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Cosmological implications of 5-dimensional Brans–Dicke theory
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The five-dimensional Brans–Dicke theory naturally provides two scalar fields by the Killing reduction
mechanism. These two scalar fields could account for the accelerated expansion of the universe. We test
this model and constrain its parameter by using the type Ia supernova (SN Ia) data. We find that the best
fit value of the 5-dimensional Brans–Dicke coupling constant is ω = −1.9. This result is also consistent
with other observations such as the baryon acoustic oscillation (BAO).
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1. Introduction

The expansion of the Universe is shown to be accelerating by
the observations of type Ia supernovae (SN Ia) [1,2]. This is usually
attributed to the contribution of an unknown component, dubbed
dark energy, which has negative pressure and makes up about
three quarters of the total cosmic density (for recent measure-
ments, see e.g. Ref. [3,4]). The simplest model for dark energy
is the cosmological constant (CC), which is consistent with most
of the observations today. However, there are two big problems
for CC, i.e. the well-known “fine tuning problem” and the “co-
incidence problem”. As alternatives, and also to solve these two
problems, many dynamical dark energy models with scalar field
have been proposed, such as quintessence [5–12], phantom [13],
quintom [14], K-essence [15,16], tachyon [17–22] and so on. Nev-
ertheless, in most cases the fundamental physical origin of these
scalar fields remain unknown, but just added by hand.

In Ref. [23], by generalizing the Brans–Dicke theory to five di-
mensions and exploring its effect on the 4-dimensional world,
another interesting approach to explain the cosmic accelerated ex-
pansion was proposed. Under the condition that the extra dimen-
sion is compact and sufficiently small, a spacelike Killing vector
field ξa arises naturally, in which case the 5D Brans–Dicke theory
can be reduced to a 4D theory, such that the 4-metric is cou-
pled with two scalar fields φ and λ. Notes that here the scalar
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fields in four dimension stem naturally from a fundamental theory
of gravity. Considering the hypersurface-orthogonal property of ξa ,
the line element in five dimension can take the form as

ds2 = gμν dxμ dxν + λdx5 dx5, (1)

thus the scalar λ also plays the role of a “scale factor” of the extra
dimension. It was shown in Ref. [23] that these two scalar fields
originated from the Killing reduction of the 5D Brans–Dicke the-
ory may lead to the accelerated expansion of the universe. More
detailed analysis is desirable to check if the theory can match the
current observational data such as the SN Ia and the baryon acous-
tic oscillation.

In this Letter, we compare the predictions of the cosmic expan-
sion rate of this theory with the current cosmological observations,
and constrain the 5D Brans–Dicke theory by means of the SN Ia
data and the baryon acoustic oscillation (BAO) measurements. This
work is based on the fact that the 4-dimensional gravitational
constant G varies extremely slowly with time [24] in the current
epoch. Thus we assume that G is a constant at the “low redshift”,
so that the accretion of the white dwarf will not be affected, hence
the luminosity and light curve of the observed SN Ia (redshifts
range from 0 to 2) are not affected by the slow variations of G , and
the SN Ia can still be used as the standard candle. Furthermore, if
we assume that G is almost a constant throughout the history of
the Universe, we could also use the information from the large
scale structure (e.g. BAO) to perform the constraints. However, we
should note that G = (φλ1/2L)−1 [23], where L is the coordinate
scale of the extra dimension. Although G is almost constant in
four dimension, G(5) ∼ φ−1 is not necessarily a constant and can
still evolve with time.
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2. Theory

The action of the five-dimensional Brans–Dicke theory is given
by

S5 =
∫

d5x
√−g

(
φR(5) − ω

φ
gab(∇aφ)∇bφ

)

+ 16π

∫
d5x

√−gL(5)
m , (2)

where R(5) is the curvature scalar of the 5D metric gab , φ is the
scalar field, ω is the coupling constant, and L(5)

m represents the
Lagrangian of 5D matter fields. Variation of this action gives the
field equations

R(5)

ab − 1

2
gab R(5) = ω

φ2

(
(∇aφ)∇bφ − 1

2
gab

(∇cφ
)∇cφ

)

+ φ−1(∇a∇bφ − gab∇c∇cφ
)

+ 8πφ−1T (5)

ab , (3)

∇a∇aφ = 8π
T (5)

4 + 3ω
, (4)

where T (5)

ab represents the 5D energy–momentum tensor of matter

fields and T (5) = T (5)

ab gab .
The topology of the spacetime manifold is assumed to be

R
4 × S

1, and the extra dimension is confined into extremely small
scales [25]. Thus a Killing vector field ξa arises naturally in the low
energy regime [26]. Considering the case where ξa is everywhere
spacelike and hypersurface orthogonal, the line element can be
written down as Eq. (1). The 4D Ricci tensor R(4)

ab of the 4-metric

hab and the scalar field λ are related to the 5D Ricci tensor R(5)

ab by

R(4)

ab = 1

2
λ−1 Da Dbλ − 1

4
λ−2(Daλ)Dbλ + hc

ahd
b R(5)

cd (5)

and

D2λ = 1

2
λ−1(Daλ

)
Daλ − 2R(5)

ab ξaξb, (6)

where Da is the covariant derivative operator on the 4D spacetime
obtained by Killing reduction

De T b...d
a...c = hp

e hm
a . . .hn

c hb
r . . .hd

s ∇p T r...s
m...n,

and D2 ≡ Da Da . After the Killing reduction we obtain the 4-di-
mensional field equations [23]:

G(4)

ab = 8πφ−1L−1λ− 1
2 T (4)

ab + 1

2
λ−1(Da Dbλ − hab Dc Dcλ

)

− 1

4
λ−2((Daλ)Dbλ − hab

(
Dcλ

)
Dcλ

)

+ ω

φ2

(
(Daφ)Dbφ − 1

2
hab

(
Dcφ

)
Dcφ

)

+ φ−1(Da Dbφ − hab Dc Dcφ
)

− φ−1

2
λ−1hab

(
Dcλ

)
Dcφ, (7)

Da Daλ = 1

2
λ−1(Daλ

)
Daλ − φ−1(Daλ

)
Daφ

+ 8π

Lλ
1
2 φ

(
2ω + 2

4 + 3ω
T (4) − 4ω + 6

4 + 3ω
P

)
, (8)

and
Da Daφ = −1

2
λ−1(Dcλ

)
Dcφ + 8π

Lλ
1
2

(
T (4) + P

4 + 3ω

)
, (9)

which are equivalent with the 5D Brans–Dicke theory with the
Killing symmetry.

In the homogeneous and isotropic universe described by the 4D
Robertson–Walker metric, Eqs. (7)–(9) are simplified as

Ḣ = 2Hu + H v + 1

2
uv − ω

2
u2 − 8πG

2ω + 3

3ω + 4
ρm, (10)

u̇ = −3Hu − u2 − 1

2
uv + 8πG

1

3ω + 4
ρm, (11)

v̇ = −3H v − 1

2
v2 − uv + 8πG

2ω + 2

3ω + 4
ρm, (12)

where H ≡ ȧ/a is the Hubble parameter, u ≡ φ̇/φ, v ≡ λ̇/λ, ρm =
ρm0(1 + z)3 is the matter density, and G = (φλ1/2L)−1.

In the dynamical compactification model of Kaluza–Klein cos-
mology, the extra dimensions contract while our 4-spacetime ex-
pands [27–29]. We adopt this idea and assume that the present
Universe satisfies

a3(t0)λ
n/2(t0) = constant,

where n is a positive real number, then we have [23]

v(t0) = −6

n
H0, u(t0) = 3

n
H0. (13)

Substituting d
dt = −H(1 + z) d

dz into Eqs. (10)–(12) with the present
values of H0, u0 and v0, the evolutions of H , u and v according to
the redshift could be solved numerically.

3. Observational test

We assume that the Universe is flat, then the luminosity dis-
tance at a redshift z is given by

dL(z) = (1 + z)

z∫
0

c dz′

H(z′)
. (14)

The distance modulus is related to the luminosity distance by

μ(z) = 5 log10 dL(z) + 25. (15)

In supernovae observation, the χ2 statistic is given by

χ2
S N =

N∑
i=1

(μobs(zi) − μth(zi))
2

σ 2
i

, (16)

where μth(zi), μobs(zi) are the theoretically predicted and ob-
served value of the distance modulus at redshift zi respectively,
and σi is the measurement error.

We use the SN Ia data recently published by the Supernova Cos-
mology Project (SCP) team [30]. This data set contains 307 selected
SNe Ia, which includes several widely used SNe Ia data set, such
as the Hubble Space Telescope (HST) [31,32], “SuperNova Legacy
Survey” (SNLS) [33] and the “Equation of State: SupErNovae trace
Cosmic Expansion” (ESSENCE) [34]. Using the same analysis proce-
dure and improved selection approach, all of the sub-sets of data
are analyzed to get a consistent and high-quality “Union” data set,
which gives tighter and more reliable constraints.

The Markov Chain Monte Carlo (MCMC) technique is adopted to
perform the constraints. We generate eight MCMC chains and each
chain contains about two hundreds thousands simulated points
after the convergence has been reached. After the thinning pro-
cess, there are about 12 000 points left to plot the marginalized
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Fig. 1. The redshift evolution of H , u and v . We assume that the geometry of the
Universe is flat and fix Ωm0 = 0.27, then plot the curves for ω = −1, ω = −2 and
ω = −3 respectively.

probability distribution function (PDF) and contour maps for the
parameters in our model. More details about our MCMC can be
found in our earlier paper [35].

4. Results

In Fig. 1, we show the redshift evolution of H, u and |v|
(where |v| = −v). We set the present matter density parameter
Ωm0 = 0.27. According to current solar system experiments, the
coupling constant ω of higher-dimensional Brans–Dicke theories
are constrained as ω ≈ −(d−2)/(d−3) [36], where d is the spatial
dimension. For our case d = 2, so ω ≈ −2. In the figure we plotted
the cases of ω = −1,−2,−3. As can be seen from the bottom and
top panels of Fig. 1, for different ω the extra dimension “Hubble
constant” v

2 (note that v ≡ λ̇/λ) becomes more and more nega-
tive while H becomes more and more positive as the redshift goes
up. This indicates that the extra dimension is shrinking indeed
while the four visible dimensions are expanding. The cosmologi-
cal implications of this model can be seen more directly in Fig. 2,
where the distance moduli predicted by the theoretical model and
the observed SN Ia data from SCP team [30] are compared. Appar-
ently the model prediction is in good agreement with data when
ω = −2. For ω = −1 the model acts as a matter-dominated uni-
verse, while for ω = −3 as a dark energy-dominated universe [37].

We now investigate the constraint on the model. The marginal-
ized PDF of ω is shown in Fig. 3. The best fit value of ω is
about −1.9. Note that ω ≈ −2 is required by solar system ex-
periment [36], and now we find that the best fit obtained with
cosmological data happens to give the same best fit ω value! This
shows that our model predicts dark energy model naturally. The
PDF decreases steeply when ω > −1.9 and gently when ω < −1.9,
so there is also some probability for ω to get more negative values.

In Fig. 4, we plot the contour map for Ωm0 and ω. We find
that the best fit value of Ωm0 is around 0.27 which is consistent
with other cosmological observations, e.g. cluster X-ray observa-
tions [38]. However, more negative values of ω is also consistent
Fig. 2. Comparison of the distance moduli between the models with ω = −1,−2,−3
and the SCP SN Ia data set.

Fig. 3. The probability distribution function of ω. We find the best fit value for ω is
about −1.9.

with current observations. The 95.5% C.L. reaches −4.8, when Ωm0

is in the range of 0.24 ∼ 0.4.

5. Summary

By considering a hypersurface-orthogonal spacelike Killing vec-
tor field in the 5-dimensional spacetime, the 5D Brans–Dicke the-
ory can be reduced to a 4D theory with the 4-metric coupled to
two scalar fields. These two fields could naturally lead to the ac-
celerated expansion of the Universe.
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Fig. 4. The contour map of Ωm0 and ω. The joint best fit value of Ωm0 and ω is
around (0.27, −1.9). The 1σ (68.3%), 2σ (95.5%) and 3σ (99.7%) C.L. curves are
marked by red solid, green dashed and blue dotted lines, respectively. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this Letter.)

We study the evolution of the two fields and compare the ex-
pansion rate with SN Ia observations. The two scalar field would
make the Universe evolve as if “matter-dominate” or “dark energy-
dominate” when ω is greater or less than −2. We find that the
model is in best agreement with the supernovae data when the
5-dimensional coupling constant ω = −1.9 ≈ −2, which happens
to be also the value required to satisfy the solar system experi-
ments. Furthermore, for this best fit value, the best fit Ωm0 value
is about 0.27, in good agreement with other independent measure-
ments such as those derived from X-ray cluster observations. This
work is based on the assumption that the 4D gravitational constant
G varies extremely slowly so that it can be regarded as a constant
at “low redshift” where the SN Ia data are available. If we further
assume G does not change during the whole history of the Uni-
verse, then other cosmological observations such as BAO can also
be used, we find that in this case the results are almost the same.

In conclusion, the 5-dimensional Brans–Dicke theory could nat-
urally provide two scalar fields which may cause the accelerated
expansion, the result is consistent with the SN Ia observation,
hence it is a candidate to explain the accelerated expansion of the
Universe.
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