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Abstract

A classical unsolved problem of projective geometry is that of finding the dimensions of
all the (higher) secant varieties of the Segre embeddings of an arbitrary product of projective
spaces. An important subsidiary problem is that of finding the smallest intémarhich the
secant variety of projectivespaces fills the ambient projective space.

In this paper we give a new approach to these problems. The crux of our method is the
translation of a well-known lemma of Terracini into a question concerning the Hilbert function
of “fat points” in a multiprojective space. Our approach gives much new information on the
classical problem even in the case of three factors (a case also studied in the area of Algebraic
Complexity Theory).
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0. Introduction

The problem of how to minimally represent certain kinds of tensors as a sum
of tensors of a prescribed type (the case of decomposable tensors is what we will
consider here) is a problem with a long history (e.g. see [5,10,15,23,28,31]; also [17]
for a computational point of view and [11] in the symmetric case). Knowledge of
this subject is quite scattered and suffers a bit from the fact that the same type of
problem is considered in different areas using different language. We have tried, in
this paper, to cite the references from the different areas that we could find.

All of these problems can be considered in the following settingViet. ., V;
be finite dimensional vector spaces over the fie(de will always assume that char
k = 0 and that is algebraically closed) and let

V=Vf® @V (N @V

If T eV one can ask: What is the length of the minimal representatidhad a
sum of decomposable tensors? (Recall thas said to bedecomposablé we can
find vectorsv® € V* such thatl’ = v} ® - - - @ v;".)

The answer to this question is usually referred to age¢heor rankof 7. More-
over, sinceV is a finite dimensional vector space of dimensﬂ)j;l(dimk V;), which
has a basis of decomposable tensors, it is quite trivial to see that Bvel is the
sum of decomposable tensors (see also Section 1).

It is natural, then, to ask the following three questions:

(1) What is the least integdp (V) such thateverytensor inV has tensor rank
D(\V)?

(2) What is the least integef (V) such that there is a dense subget: V (dense
in the Zariski topology) so that every tensordfihas tensor rankl E(V) (this
is called thetypical rankof V in [5] and theessential ranlof V in [10])?

(3) Given an integer such thatO< r < E(V), what is the dimension of the closure
(using the Zariski topology) of the set of all tensors of tensor rani?

Our main focus in this paper is on Questions (2) and (3). It is well known that
answering these questions is equivalent to solving the problem of determining the
dimensions of certain secant varieties to Segre varieties (e.g. see [16] for the case
t = 2, where everything is well known, or [5] where the higher secant varieties to
Segre varieties are discussed for more than 2 factors). The study of higher secant
varieties is a very classical subject in Algebraic Geometry, e.g. see [24] or [29],
which in recent times, especially after the outstanding work of Zak [32] has received
renewed interest, see e.g. [1,6,9,22].

As we mentioned above, Questions (2) and (3) have been considered in several
contexts. In the context of Algebraic Complexity Theory (see e.g. [5], especially
Chapter 20 and the references there) there are many results in the-8ssee our
Section 3).

On the other hand, in the context of Representation Theory the emphasis is on
Question (3) (for any) and related problems, such as the singularities of the closure,
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desingularization, minimal resolution of defining ideal (e.g., see [25]). The Rep-
resentation Theory approach (at least from the point of view of the higher secant
varieties) appears nowhere in the literature and appears to be able to cover in an easy
way a very limited, but interesting, number of cases.

Within the context of Algebraic Coding Theory, the emphasis is on Question (2).
The results so far from Algebraic Coding Theory show that this approach covers a
very limited, but again very interesting, set of cases (see our Section 2).

Our approach is different from all of those above and is inspired by the work of
larrobino—Kanev [19] and Alexander—Hirschowitz [2] who treated a similar problem
which is related to the higher secant varieties to Veronese Varieties.

Using Terracini’s Lemma (or the method of Macaulay’s Inverse Systems, also
classically known, mainly in the case of symmetric tensorapadarity, see e.g. [30]
or [11]), we can convert questions about secant varieties into questions concerning
the calculation of a specific value of the Hilbert function of the ideal of a scheme of
“2-fat points in a multiprojective space.

We solve the Hilbert function problem in several cases. Our results for the case
t = 3 cover infinitely many cases not covered by the methods of [28] and [23] with
respect to Questions (2) and (3).

Our reinterpretation of the Algebraic Coding Theory results in the language of
2-fat points allows us to extend the observations of Ehrenborg [10] about Question
(2) to (3).

As far as the representation theoretic point of view is concerned, the higher secant
varieties to Segre varieties ate= GL(V[") x --- x GL(V;*) equivariant, therefore
they are, in principle, easy to determine whérhas finitely manyG-orbits. This
happens only for < 3. Fort = 2 it happens always. For= 3 it happens for a very
specific family of values of the triplg&1, n2, n3), wheren; + 1 = dimV; (see [21]),
more precisely for

(n1,n2,n3) € {(1,1,n), (L, 2,m}.

This same kind of classification may sometimes be made even when there are
not finitely manyG-orbits, but a classification of all orbits is possible. These are the
so-calledamecases. In our context the tame cases correspond to the tuples in the set

{222, (1,3,3), (1,1, 1, 1)}

(see e.g. [21, Tables IlI, IV and I]), see also [26]. All the other cases are caileéd
and are, in principle, difficult to treat by invariant theoretic methods.

Our results properly contain the finite and tame cases: see Theorem 3.1, Example
3.2 (where all cases are wild, except the last one, which is tame), Proposition 3.7 and
Example 4.2.

We take this opportunity to warmly thank J. Weyman for his help in interpreting
the “folklore” results in this approach to the problem.

The paper is organized in the following way: after a section of preliminaries, in
Section 2 we consider schemes of 2-fat points in multiprojective spaces which are
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built up from co-ordinate points in the factor spaces. In this context the questions we
have been considering convert easily into problems about monomial ideals which,
in turn, have fascinating combinatorial interpretations. In this way we show how one
can use results from coding theory to obtain theorems about secant varieties; more-
over this kind of connection suggests problems about monomial ideals in products
of polynomial rings which were not under the “spotlight” before. The results of this
section owe an enormous debt to the work of Ehrenborg in [10]. The novelty of our
approach in this section is in the interpretation of some of Ehrenborg’s combinatorial
results in the language of monomial ideals. This reinterpretation permits us to extend
the results of Ehrenborg, which dealt with Question (2) exclusively, so as to also deal
with Question (3).

In Section 3 we consider the general (i.e. non-monomial) case. Here we give our
main results concerning Questions (2) and (3) in Theorem 3.1, Proposition 3.3 and
Proposition 3.7. The novelty of our approach is evident as we obtain in this section,
by elementary arguments, many results already in print, as well as new results.

In Section 4 we review the literature, especially with respect to the case of 3-
tensors (since that is where so much work on these Questions has been done) and
compare our results to those obtained by others.

There are several people we have consulted during the preparation of this work
whom we would like to thank: John Abbott and Ciro Ciliberto for several stimu-
lating conversations about the material of this paper; Tony larrobino for bringing
the work of Ehrenborg to our attention; Peter Blrgisser for making us aware of the
literature (in particular his fascinating book) on the connections between our work
and Algebraic Complexity Theory.

1. Preliminaries: secant varieties, Terracini's Lemma

Let V1, ..., V; be vector spaces of dimensioms+ 1, ..., n; + 1, respectively.
With no loss of generality, we assume that< ny < --- < ny.
Let #; = {x0, x1,i, - .., Xn;,;} b€ @ basis fo¥/*, so that

.%*={Xj1,1®'~'®x]‘h,|0§ji gnifori=l,...,t}
isabasisfoV =V ® ---® V. Thus anyl' € V can be written

I = Z X jiXjp 1 & @ Xy 1. 1-1 @ Xj s

0<ji<n;
I<i<t

= Z Xjp1 @ @ X 1 1-1® Vji...jia M

0<ji<n;
1<i<t—1

1 . . . . — . . . . *
withaj, ;€ kandyj, _j_, = Zogj,gn, i1, Xjet € Vi
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From (1) above, we have an easy bound for the tensor rank of every vecdtor in
t—1
D(V) < [ [dimy vi). (t1)
i=1
Notice also that for an§" € V and anyx # 0 ink, bothT and\T have the same
tensor rank. Thus it makes sense to speak of the tensor rank of an ele®évij.in
Now, if T € V thenT corresponds to a multilinear form (abusively also caligd
where

T:Vix---xV, — k.

If we choose bases for thg (say bases dual to th&; above) and call ther#;, and
write

Bi ={x5;r . xn i h

n,-,i

thenT is completely described by its values otuples of basis vectors, i.€. is
completely determined by the values

* * _ . .
T(le,l’ R xj,,t) =aj,...j

Those values can be placed irns-@limensional array (or hypermatrix) of size
(n1+1) x--- x (n; + 1) which then, in turn, completely describ&s So, after
bases are chosen, we have a 1-1 correspondence betaderansional hyperma-
trices of size(n1 +1) x --- x (n, + 1) and tensors in/. Such hypermatrices are
obviously parameterized, up to multiplication by a scalar, by pointBof N =
[Tie (i +1) — 1.

LetS/ =k[xqj, ..., Xnp il J =11, andA = k[x0,1, - -+ Xng, 1, -« X015 - - -
Xn,.+]. We will consider the usual gradation on thé, i.e. asN-graded rings. This
makesA into anN’-graded ring in the obvious way.

Clearly eachV* can be identified witts; andV with A; wherel = (1,...,1).

With this point of view, we can consider the Segre varigtlyc PV, n = (nq, ...,
n;), as the image of the embedding

v o (P x - x (P")* = PST x --- x PS] — PAy,
where
(L1, ..., L) =L1®Ly®--®L, VLjeS], j=1,...,1
Hence we have (e.g. see [16]) that exactly parameterizes the decomposable

tensors iV
Now let us consider the notion of secant variety.

Definition 1.1. Let X < PV be a closed irreducible projective variety; fse— 1)th
higher secant varietgf X is the closure of the union of all linear spaces spanned by
s points of X.
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These varieties have been denoted bothire;_1(X) and X*. We will use the
second (more compact) notation.
There is an éxpected dimensidfior X*, i.e. if dim X = n, one “expects” that

dimX® = min{N, sn + s — 1},

where the numbetn + s — 1 corresponds teo®” choices ofs points onX (which
is n-dimensional), pluso®~1 choices of a point on the*—1 spanned by the points.
When this number is too big, we should just get that= PV

Since it is not always the case that has the “expected dimension”, whenever

dimX* < min{N, sn +s — 1},

then X* is said to bedefective A measure of this “defectiveness” is given by the
quantity

min{N, sn +s — 1} — dim X*.

Let us go back to the Segre varietigs c PV. Since Segre varieties parameterize
the decomposable tensorsif, their secant varietieg? are exactly the closure of
the locus of tensors of tensor rankHence we have:

Fact. A description of the numbeE (V) for ak-vector spac&/ =V ® --- ® V¥,
with dimV; = n; + 1, given in terms of secant varieties to Segre varieties, is

E =EV)=min{s| V] =P"}.

By a slight abuse of notation we will sometimes write
EWNV) = E(Vy) = E(P™ x --- x P").
Notice that, from(t1), forn, <m = l—lﬁ;i(m +1) — 1, we have
EP™ x -+ x Py = E(P™ x ... x P11 x P™). 1)
A classical result about secant varieties is Terracini's Lemma (see [29], or, e.g.
[1]), which we give here in the following form:
Terracini's Lemma. LetX c PV be a non-singular varietyThen
Tp(X*) = (Tp(X), ..., Tp, (X))

hence
dimX® = dim(Tp,(X), ..., Tp, (X)),
wherePy, ..., Py are s generic points oX, P is genericin(Py, ..., Ps) andTp, (X)

is the projectivized tangent space of XAif{ at P;.

Notice that, if(X, &) is an integral, non-singular, polarized scheme, &hdm-
bedsX into PN = PHO(X, #)*, we can view the elements ¢f%(X, ¥) as hy-
perplanes ifPV. Those hyperplanes which contains a spagégX) correspond to
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elements inH9(X, J%{ (&), since they intersect in a subscheme containing the
first infinitesimal neighbourhood d#;.

Hence there will be a bijection between hyperplanes of the sp¥osontaining
the subspacélp, (X), ..., Tp, (X)) and the elements dio(X, 7 7(¥)), whereZ is
the scheme defined by the ideal sheaf = .73 N ---N.#% C Ox. This 0-scheme
is what we will call a scheme ofgeneric 2fat pointsin X.

By what we have just observed, we get the following consequence of Terracini’'s
Lemma:

Corollary 1.2. LetX, ., be as aboveThen
dimX* = dim(Tp,(X), ..., Tp,(X)) = N —dim H(X, 7 2(2)),

whereZ is a subscheme of s genefidat points inX.

Now, applying Corollary 1.2 to the case of the Segre varieties
X, )= (P" x - xP", 0x(1,...,1)),

we get that dinVs = N — dim Ho(X, .7 7(%)).

We observe also that, instead of using Terracini’'s Lemma, we can derive the rela-
tion between dinV; and H(Z, 1) via Macaulay’s theory of “inverse systems” (see
[13,19]). Our reason for mentioning this alternative view is that we were able to use
it in [7] to speak about secant varieties in a context where Terracini’'s Lemma was
not useful.

Lemma 1.3. The following three numbers are equal

(1) the dimension of the closure of the locus of tensors of tensorsanin PV;

(2) the dimension of the variety c PV;

(3) the valueH(Z,1) — 1, whereZ C X =P" x --- x P" is a set ofs generic
2-fat points inX, and where¥j € N’, H(Z, j) is the Hilbert function oz, i.e.

H(Z,}) = dimAj —dimHO(X, 7 7())).
Proof. The equality between (1) and (2) is well known (see Introduction). We now

give our alternate proof for the equality between (2) and (3).
Recall that we are consideririg, as given by the embedding

vn:IF’S%xn-x]PSi—)IP’AL
where
va(L1, ..., L) =L1®L2Q---Q L;
=Lily---L; VYL;j€S], j=1...,1

Recall also that we are identifyinﬂ ®---® 8] with Aj.
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With this point of view it is not hard to determirfg,, ..., (Vy), i.e the projectivized
tangent space t¥, at the pointL - - - L;. We will first pass to the affine (so we are
viewing v, as a mapS% x --- x 8§ — Aj) and consider the differential map

dvn : T(LJ_,,..,L,)(S]]: X -o0 X Si) — Tpy...1,(A1).

If we choose a direction througliLy, ..., L) in S% X o X S’l, say(L1, ..., L) +
A(M1, ..., M;), we get that the image of the corresponding tangent vectfy,in; ,
(A1) is given by

li d L L A(M M,
A'Lnoa(vn(( 1. L) +A(Mq, ..., t)))

d
= lim (L1 + M) - (Ly + AM)))

lim. [Mi(L2 4+ AM2) -+ (Ly + AM;) + - --

+ (L1+ AM1) (L2 + AM2) - -+ (Li—1 + AM7_1) M; ]

t
Zle"'LjfleLjJrl"‘Lt-
j=1

Then, sincéV}, is smooth, we have an isomorphism
dvp, : S% X x S) = Tpyr, (vn(S% X - x 87)),
given by(My, ..., M;) — Z’j:l Lyi---M;Ljy1---L;, where we view

Tpyor, (vn(ST x -+ x S)

t
~ 3y L1 MjLj1.. . L\ Mjes].j=1..1¢,
j=1

which is the subspace of; given by the multidegre& part of the ideal generated
by
{Ll"'Lj—leLj-i-l"'Lt}j_

Note that this subspace af; has dimensionny +21) +---+ (n, +1) — (t —
D= Z;_:l”j + 1 (since whenV; = L; we getLy --- L, in all cases), i.e. the pro-
jective dimension i1 + - - - + n,, as expected. '

We will consider this vector space in more detail: as edfghvaries inS; , we can
write it as

Wi =(SH(La---Ly);...; Si(L1--- Li—1)) = Im(dvn) C A1
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Let B =k[y0,1,---, Yny.15 -- -3 Yous - - - » ¥n;..] = A, @nd consider the action &
on A defined by (see [13] or [19] for details in tié-graded case):
Ya,j © Xbk = (0/0xq,j)(xp,k),
where we use the standard properties of differentiation to extend this action to all of
By x Aj —> Aj_a.

In this way, if I is a multihomogeneous ideal iB, we can define thinverse
systenof I, denoted/ ~1, as theB-submodule (multigraded) of consisting of all
elements ofd annihilated byl (note that/ ~1 is almost never an ideal ia).

If Ly, ..., L; are generic, we can choose coordinates With= xg ;, so that

W1 = (ST(x02+ - x0,): .. .5 Si(x0.1+ - X0,-1))-
Now consider the spadg = Wll C Bj. ltis easy to check that if we put

. . 2
I = ())l,l, y2,l7 DRI yl’ll,l7 ey yl,fa y2,[7 DRI Yn,,t) )

thenwy = (I~1)1.

Note that/ represents a schemeC P"1 x -.. x P given by the second infini-
tesimal neighbourhood of the poift: 0:---:0) x --- x (1:0:---: 0).

We will call such a 0-dimensional scheme &2-pointin Pt x ... x P,

We have that dinW, +dim/I; =dimB; = N + 1, hence dinW; = H(Z; 1),
whereH (Z; o) = dimg B,/(I7), is the (multi)-Hilbert function ofZ. Note that this
shows tha¥ is adegre@; +np +--- +n, + Lstructureorql: 0:---:0) x - -+ x
1:0:--.:0).

If we want to conside¥;, we can study the map

Gy 1 (ST x - x SH — V5,
where
¢s(L1a,...,Lsa;...5Las, ..., Lts)
= (Ll,l"'Lz,l+ L1,2"‘Lz,2+ e+ Ll,x . ..L[’S).

For a generic choice of11, ..., L; s, the dimension of intdg;) will tell us the
dimension ofV/;.
With the same procedure as before, we get the (affine) space

im(dpy) = Wi+ W2+ + W) = Wi

whereW] = (S(Lz; -+ Ly i) ... Sy(Lyi- - Li—1.1)).
We know thatW] = (Ii_l)l, wherel; is the ideal of a 2-fat point ifi?"t x - .- x
P, Letl; = p2. Then

W=D+ + @A =pin-npdHt=u
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is the multidegred. part of /=1 = (p2 N ---NpH~L, wherep,, i =1,...,s, are
the multihomogeneous ideals ofyeneric points?; in Pt x ... x P j.e.I is the
ideal of a schem& which is the union of 2-fat points.

We have that dinwV1 + dim I3 = dim By, and so dinW; = H(Z; 1), and we get
that the problem of determining diif§ amounts to determining (Z; 1). This, then,
gives the equality between (2) and (3) aboveél

The expected value faH (Z, 1) is min{N + 1, s(ny + - - - + n, + 1)} (if all the
pl.z impose independent conditions to hypersurfaces of multideDres» we expect
this value for dim/1. This agrees with the expected dimension¥fgrc PV:

expdimVy = min{N,s(ny1+---+n, +1) — 1}.

In particular, the typical ranle = E(V) (for V above) is the smallest value of
s for which there are ndl, ..., 1)-forms in the ideal ofy generic 2-fat points in
Pnl X PRI X Pnt.

Remark 1.4. Since deZ = s(n1+---+n,+ 1), thendimVy = H(Z,1) — 1<
s(ny+---+n; +1) — 1. Alower bound forE is then easily given by

[T + 1)
T4 4+ 1

Remark 1.5. We can notice that, proceeding in an analogous way, we find that
H(Z,j) — 1, for an arbitrary multiindek = (j1, ..., j;) € N, represents the dimen-
sion of X*, whereX is given by the embedding

P ox ... x P — PV ..o x PN PN

where the first map is given by the product of the (Veronggh)}embedding®”"i —
PV, and the second is the Segre embedding.

2. Onthe dimension of secant varieties to Segre varieties: the monomial case

We will give here some results about the dimension of the variéje@otation
as in Section 1) for some particular values of

We saw above that questions about difncan be translated into questions about
the Hilbert function of 2-fat points. We now investigate the Hilbert function of a
special family of 2-fat points, namely those fat points whose support is a product of
co-ordinate points. We will see that even these special points can give us interesting
results about secant varieties.

In order to discuss products of co-ordinate points, we introduce some notation.
Let

J:{r:(rl,...,r,)|0§rigni}.
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A co-ordinate pointof P"1 x -.. x P is a pointPy = Py, x --- x P,,, where
Py, is ther ;th co-ordinate point of""/.

Definition. Givenry = (r1,1,...,r,,1) andro = (r12, ..., r¢.2) inJ, we say that the
Hamming distanceetweerr, andrais! if (r11 —r1.2, ..., 7.1 — rr.2) has exactly
[ non-zero entries.

Proposition 2.1. Let P, ..., Py, be a set of co-ordinate points i1 x - - x P™.
Letp; be the ideal of?;,, and letZ be the scheme defined py._, p>. Then

H(Z,1) =|{r € J|r has Hamming distance 1
from at least one ofy, ..., r,}|.

Proof. Let us start withs = 1. ConsiderP; = Py, x --- x P, WhereP,_/. e P is
ther;th coordinate point if®"/, i.e. P,, = (0:---:0:1:0:---:0), with 1in the
rjth position.

Then 112)r = (V0L e v s Vrpdo oo s Vs e o3 YOuhs e oes Vrpits v e es ynt,,)z. Let Z be
the scheme defined by this ideal.

We have that/; is a monomial ideal, and so computifg(Z, 1) amounts to
counting the monomials of degrég, . . ., 1) which are not in/.

Now it is quite immediate to see that a monomiakt 1129, if and only if at most

one entry inj = (j1, ..., j;) differs from the entries im = (r1, ..., ), which is
exactly what the statement of the theorem says.
Whens > 1,letR = {rq,...,rsh,andlz = (), .z 11%,- We have that a monomial

yj ¢ Iz ifand only if there is at least orree R such thaty; ¢ Izr, and the statement
immediately follows from what we have already seensfes 1. [

There is a simple way to visualize this result, by “playing with rooks an a

dimensional chessboard”. To be more precise, if we define- {0, 1, ..., r}, our
“chessboard” will be the set = A, x --- x A,,. We will associate to the s&t =
{Pr,, ..., P} of co-ordinate points iff"! x --- x P™, the setof placeR={ry, ...,

rs} in A, which we will call therook setassociated tX (see also [10]).

Definition. Let A be as above, and I&& c A. We define the subseenerated by
R (and write (R)) to be the set of all the elements inthat can be obtained by
changing at most one coordinate of an elemerR @hese are the places miwhich
are “attacked” by rooks situated ).

Proposition 2.1 above can now be reformulated as follows:
Proposition 2.1a. LetX = {P;,, ..., Pr,} be a set of co-ordinate points ' x

--- x P and letR be the rook set associatedXo Let Z be as in Propositior2.1.
ThenH (Z,1) = |(R)|.
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Now we want to show that when a rook sRthas nice properties, Proposition
2.1a allows us to say something useful about the secant vari&ties

Definitions

(1) A rook setR is said to beperfectif every element inlR) comes from exactly
one element oR.

(2) Arook setR is arook coveringf (R) = A.

(3) Arook setR is aperfect rook covering both (1) and (2) hold forR.

It immediately follows from Proposition 2.1a that:

Corollary 2.2. LetR C A be arook set withR| = s. Then

(1) If Ris arook coveringthenE (P"t x --- x P") .

(2) If R is a perfect rook sethendim V' = s'(ny +---+n; + 1) — 1 for all s’
< s.

(3) If Ris a perfect rook coveringhen we havéE = s (soV;{ = PV).

Recall our convention that; < no < --- < n;. We want to prove the following:

Proposition 2.3. Let V3 c PV be defined as in Sectidn Then
(i) ifr=2,ands < n1+ 1, thendimV; = N;
(i) fortr =2, ands <ny, dmVy =sm1+n2+1) — 245 —1;
(i) forr >3ands <n1+1, dmVi=smi+n2+---+n+1 -1

Proof. Cases (i) and (ii) are actually well known since they correspond to ordinary
matrices. We can easily prove them by observing that tern1 + 1 there is always
a trivial rook covering (the main diagonal) witlR| = s, so we get (i); while for
s < njp uses places on the main diagonal to forRa then there are(s — 1) positions
that are covered by two of them, so they generate a set magl@iby - - - + n, +
1) — s(s — 1) elements, and we get (ii) from Proposition 2.1a (notice that every set
of s points can viewed as a set of co-ordinate points in this case).

When: > 3 ands < n1 + 1, a perfect rook set of elements can always be ob-
tained takings places on the main diagonal, so, by Corollary 2.2, we get case (iii).
O

Whenny +1=n2+1=---=n; + 1= g, the problems about rook sets have
an interpretation in coding theory (e.g. see [10,27]). If we consider an alphabet made
of ¢ letters and words of length then a code can be obtained by taking as its words
the elements of a rook set it = A’ ;. In this setting a perfect rook sét with
|R| = s corresponds to what is cal?ed a “1-correcting code’ elements, denoted
as “(t, s, 3)-code”, i.e. a seR C A such that the Hamming distance between any
two words inR is > 3.
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To determine the maximum size= A, (¢, 3) for which there is dt, s, 3)-code in
A = A! is what is calledhe main coding theory problervlany bounds are known
for A,(z, 3), but even fory = 2 there is no general formula computing this value; a
table of values for (¢, 3) can be found in [27, p. 173] far< 16.

Perfect rook coverings correspond to what are cafiedect codesand such
codes are quite rare: the only known ones of type, 3) are theHamming codes
which are of typar = (¢¥ — 1)/(q — 1), s = ¢'*, 3), wherey is a prime power and
k > 2 (a computer check showed that for 100,7 < 1000, there are no others, see
[27]).

Let us see how we may apply these results from coding theory to our problems.

Example 2.4. Let V}, be the Segre embedding
Plx...x P!
_}/_/

Then fort =28 — 1,k > 2, we get dimV$ =s(t +1) —1=2ks — 1 for all 2<
s <E =22-k1landvE = p2-1

13

— P?-

The example comes from the Hamming codes wits 2 andr = 28 — 1.

Example 2.5. Let V; be the Segre embeddiffg x P2 x P2 x P2 — P8, Then we
have dimV; = 9s — 1 for2< s < 9 andV,) = P

The example comes from using the Hamming code with 3 andk = 2.

Example 2.6. Let V(3.3.11) be the Segre embeddifif x P2 x Pt — P91 Then

dim V3 311 = =43+3+11+1) — 1=71 (the expected value, from Proposition

2. 3(|||)) but (as we will see in Theorem 3.1(2) = 12 (not the expected value). So,
somewhere between the secant 3 spaces and the secant 11 spaces, something goes
wrong!

As we anticipated, this kind of procedure is useful only when we can reduce
to the case of co-ordinate points (from the “2-fat points” point of view); in other
cases, when we have to consider larger valuas other ways to attack the problem
have to be found (e.g. see Proposition 3.3). This is what we do in the following
section.

3. Higher secant varieties to Segre varieties (the general case)

As we pointed out in Section 2, the dimensiori{jfcannot be studied in all cases
using rook coverings (i.e. monomial ideals of 2-fat points).
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Our main result about typical rank is the following theorem.

Let us establish the notation for this theorem. Met= Vi ® - @ V' @ W,
wheredimV; =n; +1,i =1,...,t,anddimW =n 4+ 1withl<ny <na2 < --- <
ny < n.

Theorem 3.1. The typical rank = E(V) is:
(1) forn>T[[i_i(n; +1) — 1, exactlyE = [[i_y(n; + 1);
(2 for[[icy(ni+1) =Yt 1ni—1<n< [[iy(ni +1)—1, exactlyE =n + 1;

(3) while forn, <n <[[i_1(ni +1) — > i_1n; — 1, we have

t ' t
(n—i—l)l—l-_l(ni +1)
n+1<EL]||n+21 - ni, E> 1= .
iI:!. l ; l n+Yiani+1

Proof. (1) This is obvious fron(%), Section 1 and (2).

@LetN=n+D[[iLm+D —1m=[[_1(+1 —1n=(n1...,n)
and letV,; € P™ be the Segre variety imageBf! x - - . x P". We have the follow-
ing embeddings:

P x - x P") x P" > V, x P" - P" x P" — PV

(where the composite map is also the Segre embedding).

Sincen <m, E(P™ x P") =n + 1, and it follows thatt (P2 x - - - x P" x P") >
n+ 1.

Now consider a generic poiit € PV ; we can write

P=A1x@:0:---:0+---+A,72x@0:---:0:1),

whereAy, ..., A,+1 can be viewed ag + 1 generic points irP” (they are the “t-
dimensional slices” of the tensor).

Then-dimensional linear spacke generated by thd;’s in P will intersectVj,
and the dimension of the intersection will be

t t
n+ Y ni—[Jou+D+1>0.
=1 =1

Moreover, because of the genericity bf and sinceV,, is integral and non-degen-
erate, the intersectioh N V;, will contain enough distinct points, safi 1 x - - - x
Pis;...; Pyyr1 X oo X Pygg with Py e P, i =1,...,¢, in order to span the
linear spacd. = (A1, ..., Ap+1).

Let Ay = Y51 jPja x -+ x Pj,. Then we get

P=A1x@:0:---:0+---+A,42x0:---:0:1)
n+1

= Z)Ll,jpj,lx"'xpj,l x@1:0:---:0)+---
j=1
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n+1
+ Z)\.n+1’jpj’l>("‘xpj’t x@0:---:0:1)
=1
=Pr1 XX Py x(Ayr:eoc i Apg11) + o
+ Ppr11 X oo X Pyyae X (A1t D Apglnt1)

which expresse® as the sum of + 1 decomposable tensors, as required.
(3) The bound

. n+1 rt[gzl(n,» +1
n + Zi:l n; + 1

is obvious (see Remark 1.4), while the bound n + 1 follows from the argument
at the beginning of (2).
To prove that

' t
E < H(ni +1) - Zni,
i=1 i=1

we proceed as in (2), but we do not work on the space (A, ..., A,+1) (because
now L N V,, = @): but rather, we consider a linear spdceC P", with

t t
dmL’' = H(’” +1) — (Zn,) —1 and L'DL.

i=1 i=1

We haveL’ N V,, # @, and we can spah’, and hencd., with

t t
H(”li +1 - Zni
i=1 i=1
points inV,,. We then continue as in 2).0]

Example 3.2. Consider the cas@i, n2, n3, n) = (1, 1,1, n):

(@) fortensors il x P! x P! x P*, withn > 7, we haveE = 8;

(b) fortensors irP! x P x P! x P", with4 < n < 7, we haveE = n + 1;
(c) fortensors ifP! x P! x P! x P2, we haveE = 5;

(d) fortensors P! x P! x P! x P2, we haveE = 4;

(e) fortensorsiP! x P! x P! x P!, we haveE = 4.

Cases (a)—(c) come directly from Theorem 3.1. Case (d) is dealt with by a direct
computation using CoCoA [8]. As for (e), by Theorem 3.1(3) we Bet 4, and it
is not hard to find a (non-perfect) rook covering of a 2 x 2 x 2 hypercube made
with four rooks:
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Proposition 3.3. Let V be the Segre embeddingBft x --- x P x P" and lets
be such that

t t !
[[ni+D— (Zn,) +1<s< min{n,]_[(ni +1 - 1} -
i=1 i=1 i=1
ThenV* is defective

Proof. The expected dimension fof* is s(1+n + > i_; n;) — 1. Thus the exp-
ected number of independent forms of degi®el, . .., 1) in the ideal ofs generic
2-fat points inP"t x ... x P" x P"is

t t
(n+1)H(ni+1)—s<l+n+Zn,->.

i=1 i=1

On the other hand, there will mﬂﬁzl(ni + 1) — s) forms of degredl, ..., 1)
in P" x ... x P" passing through generic points, andz + 1 — s) linear forms
in P" passing through generic points there, hence (just making products) we can
find at Ieast(l_[ﬁzl(n,» +1) —s)(n+1—ys) forms passing doubly through ge-
neric points inP"t x - .- x P x P" (this number is> 1 by our bound on). So,
whenever

t t t

(n+1)1_[(n,- +1)—=s <1+n+2ni> < (n(ni +l)—s> n+1-—y5),
i=1 i=1 i=1

we have thatV* is defective. A straightforward computation shows that the above

inequality amounts t® > [T'_;(n; + 1) — (3_f_; ni) + 1, as required. O

Notice that, in the context of Proposition 3.3, in general we do not know how
defectiveV? is. Let us check what happens in an example:



M.V. Catalisano et al. / Linear Algebra and its Applications 355 (2002) 263-285 279

Example 3.4. Considern = (1, 1, 3), i.e. P! x P! x P2 — P15, We haveE = 4

(use Theorem 3.1), While/n2 has the right dimension by Proposition 2.3(iii).
Proposition 3.3 gives us that? is defective; more precisely that divif <

15— 1= 14, because there is at least one form in the ideal of 3 generic 2-fat
points in P! x P! x P3, while the expected dimension 8> should be mifl7,

15} = 15.

In this case it is not too hard to check that we actually have‘d;?m: 14 (the
three pointsP1 = (1: 0) x (1:0) x (1:0:0:0), ,=(1:0 x (0:1) x (0:1:
0:0,P3=(0:1)x(0:1) x(0:0:0:1) have exactly one (1,1,1)-form passing
through them).

From the proof of Proposition 3.3 we can immediately deduce the following:

Corollary 3.5. Lets, n1, ..., n, n be integers which satisfy the bounds in Proposi-
tion 3.3. Then every rook seR C A = A,; x --- X Ap, X A, With |R| = s is such
that

t
[A—(R)| > (H(ni—i-l)—s) n+1-y5s).

i=1

The following result will give us a bound in order to have tidthas the expected
dimension. We first give a useful lemma.

Lemma3.6. LetZ=2P1+ - -+ 2P, + Pyt1+ -+ Ppyr CP x - x P
be the scheme given by the uniomo-fat points and- simple pointswith support
on m + r generic pointsP;. Letr <2, n1+---4+n; <2m+r, andny +---+
nge-1<m.

Then there exists a forrfi = 0in 1(Z)1.

Proof. Let
Pj:P,"lX“-XPi’[, Pi’jGPnj.

We work by induction ore. Lett =2. Forny < m +r, let {g1 =0} Cc P"t be
a hyperplane throughPy1,..., P,;1. Since ny <m, and n1+n2 > 2m +r,
we can find a hyperplan¢g, = 0} C P*2 through Py, ..., P2, Puy41.2, -
Pnir2. FOr n1>m+r, since ny > ni, let {g1 =0} C P"* be a hyperplane
through P11, ..., Pp4r1 and{go> = 0} C P"2 be a hyperplane through o, ...,
Pm+r,2-

Thengig» is the required form.

For: > 2, let{g, = 0} C P be a hyperplane throughy,, ..., P,, ;. By the in-
ductive hypothesis, there exists afogra 1 (Z*) Ck[yo,1, ..., Yy, 15 -« -3 Y0 r—1s - - - »
¥n,_y1,1—1] Of multidegree (1,..,1), whereZ* is the projection of
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Z—(P1+---+Py)

Pl+"'+Pn,+2Pn,+l+"'
= +2Pm+Pm+l+"'+Pm+r forn,<m,
P1+"'+Pm+Pn,+l+"'+Pm+r forn, > m

into Pt x ... x Pu-1,
Thengg, is the required form. O

Now we can prove the following proposition.

Proposition 3.7. Letn = (ny,...,n,) and letr > 3,

[n1+n2+~~~+nt+1
2

] > max{n, + 1, s}.

ThendimVy =s(ni+n2+---+n,+1) — 1

Proof. By induction ons. Fors < nj + 1, the result follows from Proposition 2.3.
Lets > n1 + 1. Asin the lemma above, let

PZ'ZP,'YlX“'XPi’,, Pi’jEPn-/, 1<i<s, 1<]<l‘
Fors > n; + 1, we may assume that

Pl:Plle"‘Xpl,jX"‘XPL{
ZPJ..,1><~-~><(130:-~-:O)><-~-><Pl’[,

Ppiv1=Ppj411 X+ X Pyig1,j X oo X Prpjqa

=Pyj411 XX (0221001 X o0 X Pyjgay.
Fors < n; + 1, we may assume that

Pl:Pl,lX"'XPl,jX"'XPl,t
=Pp1x---x@Q:0:---:0) x---x Py,

PS=PS’1X-~-XPS,1'X"'XPS.I
=Pgx--x(0:---:0:1:0:--)x -+ x Py

NOW, y1,j, + -+ Yn;.j €1(P1,j) Cklyoj, ..., yn;.j1are linearly independent forms
(i.e.{y1,; =0} ..., {yn;; = O} C P"/ are independent hyperplanes throutjly =
(1,0,...,0) inP").
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Forany 2< ! < n; + 1, letZ’ be the projection of the scheme

2Py + - +2P) — (P2 + -+ P+ - + Prins.n,4+1)
P+ + P1+2P+ Py1+- -

_ + Puj+1+ 2Py 42+ - + 2P fors >n; +1,
P+ -+ P+ 2P+ P4+ Py fori<s <nj+1,
Po+ -+ P, fors<l<nj+1

onP™ x ... x P x ... x P, Now apply Lemma 3.6 t&’. We have

s—n; fors>n;+1, nj—1 fors>n;+1,
m=131 fori<s<nj+1 r={s-2 forl <s <nj+1,
0 fors <l <nj+1, s—1 fors <l <nj+1
Hence
2s—nj—1 fors>n;+1,
2m+r=14s forl <s<mn;+1,
s—1 fors <I<nj+1,
and from

[n1+n2+-~-+nt+l

2 ] 2 max{nf + 15S}7

it follows, by an easy computation, that
2m+r<n1+-~~+lfj+---+nl
and
< {n1+m+n}+m+n,l forj <t—1,
ni+---+n_o for j =1t.

So, by Lemma 3.6, there exists a foifne 1(Z’) of multidegree(d, ..., 1) and,
since Py is generic, we may assume that¢ 1(Py ;). Then

Yujf2, - ngif41 € A, 1< <,

areny + --- + n; linearly independent forms id(P1 + 2P> + --- + 2Ps), not in
1(2).
Moreover, applying Lemma 3.6 to the schem@2- .- +2P; C P"1 x ... x
P we can find aformid (2P, + - - - 4+ 2P;), and, sincePy is generic, notinf (Py).
Then

H(Z,)=H(Z ) +n1+--+ns+1,

where Z' = 2P, + - -- + 2P;. The conclusion follows from the inductive hypo-
thesis. O
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4. The tridimensional case

Although our results cover cases for any number of factors, the most intensive
study of Questions (1)—(3) in the literature occur in the case of three factors, i.e.
forV=V @ V;@W*dimV; =n; + LdmW=n,n1 <nz <n <ninz+ny+
no, see(d)).

In this case, because of the connection between these questions and the search for
fast algorithms for matrix multiplication (see [5] for details), there are several results
in the area of Algebraic Complexity Theory.

We summarize those results here and explain where our results fit into this litera-
ture.

e Casel. In the special case of three factors, our Theorem 3.1 gives the valie of
in all caseqn1, no, n) for whichn > nin,.

More precisely, let = niny + k, k > 0. The expected value fdt is

o "(n1+1)(n2+1)(n+1)—‘
a ni+nz+n+1 '

But, by Theorem 3.1, we know that

n+1 for0< k < ni-+ny,
|+ D2+ 1) fork > ng+no.

It is an easy computation to check that:
(i) When eithetk = 0,1 0rk > (n1 + 1)(n2 + 1)(n1 + n2 — 1), we haveE = ¢;
(i) For2<k < (n1+1Dm2+ 1)(ny+n2 — 1), we haveE > e. Hence in this case
the varieties/* are defective foe < s < E — 1. In these cases we should have
V¢ =PV, but this does not happen until= E.
This remark shows that the valuesBfgiven in Theorem 3.1 are, in many cases,
not the expected values.
This covers earlier work of Ja'Ja [20] who considered the céses, n) and
work of Atkinson and Stephens [4] and Atkinson and LLoyd [3] who considered the
cases

(n1,n2,n) = (n1,nz,nnz +ny1+nz — p), Wwherep =1,2.
_ (m4+DHmo+)) ; ;
e Case2. (n1, np, n) are all odd and) = ihorail isan integer.

In this case Strassen [28] and Lickteig [23] have the very nice resulEtkain +
1)Q, and this is precisely the “expected” value. Moreover, the divisibility condition
implies that dimV(‘;l’nz’n) (fors < E) is also exactly as expected. This intersects our
work only for the case® = 1.

e Case3. (n1,n2,n) = (2,n,n).
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This has been studied by Strassen [28], see also [5] for details.
(A) (n even). We have that

3

which is one more than the expected value.
Moreover, for 2< s < %n dim V(S2 n.n) is exactly as expected.

Whens = 3n + 1, then Vi 1S @ hypersurface iP3°+61+2 Strassen gives
also an expression for the equation of this hypersurface.

(B) (n odd). We have that

3n+1)
—

This is the expected value.
Interestingly enough, in this case the same expression which gives the hypersur-
faceVy, , . fors = %n + 1, here gives the closure of the locus of tensors which do
not have ranlexactlyE.

E =

e Cased. (n1,n2,n) = (3, n, n).

In this case (see [5, p. 15]) dil?f‘f&n,n) is exactly as expected for alland for all
s. In particular,E = 2n + 1.

e Caseb. (n1,n2,n) = (n,n,n), n #+ 2.

This “cubic” case was treated by Lickteig [23], who showed that [(n +
1)3/(3n + 1)]. This is the expected value fé.

Note that(n + 1)3/(3n + 1) is an integer only for (the positive integer)= 1,
hence this result, unfortunately, does not give information ab@y};’n) fors < E.
Whens < n + 1, our Proposition 2.3 gives that the dimension of this variety is the
expected one.

We remark that Cases 3-5 are not covered by our theorems. We can, however,
offer a proof for Case 3 and = 2.

Example 4.1. Consider the variety/(2 22 C P28; in this case we are looking at
3 x 3 x 3 hypermatrices.

By Proposition 2.3 we have dif5 ,, = 13 and dimV3 , ,, = 20, hence the
hypermatrices of tensor rank 3 form only a 20-dimensional subvarieBf9nRe-
mark 1.4 gives thak > 4, but we want to check that we actually have tﬁé’tz)z) +

P25, j.e. that this variety is defective, and o= 5 (since, by Theorem 3.1, we know
thatE < 5).

In order to check thav} , , # P?®, it is enough to show that 4 generic 2-fat
points inP?2 x P2 x P? are contained in a hypersurface of deg¢gel, 1). So let
us consider the four point®; x P; x P;,i =1,...,4, where P = (1:0:0);
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P,=0:1:0;P3=(0:0:1); P,=(1:1:1) (we can always choose coordi-
nates so that this is the case). If the multihomogeneous coordinates.are x2; yo,
y1, ¥2; 20, 21, 22}, We have that the matrix

X0 X1 X2

Yo yi )2
200 211 22

has rank 1 at each poit x P; x P;, i.e. its determinant gives us a form of degree
(1, 1, 1) which passes doubly through our points. Hence ﬁ@’z) < 25.

Thus the generic % 3 x 3 hypermatrix has tensor rank 5 (note that the actual
maximum value for the tensor rank could even be bigger than 5).

We conclude this section with one last observation in the case of three factors,
comparing what we have just seen above and the ideas of Section 2. This observation
shows how Theorem 3.1 could not be obtained by working only with monomial
ideals.

Remark 4.2. Letl < nq1 < np, n =niny+kwithk > 0andE asin Casel above

LetA = A, x Ay, X Ap. Then

(&) forni =np = 1,there is a rook covering witl' rooks which is perfect only in
casen = 1;

(b) for k > n1 + no, there is a(never perfegtrook covering of A made df rooks
(hereE = (n1 + 1)(n2 + 1));

(c) for 0< k < ny+n2, ny+# 1, there are no rook coverings of A with rooks
(hereE =n +1).

Proof. Case (a) can be easily seen. In Case (b), a rook coverimigh |R| = E can
be easily found by choosing all the places on4 x A,, slice of A. Moreover,
a covering with that cardinality can never be perfect sifice n1 + 1 and so there
must be am,,, x A, slice of A containing at least two rooks.

Case (c). Suppose there is a rook covergith |R| = E = n + 1. Then there
cannot be am,, x A,, slice of A containing no rooks, since every place in such
a slice would have to be “covered” by a rook Bffrom outside the slice, and this
would imply [R] > (n1+ D2+ 1).But(n1 + D)(n2+1) > E=n+1.

Thus each of thén + 1) A,, x A,, slices contains exactly one rook.

Iffor all (i, j) € A,; x A,, we have at least one rook in plagg; ; for somek,
then we must hav& > (n1 + 1)(n2 + 1), and we get again a contradiction. Hence
there is at least one palip, jo) € An, X A,, such that no rook oR is in position
ajy, jo.k forall k =0, ..., n. Without loss of generality we can suppage= jo = 0.
Hence all elements ; € R must have either= 0 or j = 0 in order to “cover” the
placesag,o x. Butin this case, in order to cover all the places «, everyr; jx € R
should have # j € {0, 1}.

Now, sinceny > 1, it follows thatR cannot be a covering (e.g. the plage o is
not covered). O
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