nonlinear ode's, Differential and Integral Equations 11 (1998) 147–167; P. Souplet, Etude des solutions globales de certaines équations différentielles ordinaires du second ordre non-linéaires. Comptes Rendus de l'Academie des Sciences Paris Série I 313 (1991) 365-370; P. Souplet, Existence of exceptional growing-up solutions for a class of nonlinear second order ordinary differential equations, Asymptotic Analysis 11 (1995) 185-207; P. Souplet, M. Jazar, M. Balabane, Oscillatory blow-up in nonlinear second order ode's: The critical case, Discrete And Continuous dynamical systems 9 (3) (2003)] for the ordinary differential equation y'' – $b|y'|^{q-1}y' + |y|^{p-1}y = 0, t > 0, p > 0, q > 0$, whereby the time interval of existence of the solution is finite $[0, T_b]$ with $\lim_{t \to T_b^-} |y(t)| = \lim_{t \to T_b^-} |y'(t)| = \infty$. The blow-up of the solution and its derivatives is handled numerically using a re-scaling technique and a time-slices approach that controls the growth of the re-scaled variable through a cutoff value S. The re-scaled models on each time slice obey a criterion of mathematical and computational similarity. We conduct numerical experiments that confirm the accuracy of our re-scaled algorithms.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the computation of solutions to second-order Ordinary Differential Equations of the form:

	$[y'' - b y' ^{q-1}y' + y ^{p-1}y = 0,$	t>0, p>0, q>0	(1.1)	
1	$y(0) = y_{1,0},$		(1.2)	(1)
	$y'' - b y' ^{q-1}y' + y ^{p-1}y = 0,$ y(0) = y _{1,0} , y'(0) = y _{2,0} .		(1.3)	

This model describes the motion of a membrane element linked to a spring. The non-linear term in *y* is related to the rigidity of the spring and that in *y'* models a "speed-up" of the phenomenon when b > 0 and a "slow-down" when b < 0. In this last case, the initial-value problem is dissipative and the existence of the solution is global on $[0, \infty)$ [1,2]. Computationally, such a case is not difficult to handle whereas, when b > 0, the existence domain of the solution could be finite, with the existence of a finite "blow-up time" $T_b > 0$, at which y(t) and y'(t) "explode", i.e.

 $\lim_{t\to T_b^-} |y(t)| = \lim_{t\to T_b^-} |y'(t)| = \infty.$

* Corresponding author. E-mail address: nn12@aub.edu.lb (N.R. Nassif).

^{0377-0427/\$ –} see front matter s 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2008.07.020

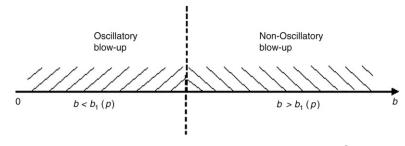


Fig. 1. Behavior of the solutions to (2) for any b > 0, p > 1, $b_1(p) = (p+1)(\frac{p+1}{2p})^{\frac{p}{p+1}}$ and $q = \frac{2p}{p+1}$.

Such a situation can exhibit two types of explosive behavior:

- (1) Oscillatory, if:
 - (a) $\lim_{t \to T_{b}^{-}} |y(t)| = \lim_{t \to T_{b}^{-}} |y'(t)| = \infty$, when $t \to T_{b}^{-}$, and
 - (b) y(t) and y'(t) admit an infinite number of roots in the interval $[0, T_b]$.
- (2) Non-Oscillatory, if:
 - (a) $\lim_{t \to T_b^-} |y(t)| = \lim_{t \to T_b^-} |y'(t)| = \infty$, when $t \to T_b^-$,

(b) there exists an interval $[t_1, T_b), T_b > t_1 \ge 0$ in which both y(t) and y'(t) have no roots.

For the case b = 1, Souplet [3–5] considered the equation:

$$y'' + |y|^{p-1}y = |y'|^{q-1}y', \quad t \ge 0, \forall p, q > 1,$$
(2)

and proved the existence of two critical values q = p and $q = \frac{2p}{p+1}$ in the plane (p, q) with three distinct behaviors of the solution to (1), one of which is focused on in this paper, corresponding to $1 < q \le \frac{2p}{p+1}$. In this particular case, all non-trivial solutions explode in an oscillatory way in a finite time.

In [6], Balabane, Jazar and Souplet have also studied the critical case where $q = \frac{2p}{p+1}$, p > 1, and b is an arbitrary positive number. Their results are summarized in Fig. 1. Specifically:

(1) If $b \ge b_1(p) = (p+1)(\frac{p+1}{2p})^{\frac{p}{p+1}}$, all solutions of (1) are non-oscillatory and explode within a finite time. The asymptotic behavior of y'(t) is given by:

$$C_1'(T_b - t)^{-\frac{p+1}{p-1}} \le y'(t) \le C_2'(T_b - t)^{-\frac{p+1}{p-1}}, \quad \text{as } t \to T_b,$$
(3)

with:

$$C_1(T_b - t)^{\frac{-2}{p-1}} \le y(t) \le C_2(T_b - t)^{\frac{-2}{p-1}} \quad \text{when } t \to T_b.$$
 (4)

Here C_1 , C'_1 , C_2 and C'_2 are positive constants.

(2) If $0 < b < b_1(p) = (p+1)(\frac{p+1}{2})^{\frac{p}{p+1}}$, all solutions of (1) have a finite oscillatory blow-up time with:

$$y(t) = (T_b - t)^{\frac{-2}{p-1}} \omega(\log(T_b - t) + C) \quad \text{when } t \to T_b,$$
(5)

where *C* is a constant and $\omega(.)$ a periodic function that changes sign with $v(t) = (T_b - t)^{\frac{2}{p-1}}y(t)$.

In this work, we present a robust algorithm to efficiently compute the solutions to these singular problems occurring when $q = \frac{2p}{p+1}$. It is based on the idea of "sliced-time" computations introduced in [7]. The basic elements of this method are given in the following simple case.

2. Re-scaling for a case study: $y'' = y^p$, p > 1

Consider the initial-value problem:

$$\begin{cases} y'' = y^p, \ t > 0, \ p > 1 \quad (6.1) \\ y(0) = y_{1,0} \ge 0, \quad (6.2) \\ y'(0) = y_{2,0} \ge 0. \quad (6.3) \end{cases}$$

(6)

Multiplication of (6.1) by y' and integration from 0 to t yield:

$$\frac{{y'}^2(t)}{2} - \frac{{y}^{p+1}(t)}{p+1} = \frac{y_{2,0}^2}{2} - \frac{y_{1,0}^{p+1}}{p+1}, \quad \forall t \ge 0.$$
(7)

This reduces the problem to a first-order initial-value problem:

$$\begin{cases} y' = F(y) = \sqrt{\frac{y^{p+1}(t)}{p+1} + \frac{y_{2,0}^2}{2} - \frac{y_{1,0}^{p+1}}{p+1}}, & t > 0, \quad (8.1)\\ y(0) = y_{1,0} \ge 0. & (8.2) \end{cases}$$

As $F(y) = O(y^{\frac{p+1}{2}})$, one easily shows that this problem has a finite-time blow-up T_b , such that: $\lim_{t \to T_b} y(t) = +\infty.$

Re-scaling techniques generate a **coarse grid** that would subdivide the time interval [0, T] of integration of the differential equation (6). Since the problem under study has a finite-time existence domain $[0, T_b)$, where a priori T_b is unknown, we seek a subdivision of $[0, T_b)$ into an **infinite number of subintervals (slices)** { $(T_{n-1}, T_n)|n \ge 0$ } such that:

$$\bigcup_{n=1}^{\infty} [T_{n-1}, T_n) = [0, T_b), \qquad \lim_{n \to \infty} T_n = T_b \quad \text{and} \quad \lim_{n \to \infty} (T_n - T_{n-1}) = 0.$$
(9)

On the *n*th slice $[T_{n-1}, T_n]$ we let $y_{1,n} = y(T_n), y_{2,n} = y'(T_n)$ and consider the change of variables:

$$t = T_{n-1} + \beta_n s, \qquad y(t) = y_{1,n-1}(1 + z_{1,n}(s)), \qquad y'(t) = y_{2,n-1}(1 + z_{2,n}(s)), \tag{10}$$

with the parameter β_n selected on the basis of allowing the re-scaled systems to become "similar" on all the slices. For simplicity of notations, we shall use: $z_1 = z_{1,n}$ and $z_2 = z_{2,n}$ and find out that z_1 verifies:

$$\begin{cases} \frac{d^2 z_1}{ds^2} = \beta_n^2 y_{1,n-1}^{p-1} (1+z_1)^p, & s > 0, \quad (11.1) \\ z_1(0) = 0, & (11.2) \\ z_1'(0) = \beta_n \frac{y_{2,n-1}}{y_{1,n-1}}. & (11.3) \end{cases}$$
(11)

By selecting:

$$\beta_n = \frac{1}{(y_{1,n-1})^{(p-1)/2}} \tag{12}$$

(11) becomes:

$$\begin{cases} \frac{d^2 z_1}{ds^2} = (1+z_1)^p, \quad s > 0, \qquad (13.1)\\ z_1(0) = 0, \qquad (13.2)\\ z_1'(0) = \omega_n = \frac{y_{2,n-1}}{(y_{1,n-1})^{(p+1)/2}}. \quad (13.3) \end{cases}$$
(13)

At that point, we need an **additional constraint** that allows determining the size of the *n*th slice: $T_n - T_{n-1} = \beta_n s_n$. We refer to it as **the end of slice condition**. This condition depends on the solution behavior and is based, in the considered problem, on the observation that:

$$y(T_n) = y_{1,n} = y_{1,n-1}(1 + z_1(s_n)) > y(T_{n-1}) = y_{1,n-1},$$

leading to the condition $z_1(s_n) = S$, where S is a "cutoff" value that "stops" the growth of $z_1(s)$ on $[0, s_n]$, and therefore that of y(t) on $[T_{n-1}, T_n]$. Such a restriction leads to:

$$y(T_n) = y_{1,n} = y_{1,n-1}(1+S) = y_{1,0}(1+S)^n$$
, and $\beta_n = \frac{1}{y_{1,0}^{\frac{p-1}{2}}(1+S)^{(n-1)(p-1)/2}}$.

Hence the computation of (6) reduces into solving a sequence of "shooting problems", whereby on the *n*th slice, one computes an initial-value problem with a stopping criterion:

$$\frac{d^{2} z_{1}}{ds^{2}} = (1+z_{1})^{p}, \quad 0 < s \le s_{n}, \quad (14.1)$$

$$z_{1}(0) = 0 \ge 0, \quad (14.2)$$

$$z_{1}'(0) = \omega_{n}, \quad (14.3)$$

$$z_{1}(s_{n}) = S, \quad (14.4)$$

Note that in such a problem, the initial and final values of $z_1(s)$ are preset to 0 and *S* respectively, while $z'_1(0)$ varies with *n*. One proves the following results:

Theorem 1. The sequence of problems (14) is "similar", in the sense that, there exist constants c_0 , c_1 , d_0 and d_1 such that:

(1) $\forall n, c_0 \leq \omega_n \leq c_1$, (2) $\forall n, d_0 \leq s_n \leq d_1$.

Proof. For the first part of the proof, note from:

$$y' = F(y) = \sqrt{\frac{y^{p+1}(t)}{p+1} + \frac{y^2_{2,0}}{2} - \frac{y^{p+1}_{1,0}}{p+1}}, \quad t > 0,$$

that

$$\frac{y'(t)}{(y(t))^{(p+1)/2}} = \sqrt{\frac{2}{p+1} + \frac{K}{y^{p+1}}},$$

where $K = \frac{y_{2,0}^2}{2} - \frac{y_{1,0}^{p+1}}{p+1}$.

Without loss of generality assume $K \ge 0$. Thus, as $y(t) \ge y_{1,0}$, one has:

$$\sqrt{rac{2}{p+1}} \le \omega_n \le \sqrt{rac{2}{p+1} + rac{K}{y_{1,0}^{p+1}}}.$$

For the second part of the proof, integration of (14.1) gives:

 $s \leq z'_1(s) - \omega_n \leq (1+S)^p s, \quad \forall s \in [0, s_n].$

A second integration yields:

$$s^2/2 + \omega_n s \le z_1(s) \le \omega_n s + (1+S)^p s^2/2, \quad \forall s \in [0, s_n].$$

In particular, for $s = s_n$, one has:

 $s_n^2/2 + \omega_n s_n \le S \le \omega_n s_n + (1+S)^p s_n^2/2.$

The bounds on ω_n would then yield the second part of the theorem.

As a consequence, one obtains the following results:

Theorem 2. The sequence $\{T_n\}$ associated with the similar problems (14) verifies the following results:

(1) $\lim_{n\to\infty} \beta_n = 0$, $\lim_{n\to\infty} T_n = T_b$, and (2) $d_0g(S) \le T_b \le d_1g(S)$, where $g(S) = \frac{(1+S)^{(p-1)/2}}{(1+S)^{(p-1)/2}-1}$.

Proof. Formula (12) implies that $\lim_{n\to\infty} \beta_n = 0$. On the other hand the identity:

$$T_N = \Sigma_{n=1}^N \beta_n s_n,$$

would imply as $N \to \infty$ the estimate on T_b .

Numerically, we deal with (14) by changing it into a first-order system of equations through the variable $z_2(s)$, given by $y'(t) = y_{2,n-1}(1 + z_2(s))$. This yields:

$$\begin{cases} \frac{dz_1}{ds} = \omega_n (1+z_2), & (15.1) \\ \frac{dz_2}{ds} = \frac{1}{\omega_n} (1+z_1)^p, & 0 < s \le s_n, & (15.2) \\ z_1(0) = 0, & (15.3) \\ z_2(0) = 0, & (15.4) \\ z_1(s_n) = S. & (15.5) \end{cases}$$
(15)

3. A numerical solver on the *n*th slice, $n \le n_0$

By letting:
$$\mathbf{z}(s) = \begin{pmatrix} z_1(s) \\ z_2(s) \end{pmatrix}$$
, $\mathbf{z}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\mathbf{g}_{\mathbf{n}(\mathbf{z})} = \begin{pmatrix} \omega_n(1+z_2) \\ \frac{1}{\omega_n}(1+z_1^p) \end{pmatrix}$,

(15) could be rewritten in the vectorial form:

$$\frac{d\mathbf{z}}{ds} = \mathbf{g}_{\mathbf{n}(\mathbf{z})}, \quad 0 < s \le s_n, \quad (16.1)
\mathbf{z}(0) = \mathbf{0}, \quad (16.2)
z_1(s_n) = S. \quad (16.3)$$
(16)

• Total Number of Slices:

Since $\beta_n = O\left(\frac{T_n - T_{n-1}}{T_1}\right)$, note that for a given computational tolerance of ϵ_{Tol} , the total number of slices n_0 , on which we solve (15) is reached when

$$\beta_{n_0} \le \epsilon_{\text{Tol}} < \beta_{n_0-1}. \tag{17}$$

Since re-scaling provides similar models on all the slices, a first advantage consists in implementing a scheme that uses a uniform mesh for numerical integration on each *n*th slice $1 \le n \le n_0$.

• Numerical Method:

We have chosen the standard fourth-order explicit Runge–Kutta method with mesh size τ . On the *n*th slice, the method would yield { $\mathbf{Z}^{c,k} \cong \mathbf{z}(s^k)$ }, where $s^k = k\tau$, such that $|\mathbf{Z}_1^c(s^k)| \le S$, $\forall k \le l$, using the formulae:

$$\begin{cases} \mathbf{K}_{1} = \tau \, \mathbf{g}_{n} (\mathbf{Z}^{c,k}), & (18.1) \\ \mathbf{K}_{2} = \tau \, \mathbf{g}_{n} \left(\mathbf{Z}^{c,k} + \frac{1}{2} \mathbf{K}_{1} \right), & (18.2) \\ \mathbf{K}_{3} = \tau \, \mathbf{g}_{n} \left(\mathbf{Z}^{c,k} + \frac{1}{2} \mathbf{K}_{2} \right), & (18.3) \\ \mathbf{K}_{4} = \tau \, \mathbf{g}_{n} \left(\mathbf{Z}^{c,k} + \mathbf{K}_{3} \right), & (18.4) \\ \mathbf{Z}^{c,k+1} = \mathbf{Z}^{c,k} + \frac{1}{6} \left(\mathbf{K}_{1} + 2\mathbf{K}_{2} + 2\mathbf{K}_{3} + \mathbf{K}_{4} \right). & (18.5) \end{cases}$$
(18)

• Mesh Size:

The mesh size τ , is found on the basis of solving (16)

$$\begin{cases} \frac{d\mathbf{z}}{ds} = \mathbf{g}_{1(\mathbf{z})}, & 0 < s \le s_n, & (19.1) \\ \mathbf{z}(0) = \mathbf{0}, & (19.2) \\ z_1(s_1) = S, & (19.3) \end{cases}$$
(19)

using (18) for the used computational tolerance ϵ_{Tol} . One starts with $\tau_1 = \frac{1}{2}$ and compute \mathbf{Z}_{τ_1} as an approximation to $\mathbf{z}(\tau_1)$. These verify:

$$\mathbf{z}(\tau_1) = \mathbf{Z}_{\tau_1} + \mathbf{a}_1 \tau_1^r + O(\tau_1^{r+1}),$$
(20)

with r = 4 for (18). Similarly, compute $\mathbf{Z}_{\tau_1/2}$ as an approximation to $\mathbf{z}(\tau_1/2)$ with:

$$\mathbf{z}(\tau_1) = \mathbf{Z}_{\tau_1/2} + \mathbf{a}_1(\tau_1/2)^r + O(\tau_1^{r+1}).$$
(21)

Multiplying (21) by 2^r and subtracting (20) from (21), lead to:

$$\mathbf{z}(\tau_1) = \mathbf{Z}_{\frac{\tau_1}{2}} + \frac{\mathbf{Z}_{\frac{\tau_1}{2}} - \mathbf{Z}_{\tau_1}}{2^r - 1} + O(\tau_1^{r+1}).$$
(22)

Hence, the step size τ_1 is refined (divided by 2) until achieving τ_0 such that:

$$\frac{\|\mathbf{Z}_{\tau_{0}}-\mathbf{Z}_{\tau_{0}}\|}{\|\mathbf{Z}_{\frac{\tau_{0}}{2}}\|} \le (2^{r}-1)\epsilon_{\text{Tol}} \le \frac{\|\mathbf{Z}_{\tau_{0}}-\mathbf{Z}_{2\tau_{0}}\|}{\|\mathbf{Z}_{\tau_{0}}\|}.$$
(23)

• Adaptive Procedure:

At the end of the *n*th slice an adaptive procedure is adopted to reach the stopping criterion (16.3). The refining process consists of dividing the mesh size of the final time interval $[s^{l-1}, s^l]$ by 2 until:

$$\frac{|\mathbf{Z}_{1}^{c,l} - \mathbf{Z}_{1}^{c,l-1}|}{|\mathbf{Z}_{1}^{c,l}|} \le \epsilon_{\text{Tol}} \text{ with } \mathbf{Z}_{1}^{c,l-1} < S < \mathbf{Z}_{1}^{c,l},$$
(24)

so that $\mathbf{Z}_1^{c,l} \cong S$ and $s_n^c = s^l$.

• Numerical Results for $\mathbf{y}'' = \mathbf{y}^{\mathbf{p}}$, p > 1, y(0) = 1 and $y'(0) = \sqrt{\frac{2}{p+1}}$: The blow-up time is given by: $T_b = \int_0^\infty \frac{dy}{\sqrt{\frac{2}{p+1}(1+y)^{p+1}}} = \frac{\sqrt{2(p+1)}}{p-1}$. The following tables compute the blow-up time T_b of the solution to (6) when y(0) = 1 and $y'(0) = \sqrt{\frac{2}{p+1}}$ up to a precision of $\varepsilon = \frac{1}{2}10^{-09}$. . p = 7, $T_b = 6.6666666666666666666666660=001$

Cutoff value	Number of slices	Computed <i>T</i> _b	Relative error
1	12	6.6666667233738793e-001	8.506081905501617e-008
2	8	6.666684039412696e-001	2.605911904429714e-006
3	7	6.666845760989344e-001	2.686414840163964e-005
4	6	6.666883118742275e-001	3.246781134130794e-005
5	5	6.666889468937676e-001	3.342034065140220e-005
10	4	6.669083566852009e-001	3.625350278013695e-004

. $p = 5, T_b = 8.660254037844386e - 001$

C	Cutoff value	Number of slices	Computed <i>T</i> _b	Relative error
	1	17	8.660254109836718e-001	8.312958463015252e-009
	2	11	8.660254656535790e-001	7.144032969018153e-008
	3	9	8.660256537609148e-001	2.886479716334406e-007
	4	8	8.660263614597145e-001	1.105828156626750e-006
	5	7	8.660272720618647e-001	2.157300949757250e-006
1	0	6	8.660390890898021e-001	1.580242947111533e-005

. p = 3, $T_b = 1.414213562373095e+000$

Cutoff value	Number of slices	Computed <i>T</i> _b	Relative error
1	32	1.414213576171449e+000	9.756909379156640e-009
2	21	1.414213600578187e+000	2.701507930014423e-008
3	17	1.414213637956183e+000	5.344531391829787e-008
4	15	1.414213706619683e+000	1.019977405431187e-007
5	13	1.414213795921668e+000	1.651437798090409e-007
10	10	1.414214789846060e+000	8.679544568379587e-007

. $p = 2, T_b = 2.449489742783178e+000$

Cutoff value	Number of slices	Computed <i>T</i> _b	Relative error
1	63	2.449489747967264e+000	2.116394267254796e-009
2	40	2.449489751835296e+000	3.695511766408810e-009
3	32	2.449489755848351e+000	5.333834518809680e-009
4	28	2.449489760053198e+000	7.050456355510007e-009
5	25	2.449489764323668e+000	8.793868332709786e-009
10	19	2.449489790621602e+000	1.952995495242392e-008

. p = 1.2, $T_b = 1.048808848170151e+001$

Cuto	ff value	Number of slices	Computed <i>T</i> _b	Relative error
1		310	1.048808848408980e+001	2.277152375178535e-010
2		196	1.048808848501172e+001	3.156167214837981e-010
3		156	1.048808848592861e+001	4.030382137628263e-010
4		135	1.048808848676714e+001	4.829891791094239e-010
5		121	1.048808848701219e+001	5.063532910454659e-010
10		91	1.048808848882957e+001	6.796341855088047e-010

4. Case of $y'' - b|y'|^{q-1}y' + |y|^{p-1}y = 0$, $q = \frac{2p}{p+1}$

The procedure that allows "sliced-time" computations to (1) follows the same steps as for the case study of the previous section.

In this paper, we deal only with the case when $q = \frac{2p}{p+1}$.

Multiplication of (1.1) by y' and integration from 0 to t yield the "Energy equation":

$$\frac{y^{\prime 2}(t)}{2} + \frac{|y|^{p+1}(t)}{p+1} = \frac{y_{2,0}^2}{2} + \frac{y_{1,0}^{p+1}}{p+1} + \int_0^t b|y'|^{q+1} \mathrm{d}s, \quad \forall t \ge 0.$$
(25)

On the basis of the subdivision (9) and the change of variables (10), one finds for (1), the equivalent form to (11):

$$\begin{cases} \frac{d^{2}z_{1}}{ds^{2}} = b\beta_{n}^{2-q}|y_{1,n-1}|^{q-1}|z_{1}'|^{q-1}z_{1}', -\beta_{n}^{2}|y_{1,n-1}|^{p-1}|1+z_{1}|^{p-1}(1+z_{1}) \quad s > 0 \quad (26.1) \\ z_{1}(0) = 0, \quad (26.2) \\ z_{1}'(0) = \beta_{n}\frac{y_{2,n-1}}{y_{1,n-1}}. \quad (26.3) \end{cases}$$

To make these slice models similar, one needs to have the coefficients

$$\omega_n = z_1'(0) = \beta_n \frac{y_{2,n-1}}{y_{1,n-1}}, \qquad \gamma_{1,n} = \beta_n^2 |y_{1,n-1}|^{p-1}, \qquad \gamma_{2,n} = \beta_n^{2-q} |y_{1,n-1}|^{q-1}$$

uniformly bounded, independently from *n*.

Theorem 3. If $\gamma_{1,n} = 1$ and $q = \frac{2p}{p+1}$, then:

(1) $\beta_n = \frac{1}{|\gamma_1|_{n-1}|^{(p-1)/2}}$ and in the case of blow-up $\lim_{n\to\infty} \beta_n = 0$.

(2)
$$\gamma_{2,n} = 1$$
.

- (3) If the blow-up is non-oscillatory ($b \ge b_1(p) = (p+1)(\frac{p+1}{2p})^{\frac{p}{p+1}}$), then ω_n has a constant sign and there exist positive constants c_1 and c_2 independent from n such that for large $n, c_1 \le \omega_n \le c_2$.
- (4) If the blow-up is oscillatory ($b < b_1(p) = (p+1)(\frac{p+1}{2p})^{\frac{p}{p+1}}$), then ω_n changes sign and for large $n, \omega_n \le c_3$, where c_3 is independent from n.

Proof. The proof of the first part is straightforward.

The second part is proved by applying simple algebra to $\gamma_{2,n} = \left(\frac{1}{|y_{1,n-1}|^{(p-1)/2}}\right)^{2-q} |y_{1,n-1}|^{q-1}$, using $q = \frac{2p}{p+1}$. For the third part, note first that:

$$\omega_n = \frac{1}{|y_{1,n-1}|^{(p-1)/2}} \frac{y_{2,n-1}}{y_{1,n-1}} = \frac{y_{2,n-1}}{\operatorname{sign}(y_{1,n-1})|y_{1,n-1}|^{(p+1)/2}}$$

When the blow-up is non-oscillatory, then as $t \to T_b$, y(t) and y'(t) would have the same sign and are governed by (3) and (4) as proved in [6]. If we assume (without loss in generality) that y and y' have positive signs then one obtains:

$$\frac{C_1'}{C_2^{(p-1)/2}} \le |\omega_n| \le \frac{C_2'}{C_1^{(p-1)/2}}.$$

For the fourth part, in the same reference [6], the behavior of y(t) as $t \to T_b$, is such that (5) is verified:

$$y(t) = (T_b - t)^{\frac{-2}{p-1}} w(\log(T_b - t) + C) \quad \text{when } t \to T_b,$$

where *C* is a constant and w(.) a periodic function that changes sign with $v(t) = (T_b - t)^{\frac{2}{p-1}}y(t)$. A similar algebra to that of the third part would give $|\omega_n| = O(1)$.

As for the computational approach, we transform (26) into a first-order system, by fixing a cutoff value *S* that would determine the slice size $T_n - T_{n-1} = \beta_n s_n$. Specifically one computes the initial-value shooting problem:

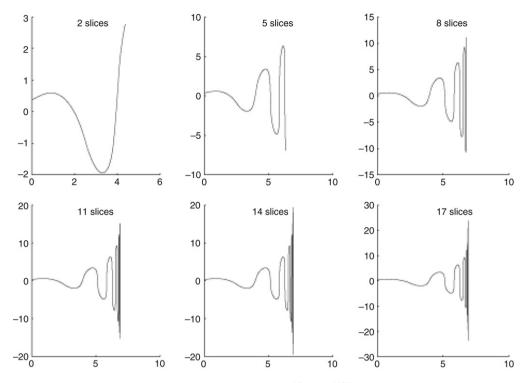


Fig. 2. Example 1: variation of $\ln(y)$ with respect to *t* for $y'' = -|y|^{0.7}y + |y'|^{0.2592}y'$, y(0) = 1 and y'(0) = 1, with S = 5.

$$\begin{cases} \frac{dz_1}{ds} = \omega_n (1+z_2), \quad 0 < s \le s_n, \quad (27.1) \\ \frac{dz_2}{ds} = b|\omega_n|^{q-1}|1+z_2|^{q-1}(1+z_2) - \frac{1}{\omega_n}|1+z_1|^{p-1}(1+z_1), \quad (27.2) \\ z_1(0) = 0, \quad (27.3) \\ z_2(0) = 0, \quad (27.4) \\ |z_1(s_n)| = S. \quad (27.5) \end{cases}$$

Since the sequences $\{y_{1,n}\}$, $\{y_{2,n}\}$, and $\{T_n\}$ verify:

$$\begin{cases} y_{1,n} = y_{1,n-1}[1 + z_1(s_n)], & (28.1) \\ y_{2,n} = y_{2,n-1}[1 + z_2(s_n)], & (28.2) \\ T_n = T_{n-1} + \beta_n s_n, & (28.3) \end{cases}$$
(28)

then, the choice of the cutoff value *S* is based on the following result:

Theorem 4. (1) If the blow-up is non-oscillatory, then:

$$\exists n_0 | \forall n \ge n_0, \quad |y_{1,n}| = |y_{1,n-1}|(1+S).$$

(2) If the blow-up is oscillatory, then:

 $\forall n, |y_{1,n-1}|(S-1) \le |y_{1,n}| \le |y_{1,n-1}|(1+S).$

As a result, one has:

Theorem 5. If the blow-up is oscillatory, then a sufficient condition for the choice of S is S > 1.

5. Results of numerical tests for $y'' = -|y|^{p-1}y + b|y'|^{q-1}y'$, y(0) = 1 and y'(0) = 1, $q = \frac{2p}{p+1}$

Results are only given for **oscillatory systems** in which case, values of *S* close to 1 are to be excluded. Computational tolerance is $\varepsilon_{Tol} = \frac{1}{2} 10^{-006}$.

• *Example* 1: $\mathbf{p} = \mathbf{1.7}, q = \frac{2p}{p+1} = 1.2592, b_1 = (p+1)(\frac{p+1}{2p})^{(\frac{p}{p+1})} = 2.3352$ (see Fig. 2).

	2 / 2p	
Cutoff S	Computed T _b	Number of slices
b = 1	$\tau_0 = 7.8125e - 003$	
2	6.905839905214391	60
3	6.905846065083031	42
4	6.905850775653478	36
5	6.905851250986963	31
b = 1.5	$\tau_0 = 7.8125e - 003$	
2	4.741936108013850	49
2 3	4.741940732163934	37
4	4.741941416493013	31
5	4.741941541394696	27
b = 2	$\tau_0 = 1.5625e - 002$	
2	3.669740045525140	42
2 3	3.669741709731745	32
4	3.669742126114941	27
5	3.669743480338277	25

• Example 2:
$$\mathbf{p} = \mathbf{2}, q = \frac{2p}{p+1} = \frac{4}{3}, b_1 = (p+1)(\frac{p+1}{2p})^{(\frac{p}{p+1})} = 2.4764$$
 (see Fig. 3).

Cutoff S	Computed T _b	Number of slices
b = 1	$\tau_0 = 7.8125e - 003$	
2	5.209686796510288	44
3	5.209691346707377	31
4	5.209693875703810	26
5	5.209693924947938	22
b = 1.5	$\tau_0 = 7.8125e - 003$	
2	3.614915431683971	36
3	3.614916514650755	26
4	3.614919039290611	23
5	3.614918803569950	20
b = 2	$\tau_0 = 7.8125e - 003$	
2	2.825331269928384	31
3	2.825331658024978	23
4	2.825331556706841	19
5	2.825331998617265	17

• Example 3:
$$\mathbf{p} = \mathbf{3}$$
, $q = \frac{2p}{p+1} = \frac{3}{2}$, $b_1 = (p+1)(\frac{p+1}{2p})^{(\frac{p}{p+1})} = 2.5708$ (see Fig. 4).

Cutoff S	Computed <i>T</i> _b	Number of slices
b = 1	$\tau_0 = 3.90625e - 003$	
2	3.231011024877603	25
3	3.231014916815904	19
4	3.231014836720568	14
5	3.231014905619674	10
b = 1.5	$\tau_0 = 3.90625e - 003$	
2	2.292508822634327	22
2 3	2.292509254759319	16
4	2.292509352667330	13
5	2.292509393868601	11
b = 2	$\tau_0 = 3.90625e - 003$	
2	1.825205554301452	19
3	1.825205857725333	14
4	1.825205895342057	12
5	1.825205800058116	10

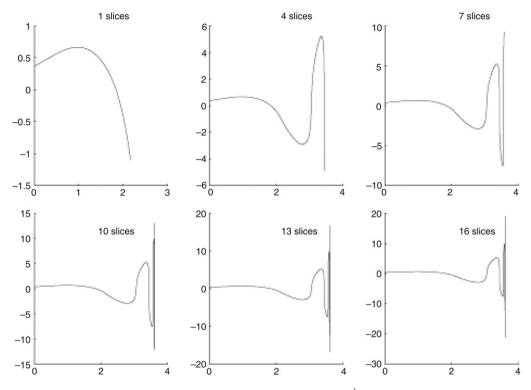


Fig. 3. Example 2: variation of $\ln(y)$ with respect to *t* for $y'' = -|y|y + 1.5|y'|^{\frac{1}{3}}y'$, y(0) = 1, y'(0) = 1, with S = 4.

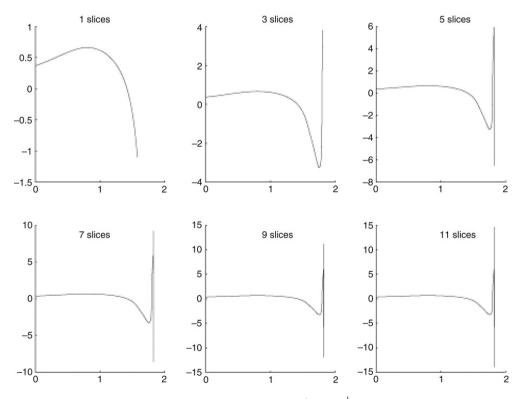


Fig. 4. Example 3: variation of $\ln(y)$ with respect to *t* for $y'' = -|y|^2y + 2|y'|^{\frac{1}{2}}y'$, y(0) = 1, y'(0) = 1, with S = 4.

References

- [1] A. Haraux, Systèmes dynamiques dissipatifs et applications, in: RMA, vol. 17, Masson, Paris, Milan, Barcelona, Bonn, 1991.
- [2] J. Lasalle, Some extensions of Liapunov's second method, IRE Trans. Circuit Theory CT-7 (1960) 520–527.
- [3] P. Souplet, Critical exponents, special large-time behavior and oscillatory blow-up in nonlinear ode's, Differential and Integral Equations 11 (1998) 147-167.
- [4] P. Souplet, Etude des solutions globales de certaines équations différentielles ordinaires du second ordre non-linéaires, Comptes Rendus de l'Academie des Sciences Paris Série I 313 (1991) 365-370.
- [5] P. Souplet, Existence of exceptional growing-up solutions for a class of nonlinear second order ordinary differential equations, Asymptotic Analysis 11 (1995) 185–207.
- [6] P. Souplet, M. Jazar, M. Balabane, Oscillatory blow-up in nonlinear second order ode's: The critical case, Discrete and Continuous Dynamical Systems 9 (3) (2003).
- [7] N. Nassif, D. Fayad, M. Cortas, in: V.S. Sunderam, et al. (Eds.), Sliced-Time Computations with Re-scaling for Blowing-Up Solutions to Initial Value Differential Equations, in: ICCS, vol. 2005, Springer-Verlag, 2005, pp. 58–65.