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Abstract

In this paper, we study the existence-uniqueness and large deviation estimate for stochastic Volterra
integral equations with singular kernels in 2-smooth Banach spaces. Then we apply them to a large class
of semilinear stochastic partial differential equations (SPDE), and obtain the existence of unique maximal
strong solutions (in the sense of SDE and PDE) under local Lipschitz conditions. Moreover, stochastic
Navier–Stokes equations are also investigated.
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1. Introduction

The aims of this paper are three folds: First of all, we prove the existence and uniqueness of
solutions with continuous paths for stochastic Volterra integral equations with singular kernels
in a 2-smooth Banach space. Secondly, the large deviation principles (abbrev. LDP) of Freidlin–
Wentzell’s type for stochastic Volterra equations are established under small perturbations of
multiplicative noises. Thirdly, we apply them to several classes of semilinear stochastic partial
differential equations (abbrev. SPDE). Compared with the well-known results on SPDEs, the
main contributions of the present paper are that we can prove the existence and uniqueness of
strong solutions (in the sense of SDE and PDE) for SPDEs, and give a unified treatment for the
LDPs to a large class of SPDEs.

In finite-dimensional space, stochastic Volterra integral equations with regular kernels and
driven by Brownian motions were first studied by Berger and Mizel [3]. Later, Protter [52] stud-
ied stochastic Volterra equations driven by general semimartingales. Using the Skorohod integral,
Pardoux and Protter [47] also investigated stochastic Volterra equations with anticipating coeffi-
cients. The study of stochastic Volterra equations with singular kernels can be found in [14,16,
65,36,44], etc. Recently, the present author [68] studied the approximation of Euler’s type and
the LDP of Freidlin–Wentzell’s type for stochastic Volterra equations with singular kernels. In
particular, the kernels in [68] can be used to deal with fractional Brownian motion kernels as
well as fractional order integral kernels. The study of LDP for stochastic Volterra equations is
also referred to [44,36].

Since the work of Freidlin and Wentzell [21], the theory of small perturbation large deviations
for stochastic differential equations (abbrev. SDE) has been studied extensively (cf. [2,62], etc.).
In the classical method, to establish such an LDP for SDE, one usually needs to discretize the
time variable and then prove various necessary exponential continuity and tightness for approxi-
mation equations in different spaces by using comparison principle. However, such verifications
would become rather complicated and even impossible in some cases, e.g., stochastic evolution
equations with multiplicative noises.

Recently, Dupuis and Ellis [19] systematically developed a weak convergence approach to the
theory of large deviation. The central idea is to prove some variational representation formula for
the Laplace transform of bounded continuous functionals, which will lead to proving a Laplace
principle which is equivalent to the LDP. In particular, for Brownian functionals, an elegant vari-
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ational representation formula has been established by Boué and Dupuis [5] and Budhiraja and
Dupuis [10]. A simplified proof was given by the present author [67]. This variational repre-
sentation has already been proved to be very effective for various finite and infinite-dimensional
stochastic dynamical systems even with irregular coefficients (cf. [54,55,11,68,56], etc.). One
of the main advantages of this argument is that one only needs to make some simple moment
estimates (see Section 4 below).

On the other hand, it is well known that in the deterministic case, many PDE problems of
parabolic and hyperbolic types can be written as Volterra type integral equations in Banach
spaces by using the corresponding semigroup and the variation-of-constants formula (cf. [22,
28,48]). An obvious merit of this procedure is that the unbounded operators in PDEs no longer
appear and the analysis is entirely analogous to the ODE case. Thus, one naturally expects to take
the same advantages for SPDEs in Banach spaces. However, it is not all Banach spaces in which
stochastic integrals are well defined. One can only work in a class of 2-smooth Banach spaces.
The definition of stochastic integrals in 2-smooth Banach spaces and related properties such as
Burkholder–Davis–Gundy’s (abbrev. BDG) inequality, Girsanov’s theorem, stochastic Fubini’s
theorem and the distribution of stochastic integrals can be found in [43,6,7,45], etc. Thus, sim-
ilar to the deterministic case, we can develop a parallel theory in 2-smooth Banach spaces for
SPDEs. It should be emphasized that besides the usual SPDEs driven by multiplicative Brownian
noises, a class of stochastic evolutionary integral equations appearing in viscoelasticity and heat
conduction with memory (cf. [53]) can also be written as abstract stochastic Volterra equations
in Banach spaces.

In the past three decades, the theory of general SPDEs has been developed extensively
by numerous authors mainly based on two different approaches: semigroup method based on
the variation-of-constants formula (cf. [64,15,6–8,66], etc.) and variation method based on
Galerkin’s finite-dimensional approximation (cf. [46,35,58,34,41,51,69,26], etc.). A new regu-
larization method is given in [71]. An overview for the classification and applications of SPDEs
are referred to the recent book of Kotelenez [33]. In the author’s knowledge, most of the well-
known results are primarily concentrated on the mild or weak solutions, even measure-valued
solutions. Such notions of solutions naturally appear in the study of SPDEs driven by the space–
time white noises, and in this case one cannot obtain any differentiability of solutions with respect
to the spatial variable.

Nevertheless, when one considers an SPDE driven by the spatial regular and time white noises,
it is reasonable to require the existence of spatial regular solutions or classical solutions in the
sense of PDE. For linear SPDEs, such regular solutions are relatively easy and well known (cf.
[35,58,20], etc.). However, for non-linear SPDEs, there seems to be few results (cf. [34,39,67,
71]). A major difficulty to prove the spatial regularity of solutions is that one cannot use the
usual bootstrap method in the theory of PDE since there is no differentiability of solutions with
respect to the time variable. The present author [67] solved this problem by using a non-linear
interpolation result due to Tartar [63]. Obviously, for the regularity theory of SPDEs, by using
Sobolev’s embedding theorem (cf. [1]), it is natural to consider the Lp-solutions of SPDEs. This
is also why we need to work in 2-smooth Banach spaces. It should be noticed that the Lp-theory
for SPDEs has been established in [6–8,34,17,18,66], etc. But, there are few results to deal with
the Lp-strong solution in the sense of PDE. In the present paper, we shall prove a general result
about the existence of strong solutions in the sense of both SDE and PDE (see Theorem 6.6
below).

We now describe the structure of this paper: In Section 2, we prepare some preliminaries for
later use, and divide it into three subsections. In Section 2.1, we prove a Gronwall’s lemma of
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Volterra type under rather weak assumptions on kernel functions. Moreover, two simple examples
are provided to show this lemma. In Section 2.2, we recall the Itô integral in 2-smooth Banach
spaces and Burkholder–Davies–Gundy’s inequality as well as Kolmogorov’s continuity criterion
of random fields in random intervals. In Section 2.3, we recall a criterion of Laplace principle
established by Budhiraja and Dupuis [5,10] (see also [70]).

In Section 3, using the Gronwall inequality of Volterra type in Section 2.1, we first prove
the existence and uniqueness of solutions for stochastic Volterra equations in 2-smooth Banach
spaces under global Lipschitz conditions and singular kernels. Next, in Section 3.2, we study the
regularity of solutions under slightly stronger assumptions on kernels. Moreover, a BDG type of
inequality for stochastic Volterra type integral is also proved. In Section 3.3, employing the usual
localizing method, we prove the existence of a unique maximal solution for stochastic Volterra
equation under local Lipschitz conditions. Lastly, in Section 3.4, we discuss the continuous de-
pendence of solutions with respect to the coefficients.

In Section 4, using the weak convergence method, we prove the Freidlin–Wentzell large devi-
ation principle for the small perturbations of stochastic Volterra equations under a compactness
assumption and some uniform non-explosion conditions for the controlled equations. We also
refer to [38,56] for the application of weak convergence approach in the LDPs of stochastic
evolution equations (the case of evolution triple). In the proof of Section 4, we need to use the
Yamada–Watanabe Theorem in infinite-dimensional space, which has been established by On-
dreját [45] (see also [57] for the case of evolution triple). We want to say that although Ondreját
only considered the case of convolution semigroup, their proofs are also adapted to more general
stochastic Volterra equations. Moreover, since we are considering the path continuous solution,
the proof in [45] can be simplified.

In Section 5, a simple application in a class of semilinear stochastic evolutionary integral
equations is presented, which has been studied in [13,4,31], etc., for additive noises. Such type
of stochastic evolution equations appears in viscoelasticity, heat conduction in materials with
memory, and electrodynamics with memory [53].

In Section 6, we apply our general results to a large class of semilinear stochastic evolution
equations driven by multiplicative Brownian noises. A basic result in semigroup theory states
that if f is a Hölder continuous function in Banach space X, then

t �→
t∫

0

Tt−sf (s)ds is continuous in D(L),

where Tt is an analytic semigroup and L is the generator of Tt . We will use this result to prove
the existence of strong solutions (in the sense of PDE) for semilinear SPDEs. The corresponding
LDPs are also obtained (see also [61,49,11,56,38], etc., for the study of LDPs of stochastic
evolution equations). More applications can be found in an uncompressed version [72].

In Section 7, we prove the existence and uniqueness of local Lp-strong solutions for stochas-
tic Navier–Stokes equations (SNSE) in any dimensional case. In the two-dimensional case, we
also obtain the non-explosion of solutions. Moreover, the LDPs for two-dimensional SNSEs
are established in the case of both Dirichlet boundary and periodic boundary. We remark that
the Lp-solutions for SNSEs have been studied by Brzeźniak and Peszat [9] (bounded do-
main) and Mikulevicius and Rozovskii [40] (the whole space). The large deviation result for
two-dimensional SNSEs with additive noise was proved by Chang [12] using Girsanov’s trans-
formation. In [60], the authors also used the weak convergence method to prove the large
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deviation estimate for two-dimensional SNSEs with multiplicative noises. But, they worked
in the L2-space and only for weak solutions. Here we can do it for strong solutions in Lp-
space.

We conclude this introduction by making the following CONVENTION: Throughout this paper,
the letter C with or without subscripts will denote a positive constant, whose value may change
from one place to another. Moreover, we also use the notation E1 � E2 to denote E1 � C · E2,
where C > 0 is an unimportant constant.

2. Preliminaries

2.1. Gronwall’s inequality of Volterra type

Let � := {(t, s) ∈ R
2+: s � t}. We first recall the following result due to Gripenberg [27,

Theorem 1 and p. 88].

Lemma 2.1. Let κ : � → R+ be a measurable function. Assume that for any T > 0,

t �→
t∫

0

κ(t, s)ds ∈ L∞(0, T )

and

lim sup
ε↓0

∥∥∥∥∥
·+ε∫
·

κ(· + ε, s)ds

∥∥∥∥∥
L∞(0,T )

< 1.

Define

r1(t, s) := κ(t, s), rn+1(t, s) :=
t∫

s

κ(t, u)rn(u, s)du, n ∈ N. (2.1)

Then for any T > 0, there exist constants CT > 0 and γ ∈ (0,1) such that

∥∥∥∥∥
·∫

0

rn(·, s)ds

∥∥∥∥∥
L∞(0,T )

� CT nγ n, ∀n ∈ N. (2.2)

In particular, the series

r(t, s) :=
∞∑

n=1

rn(t, s) (2.3)

converges for almost all (t, s) ∈ �, and
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r(t, s) − k(t, s) =
t∫

s

k(t, u)r(u, s)du =
t∫

s

r(t, u)k(u, s)du (2.4)

and for any T > 0,

t �→
t∫

0

r(t, s)ds ∈ L∞(0, T ). (2.5)

The function r defined by (2.3) is called the resolvent of κ . All the functions κ in Lemma 2.1
will be denoted by K . In what follows, we shall denote by K0 the subclass of K with the
property that

lim sup
ε↓0

∥∥∥∥∥
·+ε∫
·

κ(· + ε, s)ds

∥∥∥∥∥
L∞(0,T )

= 0.

We also denote by K>1 the set of all nonnegative measurable functions κ on � with the property
that for any T > 0 and some β = β(T ) > 1,

t �→
t∫

0

κβ(t, s)ds ∈ L∞(0, T ). (2.6)

It is clear that K>1 ⊂ K0 ⊂ K and for any κ1, κ2 ∈ K0 (resp. K>1) and C1,C2 � 0,

C1κ1 + C2κ2 ∈ K0 (resp. K>1).

Let 0 � h ∈ L1
loc(R+). If κ(t, s) = h(s), then κ ∈ K0 and

r(t, s) = h(s) exp

{ t∫
s

h(u)du

}
;

if κ(t, s) = h(t − s), then κ ∈ K0 and

r(t, s) = a(t − s) :=
∞∑

n=1

an(t − s), (2.7)

where

a1(t) = h(t), an+1(t) :=
t∫
h(t − s)an(s)ds.
0
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When 0 � h ∈ L1(R+), a classical result due to Paley and Wiener (cf. [42, p. 207, Theorem 5.2])
says that

a ∈ L1(R+) if and only if

∞∫
0

h(t)dt < 1. (2.8)

In this case, â(s) = ĥ(s)/(1 − ĥ(s)), where the hat denotes the Laplace transform, i.e.:

ĥ(s) :=
∞∫

0

e−sth(t)dt, s � 0.

We want to say that (2.8) is useful in the study of large time asymptotic behavior of solutions for
Volterra equations. An important extension to nonintegrable convolution kernel can be found in
[59,29] (see also [27]). A simple example is provided in Example 3.2 below.

We now prove the following Gronwall’s lemma of Volterra type (see also [28, Lemma 7.1.1]
for a case of special convolution kernel).

Lemma 2.2. Let κ ∈ K and rn and r be defined respectively by (2.1) and (2.3). Let f,g : R+ →
R+ be two measurable functions satisfying that for any T > 0 and some n ∈ N,

t �→
t∫

0

rn(t, s)f (s)ds ∈ L∞(0, T ) (2.9)

and for almost all t ∈ (0,∞),

t∫
0

r(t, s)g(s)ds < +∞. (2.10)

If for almost all t ∈ (0,∞),

f (t) � g(t) +
t∫

0

κ(t, s)f (s)ds, (2.11)

then for almost all t ∈ (0,∞),

f (t) � g(t) +
t∫

0

r(t, s)g(s)ds. (2.12)
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Proof. First of all, if we define

h(t) := g(t) +
t∫

0

r(t, s)g(s)ds,

then by (2.4) and (2.10)

h(t) = g(t) +
t∫

0

κ(t, s)h(s)ds for a.a. t ∈ (0,∞).

Thus, by (2.11) we have

f (t) − h(t) �
t∫

0

κ(t, s)
(
f (s) − h(s)

)
ds for a.a. t ∈ (0,∞). (2.13)

Set f̃ (t) := f (t) − h(t) and define

f̃ ∗(t) := ess sup
s∈[0,t]

f̃ (s), t > 0,

and

τ0 := inf
{
t > 0: f̃ ∗(t) > 0

}
.

Clearly, t �→ f̃ ∗(t) is non-decreasing and

f̃ (t) � 0 for a.a. t ∈ [0, τ0). (2.14)

We want to prove that

τ0 = +∞.

Iterating inequality (2.13), we have

f̃ (t) �
t∫

0

rn(t, s)f̃ (s)ds �
t∫

0

rn(t, s)f (s)ds, ∀n ∈ N.

By (2.9), one knows that f̃ ∗(T ) < +∞ for any T > 0. Moreover, for almost all t > 0,

f̃ (t)
(2.14)

�
t∫
rn(t, s)f̃ (s)ds � f̃ ∗(t)

t∫
rn(t, s)ds, ∀n ∈ N.
τ0 τ0
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Suppose τ0 < +∞. Then, for any T > τ0, we have

0 < f̃ ∗(T ) � f̃ ∗(T ) ·
∥∥∥∥∥

·∫
τ0

rn(·, s)ds

∥∥∥∥∥
L∞(τ0,T )

(2.2)−→ 0

as n → ∞, which is impossible. So, τ0 = +∞. �
The following two examples show that (2.12) is sensitive to κ ∈ K .

Example 2.3. For C0 > 0, set

κC0(t, s) := C0√
t2 − s2

, s < t.

It is clear that

t∫
s

κC0(t, u)du = C0
(
(π/2) − arcsin(s/t)

)
.

From this, one sees that

{
κC0 /∈ K , if C0 � 2/π;
κC0 ∈ K ∩ K c

0 , if 0 < C0 < 2/π.

Consider the following Volterra equation

x(t) =
t∫

0

κC0(t, s)x(s)ds, t � 0.

If C0 = 1, there are at least two solutions x(t) ≡ 0 and x(t) = t ; if C0 = 2
π

, there are infinitely
many solutions x(t) ≡ constant; if 0 < C0 < 2/π , by Lemma 2.2 there is only one solution
x(t) ≡ 0 in L∞

loc(R+).

Example 2.4. For C0 > 0 and α,β ∈ [0,1), set

κ
α,β
C0

(t, s) := C0

(t − s)αsβ
, s < t.

It is clear that

t∫
u

κ
α,β
C0

(t, s)ds = C0t
1−α−β

1∫
1

(1 − s)αsβ
ds. (2.15)
u/t
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From this, one sees that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ
α,β
C0

/∈ K , if α + β > 1 and C0 > 0;

κ
α,β
C0

/∈ K , if α + β = 1 and C0 �
1∫

0

1

(1 − s)αsβ
ds;

κ
α,β
C0

∈ K ∩ K c
0 , if α + β = 1 and C0 <

1∫
0

1

(1 − s)αsβ
ds;

κ
α,β
C0

∈ K>1, if α + β < 1 and C0 > 0.

Consider the following Volterra equation

x(t) =
t∫

0

k
α,β
C0

(t, s)x(s)ds, t � 0.

If α + β < 1, by Lemma 2.2 there is only one solution x(t) ≡ 0 in L∞
loc(R+); if α = β = C0 =

1/2, there are at least two solutions x(t) ≡ 0 and x(t) = √
t .

2.2. Itô’s integral in 2-smooth Banach spaces

Throughout this paper, we shall fix a stochastic basis (Ω, F ,P ; (Ft )t�0), i.e., a complete
probability space with a family of right-continuous filterations. In what follows, without special
declarations, all expectations E are taken with respect to the probability measure P .

Let {Wk(t): t � 0, k ∈ N} be a sequence of independent one-dimensional standard Brownian
motions on (Ω, F ,P ; (Ft )t�0). Let l2 be the usual Hilbert space of all square summable real
number sequences, {ek, k ∈ N} the usual orthonormal basis of l2. Let X be a separable Banach
space, and L(l2;X) the set of all bounded linear operators from l2 to X. For an operator B ∈
L(l2;X), we also write

B = (B1,B2, . . .) ∈ X
N, Bk = Bek.

Definition 2.5. An operator B ∈ L(l2;X) is called radonifying if

the series
∑

k

Bek · Wk(1) converges in L2(Ω;X).

We shall denote by L2(l
2;X) the space of all radonifying operators, and write for B ∈ L2(l

2;X),

‖B‖L2(l
2;X) := (E∥∥Bek · Wk(1)

∥∥2
X

)1/2
. (2.16)

Here and below, we use the convention that the repeated indices will be summed.

The following proposition is well known, and a detailed proof was given in [45, Proposi-
tion 2.5].
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Proposition 2.6. The space L2(l
2;X) with norm (2.16) is a separable Banach space.

In order to introduce the stochastic integral of an X-valued measurable (Ft )-adapted process
with respect to W , in the sequel, we assume that X is 2-smooth (cf. [50]), i.e., there exists a
constant CX � 2 such that for all x, y ∈ X,

‖x + y‖2
X

+ ‖x − y‖2
X

� 2‖x‖2
X

+ CX‖y‖2
X
.

Let now s �→ B(s) be an L2(l
2;X)-valued measurable and (Ft )-adapted process with

T∫
0

∥∥B(s)
∥∥2

L2(l
2;X)

ds < +∞ a.s., ∀T > 0.

One can define the Itô stochastic integral (cf. [45, Section 3])

t �→ It (B) :=
t∫

0

B(s)dW(s) =
t∫

0

Bk(s)dWk(s) ∈ X

such that t �→ It (B) is an X-valued continuous local (Ft )-martingale. Moreover, let τ be any
(Ft )-stopping time, then

t∧τ∫
0

B(s)dW(s) =
t∫

0

1{s<τ } · B(s)dW(s).

The following BDG inequality for It (B) holds (cf. [45, Section 5]).

Theorem 2.7. For any p > 0, there exists a constant Cp > 0 depending only on p such that

E

(
sup

t∈[0,T ]

∥∥∥∥∥
t∫

0

B(s)dW(s)

∥∥∥∥∥
p

X

)
� CpE

( T∫
0

∥∥B(s)
∥∥2

L2(l
2;X)

ds

)p/2

. (2.17)

The following two typical examples of 2-smooth Banach spaces are usually met in applica-
tions.

Example 2.8. Let X be a separable Hilbert space. Clearly, X is 2-smooth. In this case, L2(l
2;X)

consists of all Hilbert–Schmidt operators of mapping l2 into X, and

‖B‖L2(l
2;X) =

( ∞∑
k=1

‖Bek‖2
X

)1/2

.
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Example 2.9. Let (E, E ,μ) be a measure space, H a separable Hilbert space. For p � 2, let
Lp(E,μ;H) be the usual H-valued Lp-space over (E, E ,μ). Then X = Lp(E,μ;H) is 2-
smooth (cf. [50,6]). In this case, by BDG’s inequality for Hilbert valued martingale we have

‖B‖2
L2(l

2;X)
= E

(∫
E

∥∥Bk(x) · Wk(1)
∥∥p

H
μ(dx)

)2/p

�
(∫

E

E
∥∥Bk(x) · Wk(1)

∥∥p

H
μ(dx)

)2/p

� Cp

(∫
E

( ∞∑
k=1

∥∥Bk(x)
∥∥2

H

)p/2

μ(dx)

)2/p

= Cp‖B‖2
Lp(E,μ;l2⊗H)

. (2.18)

Hence,

Lp
(
E,μ; l2 ⊗ H

)
↪→ L2

(
l2;X

)= L2
(
l2;Lp(E,μ;H)

)
.

We also recall the following Kolmogorov’s continuity criterion, which can be derived directly
by Garsia’s inequality (cf. [64]).

Theorem 2.10. Let {X(t), t � 0} be an X-valued stochastic process, and τ a bounded random
time. Suppose that for some C0,p > 0 and δ > 1,

E
∥∥(X(t) − X(s)

) · 1{s,t∈[0,τ ]}
∥∥p

X
� C0|t − s|δ.

Then there exist constants C1 > 0 and a ∈ (0, (δ − 1)/p) independent of C0 and a continuous
version X̃ of X such that

E

(
sup

s �=t∈[0,τ ]
‖X̃(t) − X̃(s)‖p

X

|t − s|ap
)

� C1 · C0.

2.3. A criterion for Laplace principles

It is well known that there exists a Hilbert space so that l2 ⊂ U is Hilbert–Schmidt with
embedding operator J and {Wk(t), k ∈ N} is a Brownian motion with values in U, whose co-
variance operator is given by Q = J ◦ J ∗. For example, one can take U as the completion of l2

with respect to the norm generated by scalar product

〈
h,h′〉

U
:=
( ∞∑ hkh

′
k

k2

) 1
2

, h,h′ ∈ l2.
k=1
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For T > 0 and a Banach space B, we denote by B(B) the Borel σ -field, and by CT (B) the
space of all continuous functions from [0, T ] to B, which is endowed with the uniform norm.
Define

�2
T :=

{
h =

·∫
0

ḣ(s)ds: ḣ ∈ L2(0, T ; l2)} (2.19)

with the norm

‖h‖�2
T

:=
( T∫

0

∥∥ḣ(s)
∥∥2

l2
ds

)1/2

,

where the dot denotes the generalized derivative. Let μ be the law of the Brownian motion W

in CT (U). Then

(
CT (U), �2

T ,μ
)

forms an abstract Wiener space.
For T ,N > 0, set

DN := {h ∈ �2
T : ‖h‖�2

T
� N

}
and

AT
N :=

{
h : [0, T ] → l2 is a continuous and (Ft )-adapted

process, and for almost all ω, h(·,ω) ∈ DN

}
. (2.20)

It is well known that with respect to the weak convergence topology in �2
T (cf. [32]),

DN is metrizable as a compact Polish space. (2.21)

Let S be a Polish space. A function I : S → [0,∞] is given.

Definition 2.11. The function I is called a rate function if for every a < ∞, the set {f ∈ S:
I (f ) � a} is compact in S.

Let {Zε : CT (U) → S, ε ∈ (0,1)} be a family of measurable mappings. Assume that there is
a measurable map Z0 : �2

T �→ S such that:

(LD)1 For any N > 0, if a family {hε, ε ∈ (0,1)} ⊂ AT
N (as random variables in DN ) converges

in distribution to h ∈ AT
N , then for some subsequence εk , Zεk

(· + hεk (·)√
εk

) converges in

distribution to Z0(h) in S.
(LD)2 For any N > 0, if {hn,n ∈ N} ⊂ DN weakly converges to h ∈ �2

T , then for some subse-
quence hn , Z0(hn ) converges to Z0(h) in S.
k k
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For each f ∈ S, define

I (f ) := 1

2
inf

{h∈�2
T : f =Z0(h)}

‖h‖2
�2
T

, (2.22)

where inf∅ = ∞ by convention. Then under (LD)2, I (f ) is a rate function. In fact, assume that
I (fn) � a. By the definition of I (fn), there exists a sequence hn ∈ �2 such that Z0(hn) = fn and

1

2
‖hn‖2

�2
T

� a + 1

n
.

By the weak compactness of D2a+2, there exist a subsequence nk (still denoted by n) and h ∈ �2
T

such that hn weakly converges to h and

‖h‖2
�2
T

� lim
n→∞

‖hn‖2
�2
T

� 2a.

Hence, by (LD)2 we have

lim
k→∞

∥∥Z0(hnk
) − Z0(h)

∥∥
S

= 0

and

I
(
Z0(h)

)
� a.

We recall the following result due to [5,10] (see also [67, Theorem 4.4]).

Theorem 2.12. Under (LD)1 and (LD)2, {Zε, ε ∈ (0,1)} satisfies the Laplace principle with the
rate function I (f ) given by (2.22). More precisely, for each real bounded continuous function g

on S:

lim
ε→0

ε log E
μ

(
exp

[
−g(Zε)

ε

])
= − inf

f ∈S

{
g(f ) + I (f )

}
. (2.23)

In particular, the family of {Zε, ε ∈ (0,1)} satisfies the large deviation principle in (S, B(S))

with the rate function I (f ). More precisely, let νε be the law of Zε in (S, B(S)), then for any
A ∈ B(S):

− inf
f ∈Ao

I (f ) � lim inf
ε→0

ε logνε(A) � lim sup
ε→0

ε logνε(A) � − inf
f ∈Ā

I (f ),

where the closure and the interior are taken in S, and I (f ) is defined by (2.22).
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3. Abstract stochastic Volterra integral equations

In this section, we consider the following stochastic Volterra integral equation in 2-smooth
Banach space X:

X(t) = g(t) +
t∫

0

A
(
t, s,X(s)

)
ds +

t∫
0

B
(
t, s,X(s)

)
dW(s), (3.1)

where g(t) is an X-valued measurable and (Ft )-adapted process, and

A : � × Ω × X → X ∈ M� × B(X)/B(X)

and

B : � × Ω × X → L2
(
l2;X

) ∈ M� × B(X)/B
(
L2
(
l2;X

))
.

Here and below, � := {(t, s) ∈ R
2+: s � t}, and M� denotes the progressively measurable σ -

field on � × Ω generated by the sets E ∈ B(�) × F with properties: 1E(t, s, ·) ∈ Fs for all
(t, s) ∈ �, and s �→ 1E(t, s,ω) is right continuous for any t ∈ R+ and ω ∈ Ω .

We start with the global existence and uniqueness of solutions for Eq. (3.1) under global
Lipschitz conditions and singular kernels.

3.1. Global existence and uniqueness

In this subsection, we make the following global Lipschitz and linear growth conditions on
the coefficients:

(H1) For some p � 2 and any T > 0,

ess sup
t∈[0,T ]

t∫
0

[
κ1(t, s) + κ2(t, s)

] · E
∥∥g(s)

∥∥p

X
ds < +∞,

where κ1 and κ2 are from (H2) and (H3) below.
(H2) There exists κ1 ∈ K0 such that for all (t, s) ∈ �, ω ∈ Ω and x ∈ X,

∥∥A(t, s,ω, x)
∥∥

X
� κ1(t, s) · (‖x‖X + 1

)
and

∥∥B(t, s,ω, x)
∥∥2

L2(l
2;X)

� κ1(t, s) · (‖x‖2
X

+ 1
)
.

(H3) There exists κ2 ∈ K0 such that for all (t, s) ∈ �, ω ∈ Ω and x, y ∈ X,

∥∥A(t, s,ω, x) − A(t, s,ω, y)
∥∥ � κ2(t, s) · ‖x − y‖X
X
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and

∥∥B(t, s,ω, x) − B(t, s,ω, y)
∥∥2

L2(l
2;X)

� κ2(t, s) · ‖x − y‖2
X
.

We now prove the following basic existence and uniqueness result.

Theorem 3.1. Assume that (H1)–(H3) hold. Then there exists a unique measurable (Ft )-adapted
process X(t) such that for almost all t � 0,

X(t) = g(t) +
t∫

0

A
(
t, s,X(s)

)
ds +

t∫
0

B
(
t, s,X(s)

)
dW(s), P -a.s., (3.2)

and for any T > 0 and some CT,p,κ1 > 0,

E
∥∥X(t)

∥∥p

X
� CT,p,κ1

[
E
∥∥g(t)

∥∥p

X
+ ess sup

t∈[0,T ]

t∫
0

κ1(t, s) · E
∥∥g(s)

∥∥p

X
ds

]
(3.3)

for almost all t ∈ [0, T ], where p is from (H1). Moreover, if

t �→
t∫

0

κ1(t, s)ds ∈ L∞(R+), (3.4)

then for almost all t � 0,

E
∥∥X(t)

∥∥p

X
� Cp,κ1

(
E
∥∥g(t)

∥∥p

X
+

t∫
0

κ̃1(t, s) · E
∥∥g(s)

∥∥p

X
ds

+
t∫

0

rκ̃1(t, u) ·
[ u∫

0

κ̃1(u, s) · E
∥∥g(s)

∥∥p

X
ds

]
du

)
, (3.5)

where κ̃1 = C̃p,κ1 · κ1, rκ̃1 is defined by (2.3) in terms of κ̃1, and Cp,κ1, C̃p,κ1 are constants only
depending on p,κ1.

Proof. We use Picard’s iteration to prove the existence. Let X1(t) := g(t) and define recursively
for n ∈ N,

Xn+1(t) = g(t) +
t∫

0

A
(
t, s,Xn(s)

)
ds +

t∫
0

B
(
t, s,Xn(s)

)
dW(s). (3.6)
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Fix T > 0 below. By (H2), BDG’s inequality (2.17) and Hölder’s inequality we have

E
∥∥Xn+1(t)

∥∥p

X
� E
∥∥g(t)

∥∥p

X
+ E

( t∫
0

∥∥A(t, s,Xn(s)
)∥∥

X
ds

)p

+ E

∥∥∥∥∥
t∫

0

B
(
t, s,Xn(s)

)
dW(s)

∥∥∥∥∥
p

X

� E
∥∥g(t)

∥∥p

X
+ E

( t∫
0

κ1(t, s) · (∥∥Xn(s)
∥∥

X
+ 1
)

ds

)p

+ E

( t∫
0

∥∥B(t, s,Xn(s)
)∥∥2

L2(l
2;X)

ds

) p
2

� E
∥∥g(t)

∥∥p

X
+

t∫
0

κ1(t, s) · E
(∥∥Xn(s)

∥∥p

X
+ 1
)

ds ·
( t∫

0

κ1(t, s)ds

)p−1

+
t∫

0

κ1(t, s) · E
(∥∥Xn(s)

∥∥p

X
+ 1
)

ds ·
( t∫

0

κ1(t, s)ds

) p
2 −1

� E
∥∥g(t)

∥∥p

X
+ CT,p · CT + CT,p

t∫
0

κ1(t, s) · E
∥∥Xn(s)

∥∥p

X
ds, (3.7)

where CT := ess supt∈[0,T ] |
∫ t

0 κ1(t, s)ds| and CT,p := C
p−1
T + C

(p−2)/2
T .

Set

fm(t) := sup
n=1,...,m

E
∥∥Xn(t)

∥∥p

X
.

Then

fm(t) � CT,p,κ1

(
E
∥∥g(t)

∥∥p

X
+ 1
)+

t∫
0

κ̃1(t, s) · fm(s)ds,

where κ̃1 = CT,p,κ1 · κ1 and the constant CT,p,κ1 is independent of m.
Let rκ̃1 be defined by (2.3) in terms of κ̃1. Note that by (2.4)

t∫
rκ̃1(t, s) · E

∥∥g(s)
∥∥p

X
ds −

t∫
κ̃1(t, s) · E

∥∥g(s)
∥∥p

X
ds
0 0
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=
t∫

0

( t∫
s

rκ̃1(t, u)κ̃1(u, s)du

)
· E
∥∥g(s)

∥∥p

X
ds

=
t∫

0

rκ̃1(t, u)

( u∫
0

κ̃1(u, s) · E
∥∥g(s)

∥∥p

X
ds

)
du.

Hence, by Lemma 2.2 and (H1), we obtain that for almost all t ∈ [0, T ],

sup
n∈N

E
∥∥Xn(t)

∥∥p

X
= lim

m→∞fm(t) � CT,p,κ1

(
E
∥∥g(t)

∥∥p

X
+

t∫
0

rκ̃1(t, s) · E
∥∥g(s)

∥∥p

X
ds

)

� CT,p,κ1

(
E
∥∥g(t)

∥∥p

X
+

t∫
0

κ̃1(t, s) · E
∥∥g(s)

∥∥p

X
ds

+
t∫

0

rκ̃1(t, u)

( u∫
0

κ̃1(u, s) · E
∥∥g(s)

∥∥p

X
ds

)
du

)
(3.8)

(2.5)

� CT,p,κ1

[
E
∥∥g(t)

∥∥p

X
+ ess sup

t∈[0,T ]

t∫
0

κ1(t, s) · E
∥∥g(s)

∥∥p

X
ds

]
. (3.9)

On the other hand, set

Zn,m(t) := Xn(t) − Xm(t)

and

f (t) := lim sup
n,m→∞

E
∥∥Zn,m(t)

∥∥2
X
.

As the above calculations, by (H3) we have

E
∥∥Zn+1,m+1(t)

∥∥2
X

� E

∥∥∥∥∥
t∫

0

(
A
(
t, s,Xn(s)

)− A
(
t, s,Xm(s)

))
ds

∥∥∥∥∥
2

X

+ E

∥∥∥∥∥
t∫

0

(
B
(
t, s,Xn(s)

)− B
(
t, s,Xm(s)

))
dW(s)

∥∥∥∥∥
2

X

�
t∫

0

κ2(t, s) · E
∥∥Zn,m(s)

∥∥2
X

ds.
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By (3.9), (H1) and using Fatou’s lemma, we get

f (t) �
t∫

0

κ2(t, s) · f (s)ds.

By Lemma 2.2 again, we have for almost all t ∈ [0, T ],

f (t) = lim sup
n,m→∞

E
∥∥Zn,m(t)

∥∥2
X

= 0.

Hence, there exists an X-valued (Ft )-adapted process X(t) such that for almost all t ∈ [0, T ],

lim
n→∞ E

∥∥Xn(t) − X(t)
∥∥2

X
= 0.

Taking limits for (3.6), one finds that (3.2) holds.
Moreover, estimate (3.3) follows from (3.9). Note that when (3.4) is satisfied, the constant

CT,p in (3.7) is independent of T . Hence, estimate (3.5) is direct from (3.8). The uniqueness
follows by similar calculations as above. �
Example 3.2. Let for δ > 0,

h(s) := e−δs

s log2 s
, t > s � 0.

It is easy to see that h ∈ L1(R+). Consider the following stochastic Volterra equation:

X(t) = x0

√∣∣log(t ∧ 1)
∣∣+

t∫
0

h(t − s)A
(
X(s)

)
ds +

t∫
0

√
h(t − s)B

(
X(s)

)
dW(s),

where A : X → X and B : X → L2(l
2;X) are global Lipschitz continuous functions. By elemen-

tary calculations, one finds that

sup
t�0

t∫
0

e−δ(t−s)|log(s ∧ 1)|
(t − s) log2(t − s)

ds < +∞.

So, (H1)–(H3) are satisfied with p = 2. Moreover, by (2.8) and (3.5), one finds that if δ is large
enough, then for any T > 0,

sup
t�T

E
∥∥X(t)

∥∥2
X

< +∞.

We remark that in this example, X(0) = ∞.
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3.2. Path continuity of solutions

In this subsection, in addition to (H2) and (H3), we also assume that:

(H1)′ The process t �→ g(t) is continuous and (Ft )-adapted, and for any p � 2 and T > 0,

E

(
sup

t∈[0,T ]
∥∥g(t)

∥∥p

X

)
< +∞.

(H4) For all s < t < t ′, ω ∈ Ω and x ∈ X,

∥∥A(t ′, s,ω, x
)− A(t, s,ω, x)

∥∥
X

� λ
(
t ′, t, s

) · (‖x‖X + 1
)

and

∥∥B(t ′, s,ω, x
)− B(t, s,ω, x)

∥∥2
L2(l

2;X)
� λ
(
t ′, t, s

) · (‖x‖2
X

+ 1
)
,

where λ is a positive measurable function satisfying that for any T > 0 and some
γ = γ (T ), C = C(T ) > 0,

t∫
0

λ
(
t ′, t, s

)
ds � C

∣∣t ′ − t
∣∣γ , 0 � t < t ′ � T . (3.10)

Theorem 3.3. Assume that (H1)′ and (H2)–(H4) hold, and the kernel function κ1 in (H2) belongs
to K>1. Then there exists a unique X-valued continuous (Ft )-adapted process X(t) such that
P -a.s., for all t � 0,

X(t) = g(t) +
t∫

0

A
(
t, s,X(s)

)
ds +

t∫
0

B
(
t, s,X(s)

)
dW(s) (3.11)

and for any p � 2 and T > 0,

E

(
sup

t∈[0,T ]
∥∥X(t)

∥∥p

X

)
< +∞. (3.12)

Moreover, if for some δ > 0 and any p � 2, T > 0,

E
∥∥g(t ′)− g(t)

∥∥p

X
� CT,p

∣∣t ′ − t
∣∣δp,

then, t �→ X(t) admits a Hölder continuous modification and for any p � 2, T > 0 and some
a > 0,

E

(
sup

t �=t ′∈[0,T ]
‖X(t ′) − X(t)‖p

X

|t ′ − t |ap
)

� CT,p,a.
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Proof. First of all, for any p � 2 and T > 0, by (H1)′ and (3.3) we have

ess sup
t∈[0,T ]

E
∥∥X(t)

∥∥p

X
< +∞. (3.13)

Set

J (t) :=
t∫

0

B
(
t, s,X(s)

)
dW(s)

and write for 0 � t < t ′ � T ,

J
(
t ′
)− J (t) =

t∫
0

[
B
(
t ′, s,X(s)

)− B
(
t, s,X(s)

)]
dW(s)

+
t ′∫

t

B
(
t ′, s,X(s)

)
dW(s) =: J1

(
t ′, t
)+ J2

(
t ′, t
)
.

In view of κ1 ∈ K>1, (2.6) holds for some β > 1. Fix p � 2β∗ (β∗ := β/(β − 1)). By BDG
inequality (2.17), (H2) and Hölder’s inequality, we have

E
∥∥J2
(
t ′, t
)∥∥p

X
� E

( t ′∫
t

κ1
(
t ′, s
) · (∥∥X(s)

∥∥2
X

+ 1
)

ds

) p
2

�
( t ′∫

t

k
β

1

(
t ′, s
)

ds

) p
2β

E

( t ′∫
t

(∥∥X(s)
∥∥2β∗

X
+ 1
)

ds

) p

2β∗

(2.6)

�
∣∣t ′ − t

∣∣ p

2β∗ −1
t ′∫

t

(
E
∥∥X(s)

∥∥p

X
+ 1
)

ds
(3.13)

�
∣∣t ′ − t

∣∣ p

2β∗ ,

and by (H4) and Minkowski’s inequality,

E
∥∥J1
(
t ′, t
)∥∥p

X
� E

( t∫
0

λ
(
t ′, t, s

) · (∥∥X(s)
∥∥2

X
+ 1
)

ds

) p
2

�
( t∫

0

λ
(
t ′, t, s

) · ((E∥∥X(s)
∥∥p

X

) 2
p + 1

)
ds

) p
2

(3.13)

�
( t∫

λ
(
t ′, t, s

)
ds

) p
2 (3.10)

�
∣∣t ′ − t

∣∣ γp
2 .
0
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Hence, for all 0 � t < t ′ � T ,

E
∥∥J (t ′)− J (t)

∥∥p

X
�
∣∣t − t ′

∣∣ γp
2 + ∣∣t − t ′

∣∣ p

2β∗ .

Similarly, we may prove that for all 0 � t < t ′ � T and p � β∗,

E

∥∥∥∥∥
t ′∫

0

A
(
t ′, s,X(s)

)
ds −

t∫
0

A
(
t, s,X(s)

)
ds

∥∥∥∥∥
p

X

�
∣∣t − t ′

∣∣γp + ∣∣t − t ′
∣∣ p

β∗ .

The desired conclusions follow from Theorem 2.10. �
We conclude this subsection by proving a lemma, which will be used frequently later. We put

it here since the proof is similar to Theorem 3.3.

Lemma 3.4. Let τ be an (Ft )-stopping time and

G : � × Ω → L2
(
l2;X

) ∈ M�/B
(
L2
(
l2;X

))
.

Assume that for all 0 � s < t < t ′ and ω ∈ Ω ,

∥∥G(t, s,ω)
∥∥2

L2(l
2;X)

� κ(t, s) · f 2(s,ω), (3.14)∥∥G(t ′, s,ω)− G(t, s,ω)
∥∥2

L2(l
2;X)

� λ
(
t ′, t, s

) · f 2(s,ω), (3.15)

where κ ∈ K>1 and for any T > 0 and some α > 1 and γ > 0,

t∫
0

λα
(
t ′, t, s

)
ds � CT

∣∣t ′ − t
∣∣γ , ∀0 � t < t ′ � T ,

and (s,ω) �→ f (s,ω) is a positive measurable process with

E

( T ∧τ∫
0

f p(s)ds

)
< +∞, ∀p � 2.

Then t �→ J (t) := ∫ t

0 G(t, s)dW(s) ∈ X admits a continuous modification on [0, τ ), and for any
T > 0 and p large enough

E

(
sup

t∈[0,T ∧τ ]

∥∥∥∥∥
t∫

0

G(t, s)dW(s)

∥∥∥∥∥
p

X

)
� CT E

( T ∧τ∫
0

f p(s)ds

)
,

where the constant CT is independent of f and τ .
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Proof. Fix T > 0 and write for 0 � t < t ′ � T ,

J
(
t ′
)− J (t) =

t ′∫
t

G
(
t ′, s
)

dW(s) +
t∫

0

[
G
(
t ′, s
)− G(t, s)

]
dW(s)

=: J1
(
t ′, t
)+ J2

(
t ′, t
)
.

In view of κ ∈ K>1 and (2.6), by BDG’s inequality (2.17) and Hölder’s inequality we have, for
some β > 1 and p � 2β∗ (β∗ = β/(β − 1)),

E
∥∥J1
(
t ′, t
) · 1{t ′,t∈[0,τ )}

∥∥p

X
� E

∥∥∥∥∥
t ′∧τ∫

t∧τ

G
(
t ′, s
)

dW(s)

∥∥∥∥∥
p

X

� E

( t ′∧τ∫
t∧τ

∥∥G(t ′, s)∥∥2
L2(l

2;X)
ds

)p/2

(3.14)

� E

( t ′∧τ∫
t∧τ

κ
(
t ′, s
) · f 2(s)ds

)p/2

�
( t ′∫

t

κβ
(
t ′, s
)

ds

) p
2β

· E

( t ′∧τ∫
t∧τ

f 2β∗
(s)ds

) p

2β∗

�
∣∣t ′ − t

∣∣ p

2β∗ −1 · E

( T ∧τ∫
0

f p(s)ds

)

and for p � 2α∗ (α∗ = α/(α − 1)),

E
∥∥J1
(
t ′, t
) · 1{t ′,t∈[0,τ )}

∥∥p

X
� E

( t∧τ∫
0

∥∥G(t ′, s)− G(t, s)
∥∥2

L2(l
2;X)

ds

)p/2

(3.15)

� E

( t∧τ∫
0

λ
(
t ′, t, s

) · f 2(s)ds

)p/2

�
( t∫

0

λα
(
t ′, t, s

)
ds

) p
2α

· E

( t∧τ∫
0

f 2α∗
(s)ds

) p

2α∗

�
∣∣t ′ − t

∣∣ γp
2α · E

( T ∧τ∫
f p(s)ds

)
.

0
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Hence, for any p � 2(α∗ ∨ β∗) and 0 � t < t ′ � T ,

E
∥∥(J (t ′)− J (t)

) · 1{t ′,t∈[0,τ )}
∥∥p

X
�
∣∣t ′ − t

∣∣( p

2β∗ −1)∧ γp
2α · E

( T ∧τ∫
0

f p(s)ds

)
.

The desired result now follows by Theorem 2.10. �
3.3. Local existence and uniqueness

In this subsection, we assume that:

(H2)′ For any R > 0, there exists κ1,R ∈ K>1 such that for all (t, s) ∈ �, ω ∈ Ω and x ∈ X with
‖x‖X � R,

∥∥A(t, s,ω, x)
∥∥

X
+ ∥∥B(t, s,ω, x)

∥∥2
L2(l

2;X)
� κ1,R(t, s).

(H3)′ For any R > 0, there exists κ2,R ∈ K0 such that for all (t, s) ∈ �, ω ∈ Ω and x, y ∈ X

with ‖x‖X,‖y‖X � R,

∥∥A(t, s,ω, x) − A(t, s,ω, y)
∥∥

X
� κ2,R(t, s) · ‖x − y‖X

and

∥∥B(t, s,ω, x) − B(t, s,ω, y)
∥∥2

L2(l
2;X)

� κ2,R(t, s) · ‖x − y‖2
X
.

(H4)′ For any R > 0, there exists a measurable function λR satisfying that for any T > 0 and
some γ , C > 0,

t∫
0

λR

(
t ′, t, s

)
ds � C

∣∣t ′ − t
∣∣γ , 0 � t < t ′ � T ,

such that for all s < t < t ′, ω ∈ Ω and x ∈ X with ‖x‖X � R,

∥∥A(t ′, s,ω, x
)− A(t, s,ω, x)

∥∥
X

+ ∥∥B(t ′, s,ω, x
)− B(t, s,ω, x)

∥∥2
L2(l

2;X)
� λR

(
t ′, t, s

)
.

We first introduce the following notion of local solutions.

Definition 3.5. Let τ be an (Ft )-stopping time, and {X(t); t ∈ [0, τ )} an X-valued continuous
(Ft )-adapted process. The pair of (X, τ) is called a local solution of Eq. (3.1) if P -a.s., for all
t ∈ [0, τ ),

X(t) = g(t) +
t∫
A
(
t, s,X(s)

)
ds +

t∫
B
(
t, s,X(s)

)
dW(s);
0 0
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(X, τ) is called a maximal solution of Eq. (3.1) if

lim
t↑τ(ω)

∥∥X(t,ω)
∥∥

X
= +∞ on

{
ω: τ(ω) < +∞}, P -a.s.

We call (X, τ) a non-explosion solution of Eq. (3.1) if

P
{
ω: τ(ω) < +∞}= 0.

Remark 3.6. The stochastic integral in the above definition is defined on [0, τ ) by

t∫
0

B
(
t, s,X(s)

)
dW(s) = lim

n→∞

t∧τn∫
0

B
(
t, s,X(s)

)
dW(s), t < τ,

where τn := inf{t > 0: ‖X(t)‖X > n} ↗ τ as n → ∞.

We now prove the following main result in this section.

Theorem 3.7. Under (H1)′–(H4)′, there exists a unique maximal solution (X, τ) for Eq. (3.1) in
the sense of Definition 3.5.

Proof. For n ∈ N, let χn be a positive smooth function on R+ with χn(s) = 1, s � n, and
χn(s) = 0, s � n + 1. Define

An(t, s,ω, x) := A(t, s,ω, x) · χn

(‖x‖X

)
,

Bn(t, s,ω, x) := B(t, s,ω, x) · χn

(‖x‖X

)
.

It is easy to see that for An and Bn, (H2) holds with κ1,n+1, (H4) holds with λn+1, and (H3)
holds with some κ3,n ∈ K0. Thus, by Theorem 3.3 there exists a unique continuous (Ft )-adapted
process Xn(t) such that for any p � 2 and T > 0,

E

(
sup

t∈[0,T ]
∥∥Xn(t)

∥∥p

X

)
� CT,p,n

and

Xn(t) = g(t) +
t∫

0

An

(
t, s,Xn(s)

)
ds +

t∫
0

Bn

(
t, s,Xn(s)

)
dW(s). (3.16)

We have the following claim:

Let τ be any stopping time. The uniqueness holds for (3.16) on [0, τ ).

We remark that when τ = T is non-random, it follows from Theorem 3.1. Let Xi(t), i = 1,2, be
two X-valued continuous (Ft )-adapted processes and satisfy on [0, τ ),



1386 X. Zhang / Journal of Functional Analysis 258 (2010) 1361–1425
Xi(t) = g(t) +
t∫

0

An

(
t, s,Xi(s)

)
ds +

t∫
0

Bn

(
t, s,Xi(s)

)
dW(s), i = 1,2.

Set

Z(t) := X1(t) − X2(t).

Since κ3,n ∈ K0, as the calculations in (3.7), by BDG’s inequality (2.17) and (H3) for An and Bn,
we have

E
∥∥Z(t) · 1{t<τ }

∥∥p

X

� E

( t∧τ∫
0

κ3,n(t, s) · ∥∥Z(s)
∥∥

X
ds

)p

+ E

( t∧τ∫
0

κ3,n(t, s) · ∥∥Z(s)
∥∥2

X
ds

) p
2

= E

( t∫
0

κ3,n(t, s) · 1{s<τ } · ∥∥Z(s)
∥∥

X
ds

)p

+ E

( t∫
0

κ3,n(t, s) · 1{s<τ } · ∥∥Z(s)
∥∥2

X
ds

) p
2

�
t∫

0

κ3,n(t, s) · E
∥∥Z(s) · 1{s<τ }

∥∥p

X
ds. (3.17)

By Lemma 2.2, we get

E
∥∥Z(t) · 1{t<τ }

∥∥p

X
= 0 for almost all t ∈ [0, T ],

which implies by the arbitrariness of T and the continuities of Xi(t), i = 1,2,

X1(·)|[0,τ ) = X2(·)|[0,τ ).

The claim is proved.

Now, for n ∈ N, define the stopping times

τn := inf
{
t > 0:

∥∥Xn(t)
∥∥

X
> n
}

and

σn := inf
{
t > 0:

∥∥Xn+1(t)
∥∥

X
> n
}
.

By the above claim, we have

Xn(·)|[0,τn∧σn) = Xn+1(·)|[0,τn∧σn),



X. Zhang / Journal of Functional Analysis 258 (2010) 1361–1425 1387
which implies

τn � σn � τn+1, a.s.

Hence, we may define

τ(ω) := lim
n→∞ τn(ω)

and for all t < τ(ω),

X(t,ω) := Xn(t,ω), if t < τn(ω).

Clearly, (X, τ) is a maximal solution of Eq. (3.1) in the sense of Definition 3.5.
We next prove the uniqueness. Let (X̃, τ̃ ) be another maximal solution of Eq. (3.1) in the

sense of Definition 3.5. Define the stopping times

τ̃n := inf
{
t > 0:

∥∥X̃(t)
∥∥

X
> n
}

and

τ̂n := τn ∧ τ̃n, τ̂ := τ ∧ τ̃ .

It is clear that

τ̂n ↗ τ̂ a.s. as n → ∞,

and

1[0,τ̂n)(t) · X̃(t) = 1[0,τ̂n)(t) · g(t) + 1[0,τ̂n)(t) ·
t∫

0

A
(
t, s, X̃(s)

)
ds

+ 1[0,τ̂n)(t) ·
t∫

0

B
(
t, s, X̃(s)

)
dW(s)

= 1[0,τ̂n)(t) · g(t) + 1[0,τ̂n)(t) ·
t∫

0

An

(
t, s, X̃(s)

)
ds

+ 1[0,τ̂n)(t) ·
t∫

0

Bn

(
t, s, X̃(s)

)
dW(s).

By the above claim again, we have

X(·)|[0,τ̂ ) = X̃(·)|[0,τ̂ ).
n n
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So

X(·)|[0,τ̂ ) = X̃(·)|[0,τ̂ ).

By the definition of maximal solution we must have τ̂ = τ = τ̃ . �
We have the following simple criterion of non-explosion.

Theorem 3.8. Assume that (H1)′, (H2) and (H4) hold, and κ1 in (H2) belongs to K>1. Then
there is no explosion for Eq. (3.1).

Proof. Let (X, τ) be a maximal solution of Eq. (3.1). Define

τn := inf
{
t > 0:

∥∥X(t)
∥∥

X
� n
}
.

By BDG’s inequality (2.17) and Hölder’s inequality, and using the same method as estimating
(3.17), we have, for any T > 0 and some β > 1 and p � 2β∗ (β∗ = β/(β − 1)),

E
∥∥X(t) · 1{t�τn}

∥∥p

X
� E
∥∥g(t)

∥∥p

X
+ E

( t∧τn∫
0

∥∥A(t, s,X(s)
)∥∥

X
ds

)p

+ E

∥∥∥∥∥
t∧τn∫
0

B
(
t, s,X(s)

)
dW(s)

∥∥∥∥∥
p

X

� E
∥∥g(t)

∥∥p

X
+ E

( t∧τn∫
0

κ1(t, s) · (∥∥X(s)
∥∥

X
+ 1
)

ds

)p

+ E

( t∧τn∫
0

∥∥B(t, s,X(s)
)∥∥2

L2(l
2;X)

ds

) p
2

� E
∥∥g(t)

∥∥p

X
+ E

( t∧τn∫
0

(∥∥X(s)
∥∥β∗

X
+ 1
)

ds

) p

β∗

+ E

( t∧τn∫
0

(∥∥X(s)
∥∥2β∗

X
+ 1
)

ds

) p

2β∗

� CT,p

[
E
∥∥g(s)

∥∥p

X
+ 1 +

t∫
0

E
∥∥X(s) · 1{s�τn}

∥∥p

X
ds

]
,

where the constant CT,p is independent of n.
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By Gronwall’s inequality, we obtain

sup
t∈[0,T ]

E
∥∥X(t) · 1{t�τn}

∥∥p

X
� CT,p.

Using this estimate, as in the proofs of Theorem 3.3 and Lemma 3.4, we can prove that for any
T > 0 and p � 2,

sup
n∈N

E

(
sup

t∈[0,T ∧τn]
∥∥X(t)

∥∥p

X

)
� CT,p.

Hence,

lim
n→∞P {τn � T } = lim

n→∞P
{

sup
t∈[0,T ∧τn]

∥∥X(t)
∥∥

X
� n
}

� lim
n→∞ E

(
sup

t∈[0,T ∧τn]

∥∥X(t)
∥∥p

X

)
/np

� lim
n→∞CT,p/np = 0,

which produces the non-explosion, i.e., P {τ < ∞} = 0. �
Remark 3.9. One cannot directly prove

sup
n∈N

E
∥∥X(t ∧ τn)

∥∥p

X
< +∞, ∀t � 0,

to obtain the non-explosion, because it does not in general make sense to write

t∧τn∫
0

B
(
t ∧ τn, s,X(s)

)
dW(s).

3.4. Continuous dependence of solutions with respect to data

In this subsection, we study the continuous dependence of solutions for Eq. (3.1) with respect
to the coefficients.

Let {(gm,Am,Bm),m ∈ N} be a sequence of coefficients associated to Eq. (3.1). Assume that
for each m ∈ N, (gm,Am,Bm) satisfies (H1)′–(H4)′ with the same κ1,R, κ2,R and λR as (g,A,B),
and for each p � 2,

lim
m→∞ sup

t∈[0,T ]
E
∥∥gm(t) − g(t)

∥∥p

X
= 0 (3.18)

and for each T ,R > 0,
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lim
m→∞ sup

t∈[0,T ],‖x‖X�R

t∫
0

∥∥Am(t, s, x) − A(t, s, x)
∥∥

X
ds = 0, (3.19)

lim
m→∞ sup

t∈[0,T ],‖x‖X�R

t∫
0

∥∥Bm(t, s, x) − B(t, s, x)
∥∥2

L2(l
2;X)

ds = 0. (3.20)

Let (Xm, τm) (resp. (X, τ)) be the unique maximal solution associated with (gm,Am,Bm) (resp.
(g,A,B)). For each R > 0 and m ∈ N, define

τR
m := inf

{
t > 0:

∥∥X(t)
∥∥

X
,
∥∥Xm(t)

∥∥
X

> R
}
.

Suppose that for each t > 0,

lim
R→∞ sup

m
P
{
τR
m < t

}= 0. (3.21)

Then we have:

Theorem 3.10. For each t > 0 and ε > 0,

lim
m→∞P

{∥∥Xm(t) − X(t)
∥∥

X
� ε
}= 0.

Proof. For R > 0 and m ∈ N, set

ZR
m(t) := (Xm(t) − X(t)

) · 1{t�τR
m }.

Then

ZR
m(t) = JR

1,m(t) + JR
2,m(t) + JR

3,m(t) + JR
4,m(t) + JR

5,m(t),

where

JR
1,m(t) := 1{t�τR

m ] · [gm(t) − g(t)
]
,

JR
2,m(t) := 1{t�τR

m ] ·
t∧τR

m∫
0

[
Am

(
t, s,Xn(s)

)− Am

(
t, s,X(s)

)]
ds,

JR
3,m(t) := 1{t�τR

m ] ·
t∧τR

m∫
0

[
Am

(
t, s,X(s)

)− A
(
t,X(s)

)]
ds,

JR
4,m(t) := 1{t�τR

m ] ·
t∧τR

m∫ [
Bm

(
t, s,Xm(s)

)− Bm

(
t, s,X(s)

)]
dW(s),
0
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JR
5,m(t) := 1{t�τR

m ] ·
t∧τR

m∫
0

[
Bm

(
t, s,X(s)

)− B
(
t, s,X(s)

)]
dW(s).

Fix T > 0. Clearly, for any p � 2 and t ∈ [0, T ],

E
∥∥JR

1,m(t)
∥∥p

X
� sup

t∈[0,T ]
E
∥∥gm(t) − g(t)

∥∥p

X
=: J1,m.

For JR
2,m(t), by (H3)′ and Hölder’s inequality we have, for p large enough (κ2,R ∈ K>1)

E
∥∥JR

2,m(t)
∥∥p

X
� E

( t∧τR
m∫

0

κ2,R(t, s) · ∥∥Xm(s) − X(s)
∥∥

X
ds

)p

�
[ t∫

0

κ
β

2,R(t, s)ds

] p
β

· E

[ t∫
0

∥∥ZR
m(s)

∥∥β∗
X

ds

] p

β∗

� C

t∫
0

E
∥∥ZR

m(s)
∥∥p

X
ds.

For JR
3,m(t), we have

E
∥∥JR

3,m(t)
∥∥p

X
� E

(
sup

‖x‖X�R

t∧τR
m∫

0

∥∥Am(t, s, x) − A(t, s, x)
∥∥

X
ds

)p

�
(

sup
t∈[0,T ]

sup
‖x‖X�R

t∫
0

∥∥Am(t, s, x) − A(t, s, x)
∥∥

X
ds

)p

=: J R
3,m.

Similarly, by BDG’s inequality (2.17) we have, for p large enough

E
∥∥JR

4,m(t)
∥∥p

X
� C

t∫
0

E
∥∥ZR

m(s)
∥∥p

X
ds

and

E
∥∥JR

5,m(t)
∥∥p

X
� Cp

(
sup

t∈[0,T ]
sup

‖x‖X�R

t∫
0

∥∥Bm(t, s, x) − B(t, s, x)
∥∥2

L2(l
2;X)

ds

) p
2

=: J R
5,m.
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Combining the above calculations, we get

E
∥∥ZR

m(t)
∥∥p

X
� J1,m + J R

3,m + J R
5,m + C

t∫
0

E
∥∥ZR

m(s)
∥∥p

X
ds.

By Gronwall’s inequality and (3.18)–(3.20) we get, for any R > 0 and p large enough

lim
m→∞ E

∥∥ZR
m(t)

∥∥p

X
= 0.

Hence

P
{∥∥Xm(t) − X(t)

∥∥
X

� ε
}

� P
{∥∥Xm(t) − X(t)

∥∥
X

· 1{t�τR
m } � ε

}+ P
{
τR
m < t

}
� E
∥∥ZR

m(t)
∥∥p

X
/εp + P

{
τR
m < t

}
.

First letting m → ∞ and then R → ∞, we then get the desired limit by (3.21). �
4. Large deviation for stochastic Volterra equations

In this section, we study the large deviation of small perturbations for stochastic Volterra
equations and work in the finite time interval [0, T ].

In what follows, we fix a densely defined closed linear operator L on X for which

Sφ := {λ ∈ C: 0 < φ � |argλ| � π
}⊂ ρ(L), (4.1)

and for some C � 1,

∥∥(λ − L)−1
∥∥

L(X)
� C

1 + |λ| , λ ∈ Sφ,

where ρ(L) denotes the resolvent set of L. The above operator L is also called sectorial (cf. [28,
p. 18]). It is well known that L generates an analytic semigroup

Tt = e−Lt , t � 0.

Moreover, we also assume that L−1 is a bounded linear operator on X, i.e.,

0 ∈ ρ(L).

Thus, for any α ∈ R, the fractional power Lα is well defined (cf. [28,48]). For α > 0, we define
the fractional Sobolev space Xα by

Xα := D
(
Lα
)

with the norm

‖x‖Xα
:= ∥∥Lαx

∥∥
X
.
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For α < 0, Xα is defined as the completion of X with respect to the above norm. It is clear that
Xα is still 2-smooth, and B ∈ L2(l

2;Xα) if and only if LαB ∈ L2(l
2;X), i.e.,

‖B‖L2(l
2;Xα) = ∥∥LαB

∥∥
L2(l

2;X)
. (4.2)

We recall the following well-known properties about Tt for later use (cf. [28, pp. 24–27] or
[48, p. 74]).

Proposition 4.1.

(i) Tt : X → Xα for each t > 0 and α > 0.
(ii) For each t > 0, α ∈ R and every x ∈ Xα , TtL

αx = LαTt x.
(iii) For some δ > 0 and each t, α > 0, the operator LαTt is bounded in X and

∥∥LαTt x
∥∥

X
� Cαt−αe−δt‖x‖X, ∀x ∈ X.

(iv) Let α ∈ (0,1] and x ∈ Xα , then

‖Tt x − x‖X � Cαtα‖x‖Xα
.

(v) For any 0 � β < α,

‖x‖Xβ
� Cα,β‖x‖1− β

α ‖x‖
β
α

Xα
, ∀x ∈ Xα.

In addition to (H2)′, (H3)′ and (H4)′, in this section we assume that g and A,B are non-
random, and:

(H1)′′ For some δ > 0,

∥∥g(t) − g
(
t ′
)∥∥

X
� CT

∣∣t − t ′
∣∣δ, t, t ′ ∈ [0, T ],

and for some α > 0,

sup
t∈[0,T ]

∥∥g(t)
∥∥

Xα
< +∞.

(H2)′′ For the same α as in (H1)′′ and any R > 0, there exists a kernel function κα,R ∈ K0 such
that for all (t, s) ∈ � and x ∈ X with ‖x‖X � R,

∥∥A(t, s, x)
∥∥

Xα
+ ∥∥B(t, s, x)

∥∥2
L2(l

2;X α
2
)
� κα,R(t, s).

Remark 4.2. If the κα,R in (H2)′′ belongs to K>1, then (H2)′′ implies (H2)′ in view of Xα ↪→ X.
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Consider the following small perturbation of stochastic Volterra equation (3.1)

Xε(t) = g(t) +
t∫

0

A
(
t, s,Xε(s)

)
ds + √

ε

t∫
0

B
(
t, s,Xε(s)

)
dW(s), (4.3)

where ε ∈ (0,1). By Theorem 3.7, there exists a unique maximal solution (Xε, τε) for Eq. (4.3).
Below, we fix T > 0 and work in the finite time interval [0, T ], and assume that for each ε ∈
(0,1),

τε > T , a.s.

By Yamada–Watanabe’s theorem (cf. [45,57]), there exists a measurable mapping

Φε : CT (U) → CT (X)

such that

Xε(t,ω) = Φε

(
W(·,ω)

)
(t).

It should be noticed that although the equation considered in [45] is a little different from
Eq. (3.1), the proof is still adapted to our more general equation.

We now fix a family of processes {hε, ε ∈ (0,1)} in AT
N (see (2.20) for the definition of AT

N ),
and put

Xε(t,ω) := Φε

(
W(·,ω) + hε(·,ω)√

ε

)
(t).

Here, we have used a little confused notations Xε and Xε , but they are clearly different. By
Girsanov’s theorem (cf. [45, Section 7]), Xε(t) solves the following stochastic Volterra equation
(also called control equation):

Xε(t) = g(t) +
t∫

0

A
(
t, s,Xε(s)

)
ds +

t∫
0

B
(
t, s,Xε(s)

)
ḣε(s)ds

+ √
ε

t∫
0

B
(
t, s,Xε(s)

)
dW(s). (4.4)

Although h is defined only on [0, T ], we can extend it to R+ by setting ḣ(t) = 0 for t > T so
that Eq. (4.4) can be considered on R+. We shall always use this extension below. Let τ ε be the
explosion time of Eq. (4.4). For n ∈ N, define

τ ε
n := inf

{
t � 0:

∥∥Xε(t)
∥∥

X
> n
}
. (4.5)

Then τ ε ↗ τ ε as n → ∞. We have:
n
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Lemma 4.3. For any α0 ∈ (0, α), there is an a > 0 such that for p sufficiently large

sup
ε∈(0,1)

E

(
sup

t �=t ′∈[0,T ∧τ ε
n ]

‖Xε(t ′) − Xε(t)‖p

Xα0

|t ′ − t |ap
)

� CN,n,T ,p,κα,n,α0 .

Proof. Note that

∥∥Xε(t) · 1{t�τ ε
n }
∥∥

Xα

�
∥∥g(t)

∥∥
Xα

+
t∧τ ε

n∫
0

∥∥A(t, s,Xε(s)
)∥∥

Xα
ds

+
t∧τ ε

n∫
0

∥∥B(t, s,Xε(s)
)
ḣε(s)

∥∥
Xα

ds + √
ε

∥∥∥∥∥
t∧τ ε

n∫
0

B
(
t, s,Xε(s)

)
dW(s)

∥∥∥∥∥
Xα

=: J1(t) + J2(t) + J3(t) + J4(t).

By (H2)′′ and (4.5) we have

E
∣∣J2(t)

∣∣p � CnE

( t∧τ ε
n∫

0

κα,n(t, s)ds

)p

� Cn,T ,p,κα,n

and by Hölder’s inequality

E
∣∣J3(t)

∣∣p � E

( t∧τ ε
n∫

0

∥∥B(t, s,Xε(s)
)
ḣε(s)

∥∥
Xα

ds

)p

� E

( t∧τ ε
n∫

0

∥∥B(t, s,Xε(s)
)∥∥

L2(l
2;Xα)

· ∥∥ḣε(s)
∥∥

l2
ds

)p

� N
p
2 E

( t∧τ ε
n∫

0

∥∥B(t, s,Xε(s)
)∥∥2

L2(l
2;Xα)

ds

) p
2

� CN,n,T ,p,κα,n ,

where we have used that hε ∈ AT
N .

Similarly, by BDG’s inequality (2.17) and (H2)′′ we have

E
∣∣J4(t)

∣∣p � CpE

( t∧τ ε
n∫ ∥∥B(t, s,Xε(s)

)∥∥2
L2(l

2;Xα)
ds

) p
2

� Cn,T ,p,κα,n .
0



1396 X. Zhang / Journal of Functional Analysis 258 (2010) 1361–1425
Combining the above calculations, we get

sup
ε∈(0,1)

sup
t∈[0,T ]

E
∥∥Xε(t) · 1{t�τ ε

n }
∥∥p

Xα
� CN,n,T ,p,κα,n , p � 2. (4.6)

Moreover, as in the proofs of Theorem 3.3 and Lemma 3.4, by (H1)′′, (H2)′ and (H4)′, for
some β3 > 1 and p � 2β∗

3 (β∗
3 := β3/(β3 − 1)), we have that for any 0 � t < t ′ � T ,

sup
ε∈(0,1)

E
∥∥(Xε

(
t ′
)− Xε(t)

) · 1{t ′,t�τ ε
n }
∥∥p

X
� CT,p,n

(∣∣t − t ′
∣∣δp + ∣∣t − t ′

∣∣ γp
2 + ∣∣t − t ′

∣∣ p

2β∗
3
)
.

Thus, by (v) of Proposition 4.1 and (4.6), for any α0 ∈ (0, α) and p large enough we have

sup
ε∈(0,1)

E
∥∥(Xε

(
t ′
)− Xε(t)

) · 1{t ′,t�T ∧τ ε
n }
∥∥p

Xα0

� CN,n,T ,p,κα,n,α0

(∣∣t − t ′
∣∣δp + ∣∣t − t ′

∣∣ γp
2 + ∣∣t − t ′

∣∣ p

2β∗ )1− α0
α .

The desired estimate now follows by Theorem 2.10. �
In order to obtain the tightness of the laws of {Xε, ε ∈ (0,1)} in CT (X), we assume that:

(C1) L−1 is a compact operator on X.
(C2) limn→∞ supε∈(0,1) P {ω: τ ε

n (ω) < T } = 0.

Note that (C2) implies

P
{
ω: τ ε(ω) > T

}= 1.

We now prove the following key lemma for the large deviation principle of Eq. (4.3).

Lemma 4.4. Under (C1) and (C2), there exist subsequence εk ↓ 0, a probability space (Ω̃, F̃ , P̃ )

and a sequence {(h̃k, X̃k, W̃ k)}k∈N as well as (h,Xh, W̃ ) defined on this probability space and
taking values in DN × CT (X) × CT (U) such that:

(i) (h̃k, X̃k, W̃ k) has the same law as (hεk ,Xεk ,W) for each k ∈ N;
(ii) (h̃k, X̃k, W̃ k) → (h,Xh, W̃ ) in DN × CT (X) × CT (U), P̃ -a.s. as k → ∞;

(iii) (h,Xh) uniquely solves the following Volterra equation:

Xh(t) = g(t) +
t∫

0

A
(
t, s,Xh(s)

)
ds +

t∫
0

B
(
t, s,Xh(s)

)
ḣ(s)ds. (4.7)

In particular, (LD)1 in Section 2.3 holds.
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Proof. Let α0 ∈ (0, α) and a > 0 be as in Lemma 4.3. For R > 0, set

KR :=
{
x ∈ CT (X): sup

t∈[0,T ]
∥∥x(t)

∥∥
X

+ sup
s �=t∈[0,T ]

‖x(t) − x(s)‖Xα0

|t − s|a � R

}
.

By (C1), Xα0 ↪→ X is compact (cf. [28, p. 29, Theorem 1.4.8]). Thus, by Ascoli–Arzelà’s theorem
(cf. [30]), the set KR is compact in CT (X). For any δ > 0, by (C2) we can choose n sufficiently
large such that

sup
ε∈(0,1)

P
{
ω: τ ε

n (ω) < T
}

� δ.

By Lemma 4.3 and Chebyschev’s inequality, for any R > n we have

P
{
Xε(·) /∈ KR

}= P
{
Xε(·) /∈ KR,τ ε

n � T
}+ P

{
Xε(·) /∈ KR,τ ε

n < T
}

� P

{
sup

s �=t∈[0,T ∧τ ε
n ]

‖Xε(t) − Xε(s)‖Xα0

|t − s|a � R − n

}
+ P

{
τ ε
n < T

}

� E

[
sup

s �=t∈[0,T ∧τ ε
n ]

‖Xε(t) − Xε(s)‖p

Xα0

|t − s|ap
]
/(R − n)p + δ

� CN,n,T ,p,κα,n,α0/(R − n)p + ε′.

Therefore, for R large enough we have

sup
ε∈(0,1)

P
{
Xε(·) /∈ KR

}
� 2δ.

Thus, by the compactness of DN (see (2.21)), the laws of (hε,Xε,W) in DN × CT (X) × CT (U)

is tight. By Skorohod’s embedding theorem (cf. [30]), the conclusions (i) and (ii) hold.
We now prove (iii). Note that by (i) (cf. [45, Section 8])

X̃k(t) = g(t) +
t∫

0

A
(
t, s, X̃k(s)

)
ds +

t∫
0

B
(
t, s, X̃k(s)

) ˙̃
hk(s)ds

+ √
εk

t∫
0

B
(
t, s, X̃k(s)

)
dW̃ k(s)

=: g(t) + J k
1 (t) + J k

2 (t) + J k
3 (t), P̃ -a.s.

Set

τ̃ k
n := inf

{
t � 0:

∥∥X̃k(t)
∥∥

X
> n
}
.
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Then for any δ > 0, by (i) and (C2) there exists an n large enough such that

sup
k∈N

P̃
{
τ̃ k
n < T

}= sup
k∈N

P̃
{

sup
s∈[0,T )

∥∥X̃k(s)
∥∥

X
> n
}

= sup
k∈N

P
{

sup
s∈[0,T )

∥∥Xεk (s)
∥∥

X
> n
}

= sup
k∈N

P
{
τ εk
n < T

}
� δ.

Hence, for any δ′ > 0, by BDG’s inequality (2.17) and (H2)′ we have

P̃
{∥∥J k

3 (t)
∥∥

X
� δ′}� P̃

{
J k

3 (t) � δ′; τ̃ k
n � T

}+ P̃
{
τ̃ k
n < T

}

�
E

P̃ ‖J k
3 (t) · 1{t�τ̃ k

n }‖2
X

δ′2 + δ

�
εk · CnE

P̃ (
∫ t∧τ̃ k

n

0 κ1,n(t, s)ds)

δ′2 + δ

� εk · Cn,t

δ′2 + δ.

Thus, we get

lim
k→∞ P̃

{∥∥J k
3 (t)

∥∥
X

� δ′}= 0.

Let Ji(t), i = 1,2, be the corresponding terms in Eq. (4.7). In order to prove that Xh solves
Eq. (4.7), it is now enough to show that for any t ∈ [0, T ] and y ∈ X

∗,

lim
k→∞ X

〈
J k

i (t) − Ji(t), y
〉
X∗ = 0, i = 1,2, P̃ -a.s.

Observe that

∣∣
X

〈
J k

2 (t) − J2(t), y
〉
X∗
∣∣ � ‖y‖X∗ ·

t∫
0

∥∥[B(t, s, X̃k(s)
)− B

(
t, s,Xh(s)

)] ˙̃
hk(s)

∥∥
X

ds

+
∣∣∣∣∣

t∫
0

X

〈
B
(
t, s,Xh(s)

)[ ˙̃
hk(s) − ḣ(s)

]
, y
〉
X∗ ds

∣∣∣∣∣
=: ‖y‖X∗ · J k

21(t) + J k
22(t).

By the weak convergence of h̃k to h in DN , we have

lim J k
22(t) = 0.
k→∞
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Noting that by (ii), for almost all ω̃ ∈ Ω̃ and some K(ω̃) ∈ N,

n(ω̃) := sup
s∈[0,T ]

∥∥Xh(s, ω̃)
∥∥

X
∨ sup

k�K(ω̃)

sup
s∈[0,T ]

∥∥X̃k(s, ω̃)
∥∥

X
< +∞,

we have, by Hölder’s inequality and (H3)′

J k
21(t, ω̃) �

∥∥h̃k(ω̃)
∥∥

�2
T

·
( t∫

0

∥∥B(t, s, X̃k(s, ω̃)
)− B

(
t, s,Xh(s, ω̃)

)∥∥2
L2(l

2;X)
ds

)1/2

� N ·
( t∫

0

κ2,n(ω̃)(t, s) · ∥∥X̃k(s, ω̃) − Xh(s, ω̃)
∥∥2

X
ds

)1/2

(ii)→ 0 as k → ∞,

where we have used h̃k(ω̃) ∈ DN .
Similarly, we have

lim
k→∞

∥∥J k
1 (t) − J1(t)

∥∥
X

= 0, P̃ -a.s.

Combining the above estimates, we find that Xh solves Eq. (4.7). �
Let I (f ) be defined by

I (f ) := 1

2
inf

{h∈�2
T : f =Xh}

‖h‖2
�2
T

, f ∈ CT (X), (4.8)

where Xh is defined by Eq. (4.7). In order to identify I (f ), we assume that:

(C3) For any N ∈ N,

sup
h∈DN

sup
t∈[0,T ]

∥∥Xh(t)
∥∥

X
< +∞.

Similar to the proof of Lemma 4.4, we can prove that:

Lemma 4.5. Under (C3), (LD)2 in Section 2.3 holds.

Thus, by Theorem 2.12 we have proven:

Theorem 4.6. Assume that (H1)′′–(H2)′′, (H2)′–(H4)′ and (C1)–(C3) hold. Then, {Xε, ε ∈ (0,1)}
satisfies the large deviation principle in CT (X) with the rate function I (f ) given by (4.8).
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Remark 4.7. Conditions (C2) and (C3) are satisfied if (H1)′′, (H2) and (H4) hold, and κ1 in (H2)
belongs to K>1. In fact, we can prove as in the proof of Theorem 3.8

sup
n∈N

sup
ε∈(0,1)

E

(
sup

t∈[0,T ∧τ ε
n ]

∥∥Xε(t)
∥∥p

X

)
� CT,p,κ1,

which then implies (C2). Condition (C3) is more direct in this case.

5. Semilinear stochastic evolutionary integral equations

In this section, we consider the following semilinear stochastic evolutionary integral equation:

X(t) = x0 −
t∫

0

a(t − s)LX(s)ds +
t∫

0

Φ
(
s,X(s)

)
ds +

t∫
0

Ψ
(
s,X(s)

)
dW(s), (5.1)

where a : R+ → R+ is a measurable function, and

Φ : R+ × Ω × X → X ∈ M × B(X)/B(X)

and

Ψ : R+ × Ω × X → L2
(
l2;X

) ∈ M × B(X)/B
(
L2
(
l2;X

))
.

Here and below, M stands for the progressively measurable σ -algebra over R+ × Ω .
Consider first the following deterministic integral equation:

x(t) = x0 −
t∫

0

a(t − s)Lx(s)ds. (5.2)

The solution of this equation is called the resolvent of (a,L), and denoted by St x0 = x(t). Note
that in general

St+s �= St ◦ Ss .

We make the following assumptions:

(S1) The resolvent {St : t � 0} is of analyticity type (ω0, θ0) in the sense of [53, Definition 2.1],
where ω0 ∈ R and θ0 ∈ (0,π/2].

(S2) For any R > 0, there exist CR > 0 and β ∈ [0,1) such that for all s > 0, ω ∈ Ω and x, y ∈ X

with ‖x‖X,‖y‖X � R,

∥∥Φ(s,ω,x)
∥∥

X
+ ∥∥Ψ (s,ω,x)

∥∥2
L2(l

2;X)
� CR

(s ∧ 1)β
,

and
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∥∥Φ(s,ω,x) − Φ(s,ω,y)
∥∥

X
� CR

(s ∧ 1)β
‖x − y‖X,

∥∥Ψ (s,ω,x) − Ψ (s,ω,y)
∥∥2

L2(l
2;X)

� CR

(s ∧ 1)β
‖x − y‖2

X
.

(S3) For all s > 0, ω ∈ Ω and x ∈ X, it holds that

∥∥Φ(s,ω,x)
∥∥

X
� C

(s ∧ 1)β

(
1 + ‖x‖X

)
,

∥∥Ψ (s,ω,x)
∥∥2

L2(l
2;X)

� C

(s ∧ 1)β

(
1 + ‖x‖2

X

)
.

The following property of analytic resolvent {St : t > 0} is crucial for the proof of Theo-
rem 5.2 below (cf. [53, Corollary 2.1]).

Proposition 5.1. Let St be an analytic resolvent of type (ω0, θ0). Then for any T > 0,

sup
t∈[0,T ]

‖St‖L(X;X) � CT (5.3)

and for any t ∈ (0, T ],

‖Ṡt‖L(X;X) � CT t−1, (5.4)

where the dot denotes the operator derivative and ‖ · ‖L(X;X) denotes the norm of bounded linear
operators.

By a solution of Eq. (5.1) we mean that X(t) satisfies the following stochastic Volterra equa-
tion:

X(t) = St x0 +
t∫

0

St−sΦ
(
s,X(s)

)
ds +

t∫
0

St−sΨ
(
s,X(s)

)
dW(s). (5.5)

Let us define

A(t, s,ω, x) := St−sΦ(s,ω, x), B(t, s,ω, x) := St−sΨ (s,ω, x).

We have:

Theorem 5.2. Under (S1) and (S2), there exists a unique maximal solution (X, τ) for Eq. (5.5)
in the sense of Definition 3.5. Moreover, if (S3) holds, then τ = +∞, a.s.

Proof. First of all, it is easy to see by (5.3) that (H2)′ and (H3)′ hold with

κ1,R(t, s) = κ2,R(t, s) = CR

β
∈ K>1.
(s ∧ 1)
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For 0 � s < t < t ′, ω ∈ Ω and x ∈ X with ‖x‖X � R, we have

∥∥A(t ′, s,ω, x
)− A(t, s,ω, x)

∥∥
X

= ∥∥(St ′−s − St−s)Φ(s,ω, x)
∥∥

X
� CR

(s ∧ 1)β
‖St ′−s − St−s‖L(X;X)

� CR

(s ∧ 1)β

t ′−s∫
t−s

‖Ṡr‖L(X;X) dr
(5.4)

� CR

(s ∧ 1)β

t ′−s∫
t−s

1

r
dr

= CR

(s ∧ 1)β
log

(
t ′ − s

t − s

)

and

∥∥B(t ′, s,ω, x
)− B(t, s,ω, x)

∥∥2
L2(l

2;X)
� CR

(s ∧ 1)β
log2

(
t ′ − s

t − s

)
.

Note that the following elementary inequality holds for any γ ∈ (0,1),

log(1 + s) � Csγ , ∀s > 0.

Therefore, for 0 � s < t < t ′, ω ∈ Ω and x ∈ X with ‖x‖X � R,

∥∥A(t ′, s,ω, x
)− A(t, s,ω, x)

∥∥
X

+ ∥∥B(t ′, s,ω, x
)− B(t, s,ω, x)

∥∥2
L2(l

2;X)

� CR(t ′ − t)γ

(s ∧ 1)β(t − s)γ

[
1 + (t ′ − t)γ

(t − s)γ

]
=: λR

(
t ′, t, s

)
.

Thus, we find that (H4)′ holds if γ ∈ (0, (1 − β)/2).
Lastly, if (S3) is satisfied, it is clear that (H2) holds with κ1(t, s) = C

(s∧1)β
∈ K>1, and (H4)

also holds from the above calculations. The non-explosion then follows from Theorem 3.8. �
We now turn to the small perturbation of Eq. (5.5) and assume that Φ and Ψ are non-random.

Consider

Xε(t) = St x0 +
t∫

0

St−sΦ
(
s,Xε(s)

)
ds + √

ε

t∫
0

St−sΨ
(
s,Xε(s)

)
dW(s).

In order to use Theorem 4.6 to get the LDP for {Xε, ε ∈ (0,1)}, we also assume:

(S4) Let {St : t � 0} be an analytic resolvent of type (ω0, θ0). Assume that for some ω1 > ω0,
0 < θ1 < θ0, C > 0 and α1 > 0,

∣∣â(λ)
∣∣� C

(|λ − ω1|α1 + 1
)−1

, ∀λ ∈ C with
∣∣arg(λ − ω)

∣∣< θ1, (5.6)

where â denotes the Laplace transform of a. Moreover, we also assume that
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r∫
0

a(s)ds +
t∫

0

∣∣a(r + s) − a(s)
∣∣ds � CT |r|δ, (5.7)

where r, t ∈ [0, T ] and T , δ > 0.

We have:

Theorem 5.3. Under (S1)–(S4) and (C1), for any x0 ∈ D(L), {Xε, ε ∈ (0,1)} satisfies the large
deviation principle in CT (X) with the rate function I (f ) given by (4.8).

Proof. From the proof of Theorem 5.2, it is enough to check (H1)′′ and (H2)′′. By (5.6) and [53,
p. 57, Theorem 2.2 (ii)], we have

‖LSt‖L(X;X) � Ceω1t
(
1 + t−α1

)
, ∀t > 0,

which together with (v) of Proposition 4.1 yields that for any α ∈ (0,1) and T > 0,

∥∥LαSt

∥∥
L(X;X)

� CT

(
1 + t−α1·α), ∀t ∈ (0, T ].

Thus, (H2)′′ holds by choosing α <
1−β
α1

, where β is from (S3).
For (H1)′′, since x0 ∈ D(L) = X1, by (5.3) we have

‖LSt x0‖X = ‖StLx0‖X � C‖Lx0‖X.

On the other hand, by the resolvent equation (5.2) and (5.7) we have, for any 0 � t < t ′ � T ,

‖St ′x0 − St x0‖X �
t∫

0

∣∣a(t ′ − s
)− a(t − s)

∣∣ · ‖LSsx0‖X ds

+
t ′∫

t

∣∣a(t ′ − s
)∣∣ · ‖LSsx0‖X ds

� CT ‖Lx0‖X · ∣∣t ′ − t
∣∣δ.

The proof is thus complete by Theorem 4.6 and Remark 4.7. �
Example 5.4. Let a be a completely monotonic kernel function, i.e.,

a(t) =
∞∫

e−st dρ(s), t > 0, (5.8)
0
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where s �→ ρ(s) is non-decreasing and such that
∫∞

1 dρ(s)/s < ∞. Then the resolvent {St :
t � 0} associated with a is of analyticity type (0, θ) for some θ ∈ (0,π/2) (cf. [53, p. 55, Ex-
ample 2.2]), i.e., (S1) holds. For (S4), besides (5.8) and (5.7), we also assume that for some
C,α1 > 0,

C(1 + λ)−α1 �
∞∫

0

e−λt · a(t)dt < +∞, ∀λ > 0, (5.9)

which implies by [53, p. 221, Lemma 8.1(v)] that (5.6) holds. In particular,

aα(t) = tα−1

�(α)
, α ∈ (0,1],

is completely monotonic and satisfies (5.7) and (5.9), where � denotes the usual Gamma func-
tion.

Moreover, for the kernel function aα , if

1 < α < 2 − 2φ

π
< 2,

where φ comes from (4.1), then St is analytic (cf. [53, p. 55, Example 2.1]). Notice that in [53],
−L is considered. In this case, (5.6) and (5.7) clearly hold since âα(λ) = λ−α , Reλ > 0.

6. Semilinear stochastic partial differential equations

When a = 1 in Eq. (5.1), one sees that Eq. (5.1) contains a class of semilinear SPDEs. How-
ever, it cannot deal with the equation like stochastic Navier–Stokes equation. In this section, we
shall discuss strong solutions of a large class of semilinear SPDEs by using the properties of
analytic semigroups.

Consider the following semilinear stochastic partial differential equation:

dX(t) = [−LX(t) + Φ
(
t,X(t)

)]
dt + Ψ

(
t,X(t)

)
dW(t), X(0) = x0. (6.1)

We introduce the following assumptions on the coefficients:

(M1) For some α ∈ (0,1),

Φ : R+ × Ω × Xα → X ∈ M × B(Xα)/B(X)

and

Ψ : R+ × Ω × Xα → L2
(
l2;X α

2

) ∈ M × B(Xα)/B
(
L2
(
l2;X α

2

))
.

(M2) For any R > 0, there exist CR > 0 and β ∈ [0,1) with

α + β < 1
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such that for all s > 0, ω ∈ Ω and x, y ∈ Xα with ‖x‖Xα
,‖y‖Xα

� R,

∥∥Φ(s,ω,x)
∥∥

X
+ ∥∥Ψ (s,ω,x)

∥∥2
L2(l

2;X α
2
)
� CR

(s ∧ 1)β

and

∥∥Φ(s,ω,x) − Φ(s,ω,y)
∥∥

X
� CR

(s ∧ 1)β
‖x − y‖Xα

,

∥∥Ψ (s,ω,x) − Ψ (s,ω,y)
∥∥2

L2(l
2;X α

2
)
� CR

(s ∧ 1)β
‖x − y‖2

Xα
.

(M3) For all s > 0, ω ∈ Ω and x ∈ Xα , it holds that

∥∥Φ(s,ω,x)
∥∥

X
� C

(s ∧ 1)β

(
1 + ‖x‖Xα

)
,

∥∥Ψ (s,ω,x)
∥∥2

L2(l
2;X α

2
)
� C

(s ∧ 1)β

(
1 + ‖x‖2

Xα

)
.

By a mild solution of equation (6.1), we mean that X(t) solves the following stochastic Volterra
integral equation:

X(t) = Tt x0 +
t∫

0

Tt−sΦ
(
s,X(s)

)
ds +

t∫
0

Tt−sΨ
(
s,X(s)

)
dW(s). (6.2)

Theorem 6.1. Under (M1) and (M2), for any x0 ∈ Xα (α is from (M1)), there exists a unique
maximal solution (X, τ) for Eq. (6.2) so that:

(i) t �→ X(t) ∈ Xα is continuous on [0, τ ) almost surely;
(ii) limt↑τ‖X(t)‖Xα

= +∞ on {ω: τ(ω) < +∞};
(iii) it holds that, P -a.s., on [0, τ ),

X(t) = Tt x0 +
t∫

0

Tt−sΦ
(
s,X(s)

)
ds +

t∫
0

Tt−sΨ
(
s,X(s)

)
dW(s).

Moreover, if (M3) holds, then τ = +∞, a.s.

Proof. We first consider the following stochastic Volterra integral equation

Y(t) = LαTt x0 +
t∫

0

LαTt−sΦ
(
s,L−αY (s)

)
ds +

t∫
0

LαTt−sΨ
(
s,L−αY (s)

)
dW(s). (6.3)
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Define

g(t) := LαTt x0,

A(t, s,ω, y) := LαTt−sΦ
(
s,ω,L−αy

)
,

B(t, s,ω, y) := LαTt−sΨ
(
s,ω,L−αy

)
.

Let us verify (H1)′–(H4)′. Clearly, (H1)′ holds since x0 ∈ Xα .
By (iii) of Proposition 4.1 and (M2), for all t > s > 0, ω ∈ Ω and x, y ∈ X with ‖x‖X,‖y‖X �

R we have

∥∥A(t, s,ω, x)
∥∥

X
+ ∥∥B(t, s,ω, x)

∥∥2
L2(l

2;X)

� 1

(t − s)α

(∥∥Φ(s,ω,L−αx
)∥∥

X
+ ∥∥Ψ (s,ω,L−αx

)∥∥2
L2(l

2;X α
2
)

)
� CR

(t − s)α(s ∧ 1)β
, (6.4)

and

∥∥A(t, s,ω, x) − A(t, s,ω, y)
∥∥

X

� 1

(t − s)α

∥∥Φ(s,ω,L−αx
)− Φ

(
s,ω,L−αy

)∥∥
X

� CR

(t − s)α(s ∧ 1)β

∥∥L−αx − L−αy
∥∥

Xα
= CR

(t − s)α(s ∧ 1)β
‖x − y‖X,

as well as

∥∥B(t, s,ω, x) − B(t, s,ω, y)
∥∥2

L2(l
2;X)

� 1

(t − s)α

∥∥Ψ (s,ω,L−αx
)− Ψ

(
s,ω,L−αy

)∥∥2
L2(l

2;X α
2
)

� CR

(t − s)α(s ∧ 1)β
‖x − y‖2

X
.

Hence, if we take

κ1,R(t, s) = κ2,R(t, s) := CR

(t − s)α(s ∧ 1)β
∈ K>1,

then (H2)′ and (H3)′ hold.
Let 0 < γ < 1 − (α + β). By (iv) of Proposition 4.1 and (M2) we have

∥∥A(t ′, s,ω, x
)− A(t, s,ω, x)

∥∥
X

= ∥∥(Tt ′−t − 1)LαTt−sΦ
(
s,ω,L−αx

)∥∥
X

�
(
t ′ − t

)γ ∥∥Lα+γ Tt−sΦ
(
s,ω,L−αx

)∥∥
X

� CR(t ′ − t)γ

α+γ β
(t − s) (s ∧ 1)
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and

∥∥B(t ′, s,ω, x
)− B(t, s,ω, x)

∥∥2
L2(l

2;X)

�
∥∥(Tt ′−t − 1)LαTt−sΨ

(
s,ω,L−αx

)∥∥2
L2(l

2;X)

�
(
t ′ − t

)γ ∥∥Lα+γ /2Tt−sΨ
(
s,L−αx

)∥∥2
L2(l

2;X)

� (t ′ − t)γ

(t − s)α+γ

∥∥L α
2 Ψ
(
s,L−αx

)∥∥2
L2(l

2;X)
� CR(t ′ − t)γ

(t − s)α+γ (s ∧ 1)β
.

So, if we take

λR

(
t ′, t, s

) := CR(t ′ − t)γ

(t − s)α+γ (s ∧ 1)β
,

then (H4)′ holds.
Hence, by Theorem 3.7 there is a unique maximal solution (Y, τ ) for Eq. (6.3) in the sense of

Definition 3.5. Set

X(t) = L−αY (t).

It is easy to see that (X, τ) is a unique maximal solution for Eq. (6.2), which satisfies (i), (ii)
and (iii) in the theorem.

Lastly, if (M3) is satisfied, then as estimating (6.4), for the above A and B , (H2) holds with
some κ1 ∈ K>1, and also (H4) holds. So, by Theorem 3.8 we have τ = ∞ a.s. �
Remark 6.2. The solution (X, τ) in Theorem 6.1 is clearly a local solution of Eq. (6.2) in X.
However, it may be not a maximal solution in X because it may happen that

lim
t↑τ(ω)

∥∥X(t,ω)
∥∥

X
< +∞ on

{
ω: τ(ω) < +∞}.

Next, we study the large deviation estimate for Eq. (6.1), and assume that Φ and Ψ are non-
random. Consider the following small perturbation of Eq. (6.1):

dXε(t) = [−LXε(t) + Φ
(
t,Xε(t)

)]
dt + √

εΨ
(
t,Xε(t)

)
dW(t), Xε(0) = x0. (6.5)

In order to apply Theorem 4.6 to this situation, we need the non-explosion assumptions as (C2)
and (C3). For a family of processes {hε, ε ∈ (0,1)} in AT

N (see (2.20) for the definition of AT
N ),

consider

Xε(t) = Tt x0 +
t∫

0

Tt−sΦ
(
s,Xε(s)

)
ds +

t∫
0

Tt−sΨ
(
s,Xε(s)

)
ḣε(s)ds

+ √
ε

t∫
Tt−sΨ

(
s,Xε(s)

)
dW(s),
0
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and for h ∈ �2
T (see (2.19))

Xh(t) = Tt x0 +
t∫

0

Tt−sΦ
(
s,Xh(s)

)
ds +

t∫
0

Tt−sΨ
(
s,Xh(s)

)
ḣ(s)ds.

Below, for n ∈ N we define

τ ε
n := inf

{
t > 0:

∥∥Xε(t)
∥∥

Xα
> n
}
.

Our large deviation principle can be stated as follows:

Theorem 6.3. Assume (M1) and (M2). Let x0 ∈ Xδ for some 1 � δ > α, where α is from (M1).
We also assume that D(L) = X1 ⊂ X is compact, and

lim
n→∞ sup

ε∈(0,1)

P
{
ω: τ ε

n (ω) < T
}= 0 (6.6)

and for any N > 0,

sup
h∈DN

sup
t∈[0,T ]

∥∥Xh(t)
∥∥

Xα
< +∞. (6.7)

Then {Xε, ε ∈ (0,1)} satisfies the large deviation principle in CT (Xα) with the rate function
I (f ) given by

I (f ) := 1

2
inf

{h∈�2
T : f =Xh}

‖h‖2
�2
T

, f ∈ CT (Xα). (6.8)

Proof. By Theorem 4.6, it only needs to check (H1)′′ and (H2)′′ for Eq. (6.3). Since x0 ∈ Xδ

with δ > α, by (iv) of Proposition 4.1, (H1)′′ holds with δ′ = δ − α and α′ ∈ (0, δ − α). As the
calculations given in (6.4), one finds that (H2)′′ holds with α′ ∈ (0,1 − α − β). �
Remark 6.4. If (M3) is satisfied, one can see that (6.6) and (6.7) hold by Remark 4.7.

Below we study the existence of strong solutions for Eq. (6.1). For this aim, in addition to
(M1) and (M2) with β = 0, we also assume:

(M4) For any R,T > 0, there exist δ > 0 and α′ > 1 such that for all s, s′ ∈ [0, T ], ω ∈ Ω and
x ∈ Xα with ‖x‖Xα

� R,

∥∥Φ(s′,ω, x
)− Φ(s,ω,x)

∥∥
X

� CT,R|s′ − s|δ, (6.9)∥∥Ψ (s,ω,x)
∥∥2

L2(l
2;X α′

2
)
� CT,R. (6.10)

Let us recall the following result (cf. [28, Theorem 3.2.2] or [48, p. 114, Theorem 3.5]).
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Lemma 6.5. Let [0, T ] � s �→ f (s) ∈ X be a Hölder continuous function. Then

t �→
t∫

0

Tt−sf (s)ds ∈ C
([0, T ];X1

)
.

Using this lemma, we can prove the following result.

Theorem 6.6. Assume that (M1), (M2) and (M4) hold. For any x0 ∈ X1, let (X, τ) be the unique
maximal solution of Eq. (6.2) in Theorem 6.1. Then:

(i) t �→ X(t) ∈ X1 is continuous on [0, τ ) a.s.;
(ii) it holds that in X,

X(t) = x0 −
t∫

0

LX(s)ds +
t∫

0

Φ
(
s,X(s)

)
ds +

t∫
0

Ψ
(
s,X(s)

)
dW(s)

for all t ∈ [0, τ ), P -a.s.

We shall call (X, τ) the unique maximal strong solution of Eq. (6.1).

Proof. For n ∈ N, set

τn := inf
{
t > 0:

∥∥X(t)
∥∥

Xα
> n
}

and

G(t, s) := Tt−sΨ
(
s,X(s)

)
.

Then by (iii) and (iv) of Proposition 4.1 we have

∥∥G(t, s)
∥∥2

L2(l
2;X1)

� 1

(t − s)2−α′
∥∥Ψ (s,X(s)

)∥∥2
L2(l

2;Xα′/2)
,

and in view of α′ > 1,

∥∥G(t ′, s)− G(t, s)
∥∥2

L2(l
2;X1)

� (t ′ − t)(α
′−1)/2

(t − s)(3−α′)/2

∥∥Ψ (s,X(s)
)∥∥2

L2(l
2;Xα′/2)

.

Hence, by Lemma 3.4 and (6.10),

t �→
t∫

0

Tt−sΨ
(
s,X(s)

)
dW(s) ∈ X1

admits a continuous modification on [0, τn).
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Moreover, starting from (6.3), as in the proof of Theorem 3.3, there exists an a > 0 such that
for p sufficiently large

E

(
sup

t �=t ′∈[0,T ∧τn]
‖X(t ′) − X(t)‖p

Xα

|t ′ − t |ap
)

� Cn,T ,p.

Thus, by (M2) and (M4) we know that

s �→ Φ
(
s,X(s)

) ∈ X is Hölder continuous on [0, T ∧ τn] P -a.s.

Therefore, by Lemma 6.5 we have

t �→
t∫

0

Tt−sΦ
(
s,X(s)

)
ds ∈ C

([0, T ∧ τn],X1
)
, P -a.s.

Noting that x0 ∈ X1 and

1{t�τn} · X(t) = 1{t�τn} · Tt x0 + 1{t�τn} ·
t∫

0

Tt−sΦ
(
s,X(s)

)
ds

+ 1{t�τn} ·
t∫

0

Tt−sΨ
(
s,X(s)

)
dW(s), ∀t � 0, P -a.s.,

by τn ↗ τ , we therefore have that t �→ X(t) ∈ X1 is continuous on [0, τ ) P -a.s.
Lastly, by stochastic Fubini’s theorem (cf. [45, Section 6]) we have

t∫
0

LX(s)ds =
t∫

0

LTsx0 ds +
t∫

0

s∫
0

LTs−rΦ
(
r,X(r)

)
dr ds

+
t∫

0

s∫
0

LTs−rΨ
(
r,X(r)

)
dW(r)ds

= x0 − Tt x0 +
t∫

0

t∫
r

LTs−rΦ
(
r,X(r)

)
ds dr

+
t∫

0

t∫
r

LTs−rΨ
(
r,X(r)

)
ds dW(r)

= x0 − Tt x0 +
t∫ [

Φ
(
r,X(r)

)− Tt−rΦ
(
r,X(r)

)]
dr
0
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+
t∫

0

[
Ψ
(
r,X(r)

)− Tt−rΨ
(
r,X(r)

)]
dW(r)

= x0 − X(t) +
t∫

0

Φ
(
s,X(s)

)
ds +

t∫
0

Ψ
(
s,X(s)

)
dW(s)

on {t � τn}. The proof is thus complete by letting n → ∞. �
7. Application to stochastic Navier–Stokes equations

7.1. Unique maximal strong solution for SNSEs

Let O be a bounded smooth domain in R
d (d � 2), or the whole space R

d , or d-dimensional
torus T

d . Let

Wm,p(O) := (Wm,p(O)
)d

, Wm,p

0 (O) := (Wm,p

0 (O)
)d

and

C∞
0,σ (O) := {u ∈ (C∞

0 (O)
)d : div(u) = 0

}
.

Notice that Wm,p(Rd) = Wm,p

0 (Rd) and Wm,p(Td) = Wm,p

0 (Td).
Let Lp

σ (O) be the closure of C∞
0,σ (O) with respect to the norm in Lp(O) := (Lp(O))d . Let

P2 be the orthonormal projection from L2(O) to L2
σ (O). It is well known that P2 can be ex-

tended to a bounded linear operator from Lp(O) to Lp
σ (O) (cf. [23]) so that for every u ∈ Lp(O),

u = Ppu + ∇π, π ∈ (Lp

loc(O)
)d

.

The stokes operator is defined by

Apu := −Pp�u, D(Ap) := H
p

2 ∩ Lp
σ (O), (7.1)

where

H
p

2 := W2,p(O) ∩ W1,p

0 (O) = D(I − �p)

and �p is the Laplace operator on Lp(O).
It is well known that (Ap,D(Ap)) is a sectorial operator on Lp

σ (O) (cf. [24]). It should be
noticed that when O = R

d or T
d , since the projection Pp can commute with ∇ (cf. [37, p. 84]),

we have

Apu = −�Ppu = −�u, u ∈ D(Ap).

That is, the stokes operator is just the restriction of −�p on W2,p(O) ∩ Lp
σ (O), where O = R

d

or T
d .
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Below, we write

Lp := I + Ap

and

Hp
α := D

(
L

α/2
p

)
.

Giga [25] proved that for α ∈ [0,1],

Hp
α = [Lp

σ (O),D(Ap)
]
α

= H
p
α ∩ Lp

σ (O), (7.2)

where H
p
α = [Lp(O),H

p

2 ]α and [·,·]α stands for the complex interpolation space between two
Banach spaces. In particular, the following embedding results hold (cf. [48]): for p > 1 and
0 � α′ < 1

2 < α � 1,

‖u‖Hp

2α′ � ‖u‖1,p � ‖u‖Hp
2α

, u ∈ Hp
α, (7.3)

and for q � p, k − d
q

< 2α − d
p

,

Hp

2α ↪→ Wk,q(O), (7.4)

and for α > d
p

,

Hp
α ↪→ Cb(O). (7.5)

In what follows, we fix

p > d,
1

2
< α < 1, (7.6)

and consider the following stochastic Navier–Stokes equation with Dirichlet boundary (only for
bounded smooth domain):

⎧⎪⎨
⎪⎩

du(t) = [�u(t) + (u(t) · ∇)u(t) + ∇π(t)
]

dt + F
(
t,u(t)

)
dt + Ψ

(
t,u(t)

)
dW(t),

u(t, ·)|∂O = 0, div u(t) = 0,

u(0, x) = u0(x),

(7.7)

where u and π are unknown functions, and

F : R+ × Hp

2α → Hp

0 and Ψ : R+ × Hp

2α → Hp
α

are two measurable functions.
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Assume that:

(N1) For each T ,R > 0, there exist δ > 0 and CT,R,δ > 0 such that for all t, s ∈ [0, T ] and
u,v ∈ Hp

2α with ‖u‖Hp
2α

,‖v‖Hp
2α

� R,

∥∥F(t,u) − F(s,v)
∥∥

Hp
0

� CT,R,δ

(|t − s|δ + ‖u − v‖Hp
2α

)
.

(N2) For each T ,R > 0, there exist α′ > 1 and CT,R > 0 such that for all t ∈ [0, T ] and
u,v ∈ Hp

2α with ‖u‖Hp
2α

,‖v‖Hp
2α

� R,

∥∥Ψ (t,u) − Ψ (t,v)
∥∥

L2(l
2;Hp

α )
� CT,R‖u − v‖Hp

2α

and

∥∥Ψ (t,u)
∥∥

L2(l
2;Hp

α′ )
� CT,R. (7.8)

Set

Φ(t,u) := u + Pp

[
(u · ∇)u

]+ F(t,u). (7.9)

Then Eq. (7.7) can be written as the following abstract form:

du(t) = [−Lpu(t) + Φ(t,u)
]

dt + Ψ (t,u)dW(s), u(0) = u0. (7.10)

Theorem 7.1. Let p > d and 1
2 < α < 1. Under (N1) and (N2), for any u0 ∈ Hp

2 , there exists a
unique maximal strong solution (u, τ ) for Eq. (7.10) so that:

(i) t �→ u(t) ∈ Hp

2 is continuous on [0, τ ) a.s.;
(ii) limt↑τ ‖u(t)‖Hp

2α
= ∞ on {τ < +∞};

(iii) it holds that in Lp
σ (O) = Hp

0 ,

u(t) = u0 +
t∫

0

[−Lpu(s) + Φ
(
s,u(s)

)]
ds +

t∫
0

Ψ
(
s,u(s)

)
dW(s)

= u0 +
t∫

0

[
Apu(s) + Pp

((
u(s) · ∇)u(s)

)]
ds

+
t∫

0

F
(
s,u(s)

)
ds +

t∫
0

Ψ
(
s,u(s)

)
dW(s),

for all t ∈ [0, τ ), P -a.s.
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Proof. In view of (7.6), (7.3) and (7.5), for any u,v ∈ Hp

2α we have

∥∥Pp

[
(u · ∇)u − (v · ∇)v

]∥∥
Lp

σ
�
∥∥(u · ∇)u − (v · ∇)v

∥∥
Lp

� ‖u − v‖L∞ · ‖∇u‖Lp + ‖v‖L∞ · ∥∥∇(u − v)
∥∥

Lp

� ‖u − v‖Hp
2α

· ‖u‖Hp
2α

+ ‖v‖Hp
2α

· ‖u − v‖Hp
2α

.

Thus, by (N1) and (N2), it is easy to see that (M2) and (M4) hold for the above Φ and Ψ . The
result now follows by Theorem 6.6. �
7.2. Non-explosion and large deviation for 2D SNSEs

In this subsection, we study the non-explosion and large deviation for SNSE in the case of
two dimensions. For this aim, in addition to (N1) and (N2), we also suppose that:

(N3) For any T > 0, there exists CT > 0 such that for all t ∈ [0, T ] and u ∈ Hp

2 ,

∥∥F(t,u)
∥∥

H2
0
� CT

(‖u‖H2
1
+ 1
)
,∥∥F(t,u)

∥∥
Hp

0
� CT

(‖u‖Hp
2α

+ 1
)

and for i = 0,1,

∥∥Ψ (s,u)
∥∥

L2(l
2;H2

i )
� CT

(
1 + ‖u‖H2

i

)
,∥∥Ψ (s,u)

∥∥
L2(l

2;Hp
α)

� CT

(
1 + ‖u‖Hp

2α

)
,

where p and α satisfy (7.6).

We have the following result, the proof will be given in Lemma 7.7 below.

Theorem 7.2. Let p > d and 1
2 < α < 1. Assume that (N1)–(N3) hold. Let (u, τ ) be the unique

maximal solution of Eq. (7.11) in Theorem 7.1. Then τ = +∞ a.s.

We now consider the small perturbation for 2D stochastic Navier–Stokes equation:

duε(t) = [−Lpuε(t) + Φ
(
t,uε(t)

)]
dt + √

εΨ
(
t,uε(t)

)
dW(t), uε(0) = u0

as well as the control equation:

duε(t) = [−Lpuε(t) + Φ
(
t,uε(t)

)+ Ψ
(
t,uε(t)

)
ḣε(t)

]
dt + √

εΨ
(
t,uε(t)

)
dW(t),

uε(0) = u0, (7.11)

where hε ∈ AT (see (2.20) for the definition of AT ), and T > 0 is fixed below.
N N
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Let (uε, τ ε) be the unique maximal strong solution of Eq. (7.11) with the properties:

lim
t↑τ ε

∥∥uε(t)
∥∥

Hp
2α

= +∞ on
{
τ ε < ∞},

and t �→ uε(t) ∈ Hp

2 is continuous on [0, τ ε).
Before proving the non-explosion result (Lemma 7.7), we first prepare a series of lemmas.

Lemma 7.3. There exists a constant CT > 0 such that for any t ∈ [0, T ] and u ∈ H2
2,

〈
u,−L2u + Φ(s,u)

〉
H2

0
� −1

2
‖u‖2

H2
1
+ CT

(‖u‖2
H2

0
+ 1
)
, (7.12)〈

L2u,−L2u + Φ(s,u)
〉
H2

0
� C‖u‖2

H2
0
‖u‖4

H2
1
+ CT

(
1 + ‖u‖2

H2
1

)
(7.13)

and

∥∥Φ(t,u)
∥∥

Hp
0

� CT

(
1 + ‖u‖H2

1

) · (1 + ‖u‖Hp
2α

)
. (7.14)

Proof. Let u ∈ H2
2. Noting that

〈
u,P2

(
(u · ∇)u

)〉
H2

0
= 〈u, (u · ∇)u

〉
L2 = 1

2

∫
O

u(x) · ∇∣∣u(x)
∣∣2 dx = 0,

by (N3) and Young’s inequality we have

〈
u,−L2u + Φ(s,u)

〉
H2

0
= −‖u‖2

H2
1
+ 〈u,u + F(t,u)

〉
H2

0
� −1

2
‖u‖2

H2
1
+ CT

(‖u‖2
H2

0
+ 1
)
.

Thus, (7.12) is proved.
For (7.13), noting that by Gagliado–Nirenberge’s inequality (cf. [22, p. 24 Theorem 9.3])

and (7.2)

‖u‖2
L∞ � ‖u‖

H
2
2
· ‖u‖

H
2
0
� ‖u‖H2

2
· ‖u‖H2

0
,

by Young’s inequality we have

〈
L2u,P2

(
(u · ∇)u

)〉
H2

0
� 1

4
‖u‖2

H2
2
+ ∥∥P2

(
(u · ∇)u

)∥∥2
H2

0

� 1

4
‖u‖2

H2
2
+ C

∥∥(u · ∇)u
∥∥2

L2

� 1

4
‖u‖2

H2
2
+ C‖u‖2

L∞ · ‖∇u‖2
L2

� 1

4
‖u‖2

H2
2
+ C‖u‖H2

0
· ‖u‖H2

2
· ‖u‖2

H2
1

� 1‖u‖2
2 + C‖u‖2

2 · ‖u‖4
2,
2 H2 H0 H1
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and by (N3)

〈
L2u,F (s,u)

〉
H2

0
� 1

2
‖u‖2

H2
2
+ CT

(
1 + ‖u‖2

H2
1

)
.

Thus, (7.13) holds.
Let

p < q <
d

1 + d
p

− 2α
, q∗ = qp

q − p
.

By Hölder’s inequality we have

∥∥Pp(u · ∇)u
∥∥

Hp
0

� ‖u · ∇u‖Lp � ‖u‖Lq∗ · ‖∇u‖Lq

(7.4)

� ‖u‖H2
1
· ‖u‖Hp

2α
.

Estimate (7.14) now follows by (N3). �
Below, set for n ∈ N,

τ ε
n := inf

{
t � 0:

∥∥uε(t)
∥∥

Hp
2α

> n
}
.

Lemma 7.4. There exists a constant CT > 0 such that for all ε ∈ (0,1) and n ∈ N,

E

(
sup

s∈[0,T ∧τ ε
n ]
∥∥uε(s)

∥∥2
H2

0

)
+ E

( T ∧τ ε
n∫

0

∥∥uε(s)
∥∥2

H2
1

ds

)
� CT .

Proof. By Itô’s formula we have

∥∥uε(t)
∥∥2

H2
0

= ‖u0‖2
H2

0
+ 2

t∫
0

〈
uε(s),−L2uε(s) + Φ

(
s,uε(s)

)〉
H2

0
ds

+ 2

t∫
0

〈
uε(s),Ψ

(
s,uε(s)

)
ḣε(s)

〉
H2

0
ds

+ 2
√

ε
∑

k

t∫
0

〈
uε(s),Ψk

(
s,uε(s)

)〉
H2

0
dWk(s)

+ ε
∑

k

t∫
0

∥∥Ψk

(
s,uε(s)

)∥∥2
H2

0
ds

=: ‖u0‖2
2 + J1(t) + J2(t) + J3(t) + J4(t).
H1
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Set

f (t) := E

(
sup

s∈[0,t∧τ ε
n ]
∥∥uε(s)

∥∥2
H2

0

)
.

First of all, noting that by (7.12)

J1(t) � −
t∫

0

∥∥uε(s)
∥∥2

H2
1
+ CT

t∫
0

(∥∥uε(s)
∥∥2

H2
0
+ 1
)

ds,

we have

E

(
sup

s∈[0,t∧τ ε
n ]

J1(s)
)

+ E

( t∧τ ε
n∫

0

∥∥uε(s)
∥∥2

H2
1

ds

)
� CT

t∫
0

(
f (s) + 1

)
ds.

By (N3) and Young’s inequality we have

E

(
sup

s∈[0,t∧τ ε
n ]

J2(s)
)

� 2E

( t∧τ ε
n∫

0

∥∥uε(s)
∥∥

H2
0
· ∥∥Ψ (s,uε(s)

)∥∥
L2(l

2;H2
0)

· ∥∥ḣε(s)
∥∥

l2
ds

)

� 2NE

( t∧τ ε
n∫

0

∥∥uε(s)
∥∥2

H2
0
· ∥∥Ψ (s,uε(s)

)∥∥2
L2(l

2;H2
0)

ds

)1/2

� 1

4
f (t) + CNE

( t∧τ ε
n∫

0

(
1 + ∥∥uε(s)

∥∥2
H2

0

)
ds

)

� 1

4
f (t) + CN

t∫
0

(
1 + f (s)

)
ds.

Similarly, we also have

E

(
sup

s∈[0,t∧τ ε
n ]

J3(s)
)

� 1

4
f (t) + C

t∫
0

(
1 + f (s)

)
ds

and

E

(
sup

s∈[0,t∧τ ε
n ]

J4(s)
)

� C

t∫
0

(
1 + f (s)

)
ds.
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Combining the above calculations we get

f (t) + 2E

t∧τ ε
n∫

0

∥∥uε(s)
∥∥2

H2
1

ds � 2‖u0‖2
H2

0
+ CN + CN

t∫
0

(
1 + f (s)

)
ds.

The desired estimate follows by Gronwall’s inequality. �
Set for n ∈ N,

ηε
n(t) :=

t∧τ ε
n∫

0

∥∥uε(s)
∥∥2

H2
1
· ∥∥uε(s)

∥∥2
H2

0
ds + t

=
t∫

0

∥∥uε(s)
∥∥2

H2
1
· ∥∥uε(s)

∥∥2
H2

0
· 1[0,τ ε

n ](s)ds + t

and

θε
n(t) := inf

{
s � 0: ηε

n(s) � t
}
.

Clearly, t �→ ηε
n(t) is a continuous and strictly increasing function, and the inverse function of

t �→ θε
n(t) is just given by ηε

n. Moreover, since ηε
n(t) > t , we have

θε
n(t) < t.

Lemma 7.5. For any K > 0, there exists a constant CK,N > 0 such that for all ε ∈ (0,1) and
n ∈ N,

E

(
sup

s∈[0,θε
n (K)∧τ ε

n ]

∥∥uε(s)
∥∥2

H2
1

)
� CK,N .

Proof. Consider the following evolution triple

H2
2 ⊂ H2

1 ⊂ H2
0.

By Itô’s formula (cf. [58]), we have

∥∥uε(t)
∥∥2

H2
1

= ‖u0‖2
H2

1
+ 2

t∫
0

〈
L2uε(s),−L2uε(s) + Φ

(
s,uε(s)

)〉
H2

0
ds

+ 2

t∫ 〈
L2uε(s),Ψ

(
s,uε(s)

)
ḣε(s)

〉
H2

0
ds
0
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+ 2
√

ε
∑

k

t∫
0

〈
uε(s),Ψk

(
s,uε(s)

)〉
H2

1
dWk(s)

+ ε
∑

k

t∫
0

∥∥Ψk

(
s,uε(s)

)∥∥2
H2

1
ds

=: ‖u0‖2
H2

1
+ J1(t) + J2(t) + J3(t) + J4(t).

Set

f (t) := E

(
sup

s∈[0,t]
∥∥uε
(
θε
n(s) ∧ τ ε

n

)∥∥2
H2

1

)
= E

(
sup

s∈[0,θε
n (t)∧τ ε

n ]

∥∥uε(s)
∥∥2

H2
1

)
.

For J1(t), by (7.13) we have, for t ∈ [0,K],

J1
(
θε
n(t) ∧ τ ε

n

)
�

θε
n (t)∧τ ε

n∫
0

[
C
∥∥uε(s)

∥∥2
H2

0
· ∥∥uε(s)

∥∥4
H2

1
+ CK

(
1 + ∥∥uε(s)

∥∥2
H2

1

)]
ds

� C

θε
n(t)∫
0

∥∥uε
(
s ∧ τ ε

n

)∥∥2
H2

1
dηε

n(s) + CK

= C

t∫
0

∥∥uε
(
θε
n(s) ∧ τ ε

n

)∥∥2
H2

1
ds + CK,

where the last step is due to the substitution of variable formula. So,

E

(
sup

s∈[0,t]
J1
(
θε
n(s) ∧ τ ε

n

))
� C

t∫
0

f (s)ds + CK.

Using the same trick as used in Lemma 7.4 and by (N3), we also have

E

(
sup

s∈[0,t]
Ji

(
θε
n(s) ∧ τ ε

n

))
� 1

2
f (t) + CN,K

t∫
0

(
f (s) + 1

)
ds, i = 2,3,4.

Thus, we get

f (t) � 2‖u0‖2
H2

1
+ CN,K

t∫
0

(
f (s) + 1

)
ds,

which yields the desired estimate by Gronwall’s inequality. �
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Set for M > 0,

ζ ε
n (M) := inf

{
t � 0:

∥∥uε
(
t ∧ τ ε

n

)∥∥
H2

1
� M

}
.

Lemma 7.6. For any M > 0 and q � 2, there exists a constant CT,M,N > 0 such that for all
ε ∈ (0,1) and n ∈ N,

E

[
sup

t∈[0,T ∧τ ε
n∧ζ ε

n (M)]

∥∥uε(t)
∥∥q

Hp
2α

]
� CT,M,N .

Proof. Set for t ∈ [0, T ],

ξε
n (t) := t ∧ τ ε

n ∧ ζ ε
n (M)

and for q � 2,

f (t) := E

[
sup

t ′∈[0,ξ ε
n (t)]

∥∥uε(t)
∥∥q

Hp
2α

]
.

Note that

uε(t) = Ttu0 +
t∫

0

Tt−sΦ
(
s,uε(s)

)
ds +

t∫
0

Tt−sΨ
(
s,uε(s)

)
ḣε(s)ds

+ √
ε

t∫
0

Tt−sΨ
(
s,uε(s)

)
dW(s).

By (iii) of Proposition 4.1, Hölder’s inequality and Lemma 7.14, we have, for q > 1
1−α

,

E

[
sup

t ′∈[0,ξ ε
n (t)]

∥∥∥∥∥
t ′∫

0

Tt ′−sΦ
(
s,uε(s)

)
ds

∥∥∥∥∥
q

Hp
2α

]

� E

[
sup

t ′∈[0,ξ ε
n (t)]

( t ′∫
0

1

(t ′ − s)α

∥∥Φ(s,uε(s)
)∥∥

Hp
0

ds

)q]
� E

[ ξε
n (t)∫
0

∥∥Φ(s,uε(s)
)∥∥q

Hp
0

ds

]

(7.14)

� E

[ ξε
n (t)∫
0

[(
1 + ∥∥uε(s)

∥∥q

H2
1

) · (1 + ∥∥uε(s)
∥∥q

Hp
2α

)]
ds

]
� CM

t∫
0

(
f (s) + 1

)
ds.

On the other hand, set

G(t, s) := Tt−sΨ
(
s,uε(s)

)
.
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Then by (iii) and (iv) of Proposition 4.1, we have

∥∥G(t, s)
∥∥2

Hp
2α

� C

(t − s)α

∥∥Ψ (s,uε(s)
)∥∥2

L2(l
2;Hp

α )

and for γ ∈ (0, (1 − α)/2),

∥∥G(t ′, s)− G(t, s)
∥∥2

Hp
2α

� |t ′ − t |γ
(t − s)α+2γ

∥∥Ψ (s,uε(s)
)∥∥2

L2(l
2;Hp

α )
.

Therefore, using Lemma 3.4 for q large enough, we get

E

(
sup

t ′∈[0,T ∧ξε
n (t)]

∥∥∥∥∥
t ′∫

0

G
(
t ′, s
)

dW(s)

∥∥∥∥∥
q

Hp
2α

)

� CT E

( T ∧ξε
n (t)∫

0

∥∥Ψ (s,uε(s)
)∥∥q

L2(l
2;Hp

α )
ds

)

(N3)

� CT

t∫
0

(
f (s) + 1

)
ds.

Similarly, we have

E

(
sup

t ′∈[0,T ∧ξε
n (t)]

∥∥∥∥∥
t∫

0

Tt−sΨ
(
s,uε(s)

)
ḣε(s)ds

∥∥∥∥∥
q

Hp
2α

)

� CT,N

t∫
0

(
f (s) + 1

)
ds.

Combining the above calculations, we obtain

f (t) � CT,M,N

t∫
0

f (s)ds + CT,M,N ,

which yields the desired estimate by Gronwall’s inequality. �
Lemma 7.7. It holds that

lim
n→∞ sup

ε∈(0,1)

P
{
ω: τ ε

n (ω) � T
}= 0. (7.15)
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Proof. First of all, for any M,K > 0 we have

P
{
ζ ε
n (M) < T

}
� P

{
ζ ε
n (M) < T ; θε

n(K) � T
}+ P

{
θε
n(K) < T

}
= P

{
sup

t∈[0,T )

∥∥uε
(
t ∧ τ ε

n

)∥∥
H2

1
> M; θε

n(K) � T
}

+ P
{

sup
s∈[0,T )

ηε
n(s) > K

}

� P
{

sup
t∈[0,θε

n (K)∧τ ε
n ]

∥∥uε(t)
∥∥

H2
1
> M

}
+ P

{
ηε

n(T ) > K
}

� E

(
sup

t∈[0,θε
n (K)∧τ ε

n )

∥∥uε(t)
∥∥2

H2
1

)
/M2 + E

(
ηε

n(T )
)
/K.

Hence, by Lemmas 7.4 and 7.5 we have

lim
M→∞ sup

n,ε
P
{
ζ ε
n (M) < T

}= 0.

Secondly, we also have

P
{
τ ε
n < T

}
� P

{
τ ε
n < T ; ζ ε

n (M) � T
}+ P

{
ζ ε
n (M) < T

}
. (7.16)

For the first term, by Lemma 7.6 we have

P
{
τ ε
n < T ; ζ ε

n (M) � T
}= P

{
sup

t∈[0,T )

∥∥uε(t)
∥∥

Hp
2α

> n; ζ ε
n (M) � T

}

� P
{

sup
t∈[0,T ∧τ ε

n ]
∥∥uε(t)

∥∥
Hp

2α
� n; ζ ε

n (M) � T
}

� P
{

sup
s∈[0,T ∧ζ ε

n (M)∧τ ε
n ]

∥∥uε(t)
∥∥

Hp
2α

� n
}

� E

(
sup

s∈[0,T ∧ζ ε
n (M)∧τ ε

n ]

∥∥uε(t)
∥∥q

Hp
2α

)
/nq � CT,M,N

nq
,

where CT,M,N is independent of ε and n. The desired limit now follows by taking limits
for (7.16), first n → ∞, then M → ∞. �

Thus, using Theorem 6.3 we get:

Theorem 7.8. Let O = T
2 or a bounded smooth domain in R

2. Under (N1)–(N3), for u0 ∈ Hp

2 ,
{uε, ε ∈ (0,1)} satisfies the large deviation principle in CT (Hp

2α) with the rate function I (f )

given by

I (f ) := 1

2
inf

{h∈�2 : f =uh}
‖h‖2

�2
T

, f ∈ CT

(
Hp

2α

)
,

T
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where uh solves the following equation:

uh(t) = u0 +
t∫

0

�uh(s)ds +
t∫

0

Pp

((
uh(s) · ∇)uh(s)

)
ds

+
t∫

0

F
(
s,uh(s)

)
ds +

t∫
0

Ψ
(
s,uh(s)

)
ḣ(s)ds.
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