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Abstract

A classical unsolved problem of projective geometry is that of finding the dimensions of
all the (higher) secant varieties of the Segre embeddings of an arbitrary product of projective
spaces. An important subsidiary problem is that of finding the smallest integert for which the
secant variety of projectivet-spaces fills the ambient projective space.

In this paper we give a new approach to these problems. The crux of our method is the
translation of a well-known lemma of Terracini into a question concerning the Hilbert function
of “fat points” in a multiprojective space. Our approach gives much new information on the
classical problem even in the case of three factors (a case also studied in the area of Algebraic
Complexity Theory).
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0. Introduction

The problem of how to minimally represent certain kinds of tensors as a sum
of tensors of a prescribed type (the case of decomposable tensors is what we will
consider here) is a problem with a long history (e.g. see [5,10,15,23,28,31]; also [17]
for a computational point of view and [11] in the symmetric case). Knowledge of
this subject is quite scattered and suffers a bit from the fact that the same type of
problem is considered in different areas using different language. We have tried, in
this paper, to cite the references from the different areas that we could find.

All of these problems can be considered in the following setting: letV1, . . . , Vt
be finite dimensional vector spaces over the fieldk (we will always assume that char
k = 0 and thatk is algebraically closed) and let

V = V ∗
1 ⊗ · · · ⊗ V ∗

t � (V1 ⊗ · · · ⊗ Vt )∗.
If T ∈ V one can ask: What is the length of the minimal representation ofT as a

sum of decomposable tensors? (Recall thatT is said to bedecomposableif we can
find vectorsv∗

i ∈ V ∗
i such thatT = v∗

1 ⊗ · · · ⊗ v∗
t .)

The answer to this question is usually referred to as thetensor rankof T . More-
over, sinceV is a finite dimensional vector space of dimension

∏t
i=1(dimk Vi), which

has a basis of decomposable tensors, it is quite trivial to see that everyT ∈ V is the
sum of decomposable tensors (see also Section 1).

It is natural, then, to ask the following three questions:
(1) What is the least integerD(V) such thateverytensor inV has tensor rank�

D(V)?
(2) What is the least integerE(V) such that there is a dense subsetS ⊂ V (dense

in the Zariski topology) so that every tensor inS has tensor rank� E(V) (this
is called thetypical rankof V in [5] and theessential rankof V in [10])?

(3) Given an integerr such that 0< r < E(V), what is the dimension of the closure
(using the Zariski topology) of the set of all tensors of tensor rank� r?

Our main focus in this paper is on Questions (2) and (3). It is well known that
answering these questions is equivalent to solving the problem of determining the
dimensions of certain secant varieties to Segre varieties (e.g. see [16] for the case
t = 2, where everything is well known, or [5] where the higher secant varieties to
Segre varieties are discussed for more than 2 factors). The study of higher secant
varieties is a very classical subject in Algebraic Geometry, e.g. see [24] or [29],
which in recent times, especially after the outstanding work of Zak [32] has received
renewed interest, see e.g. [1,6,9,22].

As we mentioned above, Questions (2) and (3) have been considered in several
contexts. In the context of Algebraic Complexity Theory (see e.g. [5], especially
Chapter 20 and the references there) there are many results in the caset = 3 (see our
Section 3).

On the other hand, in the context of Representation Theory the emphasis is on
Question (3) (for anyt) and related problems, such as the singularities of the closure,
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desingularization, minimal resolution of defining ideal (e.g., see [25]). The Rep-
resentation Theory approach (at least from the point of view of the higher secant
varieties) appears nowhere in the literature and appears to be able to cover in an easy
way a very limited, but interesting, number of cases.

Within the context of Algebraic Coding Theory, the emphasis is on Question (2).
The results so far from Algebraic Coding Theory show that this approach covers a
very limited, but again very interesting, set of cases (see our Section 2).

Our approach is different from all of those above and is inspired by the work of
Iarrobino–Kanev [19] and Alexander–Hirschowitz [2] who treated a similar problem
which is related to the higher secant varieties to Veronese Varieties.

Using Terracini’s Lemma (or the method of Macaulay’s Inverse Systems, also
classically known, mainly in the case of symmetric tensors, asapolarity, see e.g. [30]
or [11]), we can convert questions about secant varieties into questions concerning
the calculation of a specific value of the Hilbert function of the ideal of a scheme of
“2-fat points” in a multiprojective space.

We solve the Hilbert function problem in several cases. Our results for the case
t = 3 cover infinitely many cases not covered by the methods of [28] and [23] with
respect to Questions (2) and (3).

Our reinterpretation of the Algebraic Coding Theory results in the language of
2-fat points allows us to extend the observations of Ehrenborg [10] about Question
(2) to (3).

As far as the representation theoretic point of view is concerned, the higher secant
varieties to Segre varieties areG = GL(V ∗

1 )× · · · ×GL(V ∗
t ) equivariant, therefore

they are, in principle, easy to determine whenV has finitely manyG-orbits. This
happens only fort � 3. Fort = 2 it happens always. Fort = 3 it happens for a very
specific family of values of the triples(n1, n2, n3), whereni + 1 = dimVi (see [21]),
more precisely for

(n1, n2, n3) ∈ {(1, 1, n), (1, 2, n)}.
This same kind of classification may sometimes be made even when there are

not finitely manyG-orbits, but a classification of all orbits is possible. These are the
so-calledtamecases. In our context the tame cases correspond to the tuples in the set{

(2, 2, 2), (1, 3, 3), (1, 1, 1, 1)
}

(see e.g. [21, Tables III, IV and I]), see also [26]. All the other cases are calledwild
and are, in principle, difficult to treat by invariant theoretic methods.

Our results properly contain the finite and tame cases: see Theorem 3.1, Example
3.2 (where all cases are wild, except the last one, which is tame), Proposition 3.7 and
Example 4.2.

We take this opportunity to warmly thank J. Weyman for his help in interpreting
the “folklore” results in this approach to the problem.

The paper is organized in the following way: after a section of preliminaries, in
Section 2 we consider schemes of 2-fat points in multiprojective spaces which are
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built up from co-ordinate points in the factor spaces. In this context the questions we
have been considering convert easily into problems about monomial ideals which,
in turn, have fascinating combinatorial interpretations. In this way we show how one
can use results from coding theory to obtain theorems about secant varieties; more-
over this kind of connection suggests problems about monomial ideals in products
of polynomial rings which were not under the “spotlight” before. The results of this
section owe an enormous debt to the work of Ehrenborg in [10]. The novelty of our
approach in this section is in the interpretation of some of Ehrenborg’s combinatorial
results in the language of monomial ideals. This reinterpretation permits us to extend
the results of Ehrenborg, which dealt with Question (2) exclusively, so as to also deal
with Question (3).

In Section 3 we consider the general (i.e. non-monomial) case. Here we give our
main results concerning Questions (2) and (3) in Theorem 3.1, Proposition 3.3 and
Proposition 3.7. The novelty of our approach is evident as we obtain in this section,
by elementary arguments, many results already in print, as well as new results.

In Section 4 we review the literature, especially with respect to the case of 3-
tensors (since that is where so much work on these Questions has been done) and
compare our results to those obtained by others.

There are several people we have consulted during the preparation of this work
whom we would like to thank: John Abbott and Ciro Ciliberto for several stimu-
lating conversations about the material of this paper; Tony Iarrobino for bringing
the work of Ehrenborg to our attention; Peter Bürgisser for making us aware of the
literature (in particular his fascinating book) on the connections between our work
and Algebraic Complexity Theory.

1. Preliminaries: secant varieties, Terracini’s Lemma

Let V1, . . . , Vt be vector spaces of dimensionsn1 + 1, . . . , nt + 1, respectively.
With no loss of generality, we assume thatn1 � n2 � · · · � nt .

LetB∗
i = {x0,i , x1,i , . . . , xni ,i} be a basis forV ∗

i , so that

B∗ = {
xj1,1 ⊗ · · · ⊗ xjt ,t | 0 � ji � ni for i = 1, . . . , t

}
is a basis forV = V ∗

1 ⊗ · · · ⊗ V ∗
t . Thus anyT ∈ V can be written

T =
∑

0�ji�ni
1�i�t

αj1,...,jt xj1,1 ⊗ · · · ⊗ xjt−1,t−1 ⊗ xjt ,t

=
∑

0�ji�ni
1�i�t−1

xj1,1 ⊗ · · · ⊗ xjt−1,t−1 ⊗ yj1,...,jt−1 (†)

with αj1,...,jt ∈ k andyj1,...,jt−1 = ∑
0�jt�nt αj1,...,jt−1,jt xjt ,t ∈ V ∗

t .
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From(†) above, we have an easy bound for the tensor rank of every vector inV:

D(V) �
t−1∏
i=1

(dimk Vi). (††)

Notice also that for anyT ∈ V and anyλ /= 0 in k, bothT andλT have the same
tensor rank. Thus it makes sense to speak of the tensor rank of an element inP(V).

Now, if T ∈ V thenT corresponds to a multilinear form (abusively also calledT )
where

T : V1 × · · · × Vt −→ k.

If we choose bases for theVi (say bases dual to theB∗
i above) and call themBi , and

write

Bi = {
x∗

0,i , . . . , x
∗
ni ,i

}
,

thenT is completely described by its values ont-tuples of basis vectors, i.e.T is
completely determined by the values

T
(
x∗
j1,1, . . . , x

∗
jt ,t

) = αj1,...,jt .
Those values can be placed in at-dimensional array (or hypermatrix) of size

(n1 + 1)× · · · × (nt + 1) which then, in turn, completely describesT . So, after
bases are chosen, we have a 1–1 correspondence betweent-dimensional hyperma-
trices of size(n1 + 1)× · · · × (nt + 1) and tensors inV. Such hypermatrices are
obviously parameterized, up to multiplication by a scalar, by points ofP

N , N =∏t
i=1(ni + 1)− 1.
LetSj =k[x0,j , . . . , xnj ,j ], j=1, . . . , t , andA = k[x0,1, . . . , xn1,1, . . . , x0,t , . . . ,

xnt ,t ]. We will consider the usual gradation on theSj , i.e. asN-graded rings. This
makesA into anN

t -graded ring in the obvious way.
Clearly eachV ∗

i can be identified withSi1 andV with A1 where1 = (1, . . . ,1).
With this point of view, we can consider the Segre variety,Vn ⊆ P

N , n = (n1, . . . ,

nt ), as the image of the embedding

νn : (Pn1)∗ × · · · × (Pnt )∗ = PS1
1 × · · · × PSt1 → PA1,

where

νn(L1, . . . , Lt ) = L1 ⊗ L2 ⊗ · · · ⊗ Lt ∀Lj ∈ Sj1, j = 1, . . . , t.

Hence we have (e.g. see [16]) thatVn exactly parameterizes the decomposable
tensors inPN .

Now let us consider the notion of secant variety.

Definition 1.1. LetX ⊆ P
N be a closed irreducible projective variety; the(s − 1)th

higher secant varietyof X is the closure of the union of all linear spaces spanned by
s points ofX.
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These varieties have been denoted both bySecs−1(X) andXs . We will use the
second (more compact) notation.

There is an “expected dimension” for Xs , i.e. if dimX = n, one “expects” that

dimXs = min{N, sn+ s − 1},
where the numbersn+ s − 1 corresponds to∞sn choices ofs points onX (which
is n-dimensional), plus∞s−1 choices of a point on thePs−1 spanned by thes points.
When this number is too big, we should just get thatXs = P

N .
Since it is not always the case thatXs has the “expected dimension”, whenever

dimXs < min{N, sn+ s − 1},
thenXs is said to bedefective. A measure of this “defectiveness” is given by the
quantity

min{N, sn+ s − 1} − dimXs.

Let us go back to the Segre varietiesVn ⊂ P
N . Since Segre varieties parameterize

the decomposable tensors inP
N , their secant varietiesV sn are exactly the closure of

the locus of tensors of tensor ranks. Hence we have:

Fact. A description of the numberE(V) for a k-vector spaceV = V ∗
1 ⊗ · · · ⊗ V ∗

t ,
with dimVi = ni + 1, given in terms of secant varieties to Segre varieties, is

E = E(V) = min
{
s |V sn = P

N
}
.

By a slight abuse of notation we will sometimes write

E(V) = E(Vn) = E(Pn1 × · · · × P
nt ).

Notice that, from(††), for nt � m = ∏t−1
i=1(ni + 1)− 1, we have

E(Pn1 × · · · × P
nt ) = E(Pn1 × · · · × P

nt−1 × P
m). (‡)

A classical result about secant varieties is Terracini’s Lemma (see [29], or, e.g.
[1]), which we give here in the following form:

Terracini’s Lemma. LetX ⊂ P
N be a non-singular variety. Then

TP (X
s) = 〈

TP1(X), . . . , TPs (X)
〉

hence

dimXs = dim
〈
TP1(X), . . . , TPs (X)

〉
,

whereP1, . . . , Ps are s generic points onX, P is generic in〈P1, . . . , Ps〉 andTPi (X)
is the projectivized tangent space of X inP

N at Pi.

Notice that, if(X,L) is an integral, non-singular, polarized scheme, andL em-
bedsX into P

N = PH 0(X,L)∗, we can view the elements ofH 0(X,L) as hy-
perplanes inPN . Those hyperplanes which contains a spaceTPi (X) correspond to



M.V. Catalisano et al. / Linear Algebra and its Applications 355 (2002) 263–285 269

elements inH 0(X,I2
Pi
(L)), since they intersectX in a subscheme containing the

first infinitesimal neighbourhood ofPi .
Hence there will be a bijection between hyperplanes of the spaceP

N containing
the subspace〈TP1(X), . . . , TPs (X)〉 and the elements ofH 0(X,IZ(L)), whereZ is
the scheme defined by the ideal sheafIZ = I2

P1
∩ · · · ∩ I2

Ps
⊂ OX. This 0-scheme

is what we will call a scheme ofs generic 2-fat pointsin X.
By what we have just observed, we get the following consequence of Terracini’s

Lemma:

Corollary 1.2. LetX,L, be as above. Then

dimXs = dim
〈
TP1(X), . . . , TPs (X)

〉 = N − dimH 0(X,IZ(L)),

whereZ is a subscheme of s generic2-fat points inX.

Now, applying Corollary 1.2 to the case of the Segre varieties

(X,L) = (
P
n1 × · · · × P

nt ,OX(1, . . . ,1)
)
,

we get that dimV sn = N − dimH 0(X,IZ(L)).
We observe also that, instead of using Terracini’s Lemma, we can derive the rela-

tion between dimV sn andH(Z, 1) via Macaulay’s theory of “inverse systems” (see
[13,19]). Our reason for mentioning this alternative view is that we were able to use
it in [7] to speak about secant varieties in a context where Terracini’s Lemma was
not useful.

Lemma 1.3. The following three numbers are equal:
(1) the dimension of the closure of the locus of tensors of tensor rank� s in P

N ;
(2) the dimension of the varietyV sn ⊂ P

N ;
(3) the valueH(Z, 1)− 1, whereZ ⊂ X = P

n1 × · · · × P
nt is a set ofs generic

2-fat points inX, and where∀j ∈ N
t , H(Z, j) is the Hilbert function ofZ, i.e.

H(Z, j) = dimAj − dimH 0(X,IZ(j)).

Proof. The equality between (1) and (2) is well known (see Introduction). We now
give our alternate proof for the equality between (2) and (3).

Recall that we are consideringVn as given by the embedding

νn : PS1
1 × · · · × PSt1 → PA1,

where

νn(L1, . . . , Lt )= L1 ⊗ L2 ⊗ · · · ⊗ Lt
= L1L2 · · ·Lt ∀Lj ∈ Sj1, j = 1, . . . , t.

Recall also that we are identifyingS1
1 ⊗ · · · ⊗ St1 with A1.
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With this point of view it is not hard to determineTL1···Lt (Vn), i.e the projectivized
tangent space toVn at the pointL1 · · ·Lt . We will first pass to the affine (so we are
viewingνn as a mapS1

1 × · · · × St1 → A1) and consider the differential map

dνn : T(L1,...,Lt )

(
S1

1 × · · · × St1
) → TL1···Lt (A1).

If we choose a direction through(L1, . . . , Lt ) in S1
1 × · · · × St1, say(L1, . . . , Lt )+

λ(M1, . . . ,Mt ), we get that the image of the corresponding tangent vector inTL1···Lt
(A1) is given by

lim
λ→0

d

dλ

(
νn((L1, . . . , Lt )+ λ(M1, . . . ,Mt ))

)
= lim
λ→0

d

dλ

(
(L1 + λM1) · · · (Lt + λMt)

)
= lim
λ→0

[
M1(L2 + λM2) · · · (Lt + λMt)+ · · ·
+ (L1 + λM1)(L2 + λM2) · · · (Lt−1 + λMT−1)Mt

]
=

t∑
j=1

L1 · · ·Lj−1MjLj+1 · · ·Lt .

Then, sinceVn is smooth, we have an isomorphism

dνn : S1
1 × · · · × St1 → TL1···Lt

(
νn(S

1
1 × · · · × St1)

)
,

given by(M1, . . . ,Mt )→ ∑t
j=1L1 · · ·MjLj+1 · · ·Lt , where we view

TL1···Lt
(
νn(S

1
1 × · · · × St1)

)
�


t∑
j=1

L1 . . .MjLj+1 . . . Lt

∣∣∣∣∣∣ Mj ∈ Sj1, j = 1, . . . , t

 ,
which is the subspace ofA1 given by the multidegree1 part of the ideal generated
by {

L1 · · ·Lj−1MjLj+1 · · ·Lt
}
j=1,...,t .

Note that this subspace ofA1 has dimension(n1 + 1)+ · · · + (nt + 1)− (t −
1) = ∑t

j=1 nj + 1 (since whenMj = Lj we getL1 · · ·Lt in all cases), i.e. the pro-
jective dimension isn1 + · · · + nt , as expected.

We will consider this vector space in more detail: as eachMj varies inSj1, we can
write it as

W1 = 〈
S1

1(L2 · · ·Lt); . . . ; St1(L1 · · ·Lt−1)
〉 = Im(dνn) ⊂ A1.
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LetB = k[y0,1, . . . , yn1,1; . . . ; y0,t , . . . , ynt ,t ] � A, and consider the action ofB
onA defined by (see [13] or [19] for details in theN-graded case):

ya,j ◦ xb,k = (�/�xa,j )(xb,k),
where we use the standard properties of differentiation to extend this action to all of

Ba × Ai → Ai−a.

In this way, if I is a multihomogeneous ideal inB, we can define theinverse
systemof I , denotedI−1, as theB-submodule (multigraded) ofA consisting of all
elements ofA annihilated byI (note thatI−1 is almost never an ideal inA).

If L1, . . . , Lt are generic, we can choose coordinates withLj = x0,j , so that

W1 = 〈
S1

1(x0,2 · · · x0,t ); . . . ; St1(x0,1 · · · x0,t−1)
〉
.

Now consider the spaceI1 = W⊥
1 ⊂ B1. It is easy to check that if we put

I = (y1,1, y2,1, . . . , yn1,1; . . . .; y1,t , y2,t , . . . , ynt ,t )
2,

thenW1 = (I−1)1.
Note thatI represents a schemeZ ⊆ P

n1 × · · · × P
nt given by the second infini-

tesimal neighbourhood of the point(1 : 0 : · · · : 0)× · · · × (1 : 0 : · · · : 0).
We will call such a 0-dimensional scheme a 2-fat point in P

n1 × · · · × P
nt .

We have that dimW1 + dimI1 = dimB1 = N + 1, hence dimW1 = H(Z; 1),
whereH(Z; •) = dimk B•/(IZ)• is the (multi)-Hilbert function ofZ. Note that this
shows thatZ is a degreen1 + n2 + · · · + nt + 1 structure on(1 : 0 : · · · : 0)× · · · ×
(1 : 0 : · · · : 0).

If we want to considerV sn , we can study the map

φs : (S1
1 × · · · × St1)s → V s1 ,

where

φs(L1,1, . . . , Lt,1; . . . ;L1,s , . . . , Lt,s)

= (L1,1 · · ·Lt,1 + L1,2 · · ·Lt,2 + · · · + L1,s · · ·Lt,s).
For a generic choice ofL1,1, . . . , Lt,s , the dimension of im(dφs) will tell us the
dimension ofV sn .

With the same procedure as before, we get the (affine) space

im(dφs)∼=W1
1 +W2

1 + · · · +Ws
1 = W1.

whereWi
1 = 〈S1

1(L2,i · · ·Lt,i); . . . ; St1(L1,i · · ·Lt−1,i )〉.
We know thatWi

1 = (I−1
i )1, whereIi is the ideal of a 2-fat point inPn1 × · · · ×

P
nt . Let Ii = p2

i . Then

W1 = (p2
1)

−1
1 + · · · + (p2

s )
−1
1 = (p2

1 ∩ · · · ∩ p2
s )

−1
1 = (I−1)1
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is the multidegree1 part of I−1 = (p2
1 ∩ · · · ∩ p2

s )
−1, wherepi , i = 1, . . . , s, are

the multihomogeneous ideals ofs generic pointsPi in P
n1 × · · · × P

nt , i.e. I is the
ideal of a schemeZ which is the union ofs 2-fat points.

We have that dimW1 + dimI1 = dimB1, and so dimW1 = H(Z; 1), and we get
that the problem of determining dimV sn amounts to determiningH(Z; 1). This, then,
gives the equality between (2) and (3) above.�

The expected value forH(Z, 1) is min{N + 1, s(n1 + · · · + nt + 1)} (if all the
p2
i impose independent conditions to hypersurfaces of multidegree1); so we expect

this value for dimW1. This agrees with the expected dimension forV sn ⊂ P
N :

expdimV sn = min
{
N, s(n1 + · · · + nt + 1)− 1

}
.

In particular, the typical rankE = E(V) (for V above) is the smallest value of
s for which there are no(1, . . . ,1)-forms in the ideal ofs generic 2-fat points in
P
n1 × · · · × P

nt .

Remark 1.4. Since degZ = s(n1 + · · · + nt + 1), then dimV sn = H(Z, 1)− 1 �
s(n1 + · · · + nt + 1)− 1. A lower bound forE is then easily given by

E �
∏t
i=1(ni + 1)

n1 + · · · + nt + 1
.

Remark 1.5. We can notice that, proceeding in an analogous way, we find that
H(Z, j)− 1, for an arbitrary multiindexj = (j1, . . . , jt ) ∈ N

t , represents the dimen-
sion ofXs , whereX is given by the embedding

P
n1 × · · · × P

nt → P
N1 × · · · × P

Nt → P
Nj ,

where the first map is given by the product of the (Veronese)ji th embeddingsPni →
P
Ni , and the second is the Segre embedding.

2. On the dimension of secant varieties to Segre varieties: the monomial case

We will give here some results about the dimension of the varietiesV sn (notation
as in Section 1) for some particular values ofs.

We saw above that questions about dimV sn can be translated into questions about
the Hilbert function of 2-fat points. We now investigate the Hilbert function of a
special family of 2-fat points, namely those fat points whose support is a product of
co-ordinate points. We will see that even these special points can give us interesting
results about secant varieties.

In order to discuss products of co-ordinate points, we introduce some notation.
Let

J = {
r = (r1, . . . , rt ) | 0 � ri � ni

}
.
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A co-ordinate pointof P
n1 × · · · × P

nt is a pointPr = Pr1 × · · · × Prt , where
Prj is therj th co-ordinate point ofPnj .

Definition. Givenr1 = (r1,1, . . . , rt,1) andr2 = (r1,2, . . . , rt,2) in J, we say that the
Hamming distancebetweenr1 andr2 is l if (r1,1 − r1,2, . . . , rt,1 − rt,2) has exactly
l non-zero entries.

Proposition 2.1. LetPr1, . . . , Pr s be a set of co-ordinate points inPn1 × · · · × P
nt .

Letpi be the ideal ofPr i , and letZ be the scheme defined by
⋂s
i=1 p2

i . Then

H(Z, 1) = ∣∣{r ∈ J | r has Hamming distance� 1

from at least one ofr1, . . . , r s
}∣∣.

Proof. Let us start withs = 1. ConsiderPr = Pr1 × · · · × Prt , wherePrj ∈ P
nj is

therj th coordinate point inPnj , i.e.Prj = (0 : · · · : 0 : 1 : 0 : · · · : 0), with 1 in the
rj th position.

Then I2
Pr

= (y0,1, . . . , ŷr1,1, . . . , yn1,1; . . . ; y0,t , . . . , ŷrt ,t , . . . , ynt ,t )
2. Let Z be

the scheme defined by this ideal.
We have thatIZ is a monomial ideal, and so computingH(Z, 1) amounts to

counting the monomials of degree(1, . . . ,1) which are not inIZ.
Now it is quite immediate to see that a monomialyj /∈ I2

Pr
if and only if at most

one entry inj = (j1, . . . , jt ) differs from the entries inr = (r1, . . . , rt ), which is
exactly what the statement of the theorem says.

Whens > 1, letR = {r1, . . . , r s}, andIZ = ⋂
r∈R I2

Pr
. We have that a monomial

yj /∈ IZ if and only if there is at least oner ∈ R such thatyj /∈ I2
Pr

, and the statement
immediately follows from what we have already seen fors = 1. �

There is a simple way to visualize this result, by “playing with rooks on at-
dimensional chessboard”. To be more precise, if we defineAr = {0, 1, . . . , r}, our
“chessboard” will be the setA = An1 × · · · × Ant . We will associate to the setX =
{Pr1, . . . , Pr s } of co-ordinate points inPn1 × · · · × P

nt , the set of placesR={r1, . . . ,

r s} in A, which we will call therook setassociated toX (see also [10]).

Definition. Let A be as above, and letR ⊂ A. We define the subsetgenerated by
R (and write〈R〉) to be the set of all the elements inA that can be obtained by
changing at most one coordinate of an element ofR (these are the places inA which
are “attacked” by rooks situated inR).

Proposition 2.1 above can now be reformulated as follows:

Proposition 2.1a. Let X = {Pr1, . . . , Pr s } be a set of co-ordinate points inPn1 ×
· · · × P

nt , and letR be the rook set associated toX. LetZ be as in Proposition2.1.
ThenH(Z, 1) = |〈R〉|.
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Now we want to show that when a rook setR has nice properties, Proposition
2.1a allows us to say something useful about the secant varietiesV sn .

Definitions
(1) A rook setR is said to beperfectif every element in〈R〉 comes from exactly

one element ofR.
(2) A rook setR is arook coveringif 〈R〉 = A.
(3) A rook setR is aperfect rook coveringif both (1) and (2) hold forR.

It immediately follows from Proposition 2.1a that:

Corollary 2.2. LetR ⊆ A be a rook set with|R| = s. Then:
(1) If R is a rook covering, thenE(Pn1 × · · · × P

nt ) � s.
(2) If R is a perfect rook set, thendimV s

′
n = s′(n1 + · · · + nt + 1)− 1 for all s′

� s.
(3) If R is a perfect rook covering, then we haveE = s (soV sn = P

N).

Recall our convention thatn1 � n2 � · · · � nt . We want to prove the following:

Proposition 2.3. LetV sn ⊂ P
N be defined as in Section1. Then:

(i) if t = 2, ands � n1 + 1, thendimV sn = N;
(ii) for t = 2, ands � n1, dimV sn = s(n1 + n2 + 1)− s2 + s − 1;

(iii) for t � 3 ands � n1 + 1, dimV sn = s(n1 + n2 + · · · + nt + 1)− 1.

Proof. Cases (i) and (ii) are actually well known since they correspond to ordinary
matrices. We can easily prove them by observing that fors = n1 + 1 there is always
a trivial rook covering (the main diagonal) with|R| = s, so we get (i); while for
s � n1 uses places on the main diagonal to formR: then there ares(s − 1) positions
that are covered by two of them, so they generate a set made bys(n1 + · · · + nt +
1)− s(s − 1) elements, and we get (ii) from Proposition 2.1a (notice that every set
of s points can viewed as a set of co-ordinate points in this case).

Whent � 3 ands � n1 + 1, a perfect rook set ofs elements can always be ob-
tained takings places on the main diagonal, so, by Corollary 2.2, we get case (iii).
�

Whenn1 + 1 = n2 + 1 = · · · = nt + 1 = q, the problems about rook sets have
an interpretation in coding theory (e.g. see [10,27]). If we consider an alphabet made
of q letters and words of lengtht , then a code can be obtained by taking as its words
the elements of a rook set inA = Atq−1. In this setting a perfect rook setR with
|R| = s corresponds to what is called a “1-correcting code” ofs elements, denoted
as “(t, s, 3)-code”, i.e. a setR ⊂ A such that the Hamming distance between any
two words inR is � 3.
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To determine the maximum sizes = Aq(t, 3) for which there is a(t, s, 3)-code in
A = Atq is what is calledthe main coding theory problem. Many bounds are known
for Aq(t, 3), but even forq = 2 there is no general formula computing this value; a
table of values forA2(t, 3) can be found in [27, p. 173] fort � 16.

Perfect rook coverings correspond to what are calledperfect codes, and such
codes are quite rare: the only known ones of type(t, s, 3) are theHamming codes,
which are of type(t = (qk − 1)/(q − 1), s = qt−k, 3), whereq is a prime power and
k � 2 (a computer check showed that forq � 100,t � 1000, there are no others, see
[27]).

Let us see how we may apply these results from coding theory to our problems.

Example 2.4. Let Vn be the Segre embedding

P
1 × · · · × P

1︸ ︷︷ ︸
t

→ P
2t−1.

Then for t = 2k − 1, k � 2, we get dimV sn = s(t + 1)− 1 = 2ks − 1 for all 2 �
s � E = 22k−k−1 andV En = P

2t−1.

The example comes from the Hamming codes withq = 2 andt = 2k − 1.

Example 2.5. LetV2 be the Segre embeddingP
2 × P

2 × P
2 × P

2 → P
80. Then we

have dimV s2 = 9s − 1 for 2 � s � 9 andV 9
2 = P

80.

The example comes from using the Hamming code withq = 3 andk = 2.

Example 2.6. Let V(3,3,11) be the Segre embeddingP3 × P
3 × P

11 → P
191. Then

dimV 4
(3,3,11) = 4(3 + 3 + 11+ 1)− 1 = 71 (the expected value, from Proposition

2.3(iii)) but (as we will see in Theorem 3.1(2))E = 12 (not the expected value). So,
somewhere between the secant 3 spaces and the secant 11 spaces, something goes
wrong!

As we anticipated, this kind of procedure is useful only when we can reduce
to the case of co-ordinate points (from the “2-fat points” point of view); in other
cases, when we have to consider larger values ofs, other ways to attack the problem
have to be found (e.g. see Proposition 3.3). This is what we do in the following
section.

3. Higher secant varieties to Segre varieties (the general case)

As we pointed out in Section 2, the dimension ofV sn cannot be studied in all cases
using rook coverings (i.e. monomial ideals of 2-fat points).
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Our main result about typical rank is the following theorem.
Let us establish the notation for this theorem. LetV = V ∗

1 ⊗ · · · ⊗ V ∗
t ⊗W ∗,

where dimVi = ni + 1, i = 1, . . . , t , and dimW = n+ 1 with 1� n1 � n2 � · · · �
nt � n.

Theorem 3.1. The typical rankE = E(V) is:
(1) for n >

∏t
i=1(ni + 1)− 1, exactlyE = ∏t

i=1(ni + 1);
(2) for

∏t
i=1(ni + 1)− ∑t

i=1 ni − 1 � n�
∏t
i=1(ni + 1)− 1, exactlyE = n+ 1;

(3) while fornt � n �
∏t
i=1(ni + 1)−∑t

i=1 ni − 1, we have

n+ 1 � E �
t∏
i=1

(ni + 1)−
t∑
i=1

ni, E � (n+ 1)
∏t
i=1(ni + 1)

n+∑t
i=1 ni + 1

.

Proof. (1) This is obvious from(‡), Section 1 and (2).
(2) LetN= (n+ 1)

∏t
i=1(ni + 1)− 1,m = ∏t

i=1(ni + 1)− 1,n = (n1, . . . , nt )

and letVn ⊆ P
m be the Segre variety image ofP

n1 × · · · × P
nt . We have the follow-

ing embeddings:

(Pn1 × · · · × P
nt )× P

n → Vn × P
n → P

m × P
n → P

N

(where the composite map is also the Segre embedding).
Sincen�m,E(Pm× P

n)= n+ 1, and it follows thatE(Pn1 × · · · × P
nt ×P

n)�
n+ 1.

Now consider a generic pointP ∈ P
N ; we can write

P = A1 × (1 : 0 : · · · : 0)+ · · · + An+1 × (0 : · · · : 0 : 1),

whereA1, . . . , An+1 can be viewed asn+ 1 generic points inPm (they are the “t-
dimensional slices” of the tensor).

Then-dimensional linear spaceL generated by theAi ’s in P
m will intersectVn,

and the dimension of the intersection will be

n+
t∑
i=1

ni −
t∏
i=1

(ni + 1)+ 1 � 0.

Moreover, because of the genericity ofL, and sinceVn is integral and non-degen-
erate, the intersectionL ∩ Vn will contain enough distinct points, sayP1,1 × · · · ×
P1,t ; . . . ;Pn+1,1 × · · · × Pn+1,t with Pj,i ∈ P

ni , i = 1, . . . , t , in order to span the
linear spaceL = 〈A1, . . . , An+1〉.

LetAk = ∑n+1
j=1 λk,jPj,1 × · · · × Pj,t . Then we get

P = A1 × (1 : 0 : · · · : 0)+ · · · + An+1 × (0 : · · · : 0 : 1)

=
n+1∑
j=1

λ1,jPj,1 × · · · × Pj,t
× (1 : 0 : · · · : 0)+ · · ·
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+
n+1∑
j=1

λn+1,jPj,1 × · · · × Pj,t
× (0 : · · · : 0 : 1)

= P1,1 × · · · × P1,t × (λ1,1 : · · · : λn+1,1)+ · · ·
+Pn+1,1 × · · · × Pn+1,t × (λ1,n+1 : · · · : λn+1,n+1)

which expressesP as the sum ofn+ 1 decomposable tensors, as required.
(3) The bound

E � (n+ 1)
∏t
i=1(ni + 1)

n+∑t
i=1 ni + 1

is obvious (see Remark 1.4), while the boundE � n+ 1 follows from the argument
at the beginning of (2).

To prove that

E �
t∏
i=1

(ni + 1)−
t∑
i=1

ni,

we proceed as in (2), but we do not work on the spaceL = 〈A1, . . . , An+1〉 (because
nowL ∩ Vn = ∅): but rather, we consider a linear spaceL′ ⊆ P

m, with

dimL′ =
t∏
i=1

(ni + 1)−
(

t∑
i=1

ni

)
− 1 and L′ ⊇ L.

We haveL′ ∩ Vn /= ∅, and we can spanL′, and henceL, with

t∏
i=1

(ni + 1)−
t∑
i=1

ni

points inVn. We then continue as in 2).�

Example 3.2. Consider the case(n1, n2, n3, n) = (1, 1, 1, n):
(a) for tensors inP1 × P

1 × P
1 × P

n, with n � 7, we haveE = 8;
(b) for tensors inP1 × P

1 × P
1 × P

n, with 4 � n � 7, we haveE = n+ 1;
(c) for tensors inP1 × P

1 × P
1 × P

3, we haveE = 5;
(d) for tensors inP1 × P

1 × P
1 × P

2, we haveE = 4;
(e) for tensors inP1 × P

1 × P
1 × P

1, we haveE = 4.

Cases (a)–(c) come directly from Theorem 3.1. Case (d) is dealt with by a direct
computation using CoCoA [8]. As for (e), by Theorem 3.1(3) we getE � 4, and it
is not hard to find a (non-perfect) rook covering of a 2× 2 × 2 × 2 hypercube made
with four rooks:
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Proposition 3.3. Let V be the Segre embedding ofP
n1 × · · · × P

nt × P
n and lets

be such that
t∏
i=1

(ni + 1)−
(

t∑
i=1

ni

)
+ 1 � s � min

{
n,

t∏
i=1

(ni + 1)− 1

}
.

ThenV s is defective.

Proof. The expected dimension forV s is s(1 + n+∑t
i=1 ni)− 1. Thus the exp-

ected number of independent forms of degree(1, 1, . . . , 1) in the ideal ofs generic
2-fat points inP

n1 × · · · × P
nt × P

n is

(n+ 1)
t∏
i=1

(ni + 1)− s
(

1 + n+
t∑
i=1

ni

)
.

On the other hand, there will be(
∏t
i=1(ni + 1)− s) forms of degree(1, . . . ,1)

in P
n1 × · · · × P

nt passing throughs generic points, and(n+ 1 − s) linear forms
in P

n passing throughs generic points there, hence (just making products) we can
find at least(

∏t
i=1(ni + 1)− s)(n+ 1 − s) forms passing doubly throughs ge-

neric points inP
n1 × · · · × P

nt × P
n (this number is> 1 by our bound ons). So,

whenever

(n+ 1)
t∏
i=1

(ni + 1)− s
(

1 + n+
t∑
i=1

ni

)
<

(
t∏
i=1

(ni + 1)− s
)
(n+ 1 − s),

we have thatV s is defective. A straightforward computation shows that the above
inequality amounts tos �

∏t
i=1(ni + 1)− (∑t

i=1 ni)+ 1, as required. �

Notice that, in the context of Proposition 3.3, in general we do not know how
defectiveV s is. Let us check what happens in an example:
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Example 3.4. Considern = (1, 1, 3), i.e. P
1 × P

1 × P
3 → P

15. We haveE = 4
(use Theorem 3.1), whileV 2

n has the right dimension by Proposition 2.3(iii).
Proposition 3.3 gives us thatV 3

n is defective; more precisely that dimV 3
n �

15− 1 = 14, because there is at least one form in the ideal of 3 generic 2-fat
points in P

1 × P
1 × P

3, while the expected dimension ofV 3
n should be min{17,

15} = 15.
In this case it is not too hard to check that we actually have dimV 3

n = 14 (the
three pointsP1 = (1 : 0)× (1 : 0)× (1 : 0 : 0 : 0), P2 = (1 : 0)× (0 : 1)× (0 : 1 :
0 : 0), P3 = (0 : 1)× (0 : 1)× (0 : 0 : 0 : 1) have exactly one (1,1,1)-form passing
through them).

From the proof of Proposition 3.3 we can immediately deduce the following:

Corollary 3.5. Let s, n1, . . . , nt , n be integers which satisfy the bounds in Proposi-
tion 3.3. Then every rook setR ⊂ A = An1 × · · · × Ant × An with |R| = s is such
that

|A− 〈R〉| �
(

t∏
i=1

(ni + 1)− s
)
(n+ 1 − s).

The following result will give us a bound in order to have thatV s has the expected
dimension. We first give a useful lemma.

Lemma 3.6. Let Z = 2P1 + · · · + 2Pm + Pm+1 + · · · + Pm+r ⊂ P
n1 × · · · × P

nt

be the scheme given by the union ofm 2-fat points andr simple points, with support
on m+ r generic pointsPi. Let t � 2, n1 + · · · + nt � 2m+ r, and n1 + · · · +
nt−1 � m.

Then there exists a formf /= 0 in I (Z)1.

Proof. Let

Pi = Pi,1 × · · · × Pi,t , Pi,j ∈ P
nj .

We work by induction ont . Let t = 2. For n1 � m+ r, let {g1 = 0} ⊂ P
n1 be

a hyperplane throughP1,1, . . . , Pn1,1. Since n1 � m, and n1 + n2 � 2m+ r,
we can find a hyperplane{g2 = 0} ⊂ P

n2 through P1,2, . . . , Pm,2, Pn1+1,2, . . . ,

Pm+r,2. For n1 > m+ r, since n2 � n1, let {g1 = 0} ⊂ P
n1 be a hyperplane

throughP1,1, . . . , Pm+r,1 and {g2 = 0} ⊂ P
n2 be a hyperplane throughP1,2, . . . ,

Pm+r,2.
Theng1g2 is the required form.
For t > 2, let {gt = 0} ⊂ P

nt be a hyperplane throughP1,t , . . . , Pnt ,t . By the in-
ductive hypothesis, there exists a formg∈ I (Z∗)⊂k[y0,1, . . . , yn1,1; . . . ; y0,t−1, . . . ,

ynt−1,t−1] of multidegree (1,. . . ,1), whereZ∗ is the projection of
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Z − (P1 + · · · + Pnt )

=

P1 + · · · + Pnt + 2Pnt+1 + · · ·

+ 2Pm + Pm+1 + · · · + Pm+r for nt < m,
P1 + · · · + Pm + Pnt+1 + · · · + Pm+r for nt � m

into P
n1 × · · · × P

nt−1.
Thenggt is the required form. �

Now we can prove the following proposition.

Proposition 3.7. Let n = (n1, . . . , nt ) and lett � 3,[
n1 + n2 + · · · + nt + 1

2

]
� max{nt + 1, s}.

ThendimV sn = s(n1 + n2 + · · · + nt + 1)− 1.

Proof. By induction ons. For s � n1 + 1, the result follows from Proposition 2.3.
Let s > n1 + 1. As in the lemma above, let

Pi = Pi,1 × · · · × Pi,t , Pi,j ∈ P
nj , 1 � i � s, 1 � j � t.

For s � nj + 1, we may assume that

P1 = P1,1 × · · · × P1,j × · · · × P1,t

= P1,1 × · · · × (1 : 0 : · · · : 0)× · · · × P1,t ,

...

Pnj+1 = Pnj+1,1 × · · · × Pnj+1,j × · · · × Pt,nj+1

= Pnj+1,1 × · · · × (0 : · · · : 0 : 1)× · · · × Pnj+1,t .

For s < nj + 1, we may assume that

P1 = P1,1 × · · · × P1,j × · · · × P1,t

= P1,1 × · · · × (1 : 0 : · · · : 0)× · · · × P1,t ,

...

Ps = Ps,1 × · · · × Ps,j × · · · × Ps.t
= Ps,1 × · · · × (0 : · · · : 0 : 1 : 0 : · · ·)× · · · × Ps,t .

Now,y1,j , . . . , ynj ,j ∈I (P1,j )⊂k[y0,j , . . . , ynj ,j ] are linearly independent forms
(i.e. {y1,j = 0}, . . . , {ynj ,j = 0} ⊂ P

nj are independent hyperplanes throughP1,j =
(1, 0, . . . , 0) in P

nj ).
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For any 2� l � nj + 1, letZ′ be the projection of the scheme

(2P2 + · · · + 2Ps)− (P2 + · · · + P̂l + · · · + Pmin(s,nj+1))

=


P2 + · · · + Pl−1 + 2Pl + Pl+1 + · · ·

+Pnj+1 + 2Pnj+2 + · · · + 2Ps for s � nj + 1,
P2 + · · · + Pl−1 + 2Pl + Pl+1 + · · · + Ps for l � s < nj + 1,
P2 + · · · + Ps for s < l � nj + 1

onP
n1 × · · · × ˆP

nj × · · · × P
nt . Now apply Lemma 3.6 toZ′. We have

m =

s − nj for s � nj + 1,
1 for l � s < nj + 1,
0 for s < l � nj + 1,

r =

nj − 1 for s � nj + 1,
s − 2 for l � s < nj + 1,
s − 1 for s < l � nj + 1.

Hence

2m+ r =


2s − nj − 1 for s � nj + 1,
s for l � s < nj + 1,
s − 1 for s < l � nj + 1,

and from[
n1 + n2 + · · · + nt + 1

2

]
� max{nt + 1, s},

it follows, by an easy computation, that

2m+ r � n1 + · · · + n̂j + · · · + nt
and

m �
{
n1 + · · · + n̂j + · · · + nt−1 for j � t − 1,
n1 + · · · + nt−2 for j = t.

So, by Lemma 3.6, there exists a formfl ∈ I (Z′) of multidegree(1, . . . ,1) and,
sinceP1 is generic, we may assume thatfl /∈ I (P1,j ). Then

y1,j f2, . . . , ynj ,j fnj+1 ∈ A1, 1 � j � t,
are n1 + · · · + nt linearly independent forms inI (P1 + 2P2 + · · · + 2Ps), not in
I (Z).

Moreover, applying Lemma 3.6 to the scheme 2P2 + · · · + 2Ps ⊂ P
n1 × · · · ×

P
nt , we can find a form inI (2P2 + · · · + 2Ps), and, sinceP1 is generic, not inI (P1).

Then

H(Z, 1) = H(Z′, 1)+ n1 + · · · + ns + 1,

whereZ′ = 2P2 + · · · + 2Ps . The conclusion follows from the inductive hypo-
thesis. �
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4. The tridimensional case

Although our results cover cases for any number of factors, the most intensive
study of Questions (1)–(3) in the literature occur in the case of three factors, i.e.
for V =V ∗

1 ⊗ V ∗
2 ⊗W ∗(dimVi = ni + 1, dimW = n, n1 � n2 � n � n1n2 + n1 +

n2, see(‡)).
In this case, because of the connection between these questions and the search for

fast algorithms for matrix multiplication (see [5] for details), there are several results
in the area of Algebraic Complexity Theory.

We summarize those results here and explain where our results fit into this litera-
ture.

• Case1. In the special case of three factors, our Theorem 3.1 gives the value ofE

in all cases(n1, n2, n) for whichn � n1n2.

More precisely, letn = n1n2 + k, k � 0. The expected value forE is

e =
⌈
(n1 + 1)(n2 + 1)(n+ 1)

n1 + n2 + n+ 1

⌉
.

But, by Theorem 3.1, we know that

E =
{
n+ 1 for 0 � k � n1 + n2,

(n1 + 1)(n2 + 1) for k � n1 + n2.

It is an easy computation to check that:
(i) When eitherk = 0, 1 ork > (n1 + 1)(n2 + 1)(n1 + n2 − 1), we haveE = e;

(ii) For 2 � k � (n1 + 1)(n2 + 1)(n1 + n2 − 1), we haveE > e. Hence in this case
the varietiesV s are defective fore � s � E − 1. In these cases we should have
V s = P

N , but this does not happen untils = E.
This remark shows that the values ofE given in Theorem 3.1 are, in many cases,

not the expected values.
This covers earlier work of Ja’Ja [20] who considered the cases(1, n2, n) and

work of Atkinson and Stephens [4] and Atkinson and LLoyd [3] who considered the
cases

(n1, n2, n) = (n1, n2, n1n2 + n1 + n2 − p), wherep = 1, 2.

• Case2. (n1, n2, n) are all odd andQ = (n1+1)(n2+1)
n1+n2+n+1 is an integer.

In this case Strassen [28] and Lickteig [23] have the very nice result thatE = (n+
1)Q, and this is precisely the “expected” value. Moreover, the divisibility condition
implies that dimV s(n1,n2,n)

(for s < E) is also exactly as expected. This intersects our
work only for the caseQ = 1.

• Case3. (n1, n2, n) = (2, n, n).
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This has been studied by Strassen [28], see also [5] for details.
(A) (n even). We have that

E = 3

2
n+ 2

which is one more than the expected value.
Moreover, for 2� s � 3

2n, dimV s(2,n,n) is exactly as expected.

When s = 3
2n+ 1, thenV s(2,n,n) is a hypersurface inP3n2+6n+2. Strassen gives

also an expression for the equation of this hypersurface.
(B) (n odd). We have that

E = 3(n+ 1)

2
.

This is the expected value.
Interestingly enough, in this case the same expression which gives the hypersur-

faceV s(2,n,n), for s = 3
2n+ 1, here gives the closure of the locus of tensors which do

not have rankexactlyE.

• Case4. (n1, n2, n) = (3, n, n).
In this case (see [5, p. 15]) dimV s(3,n,n) is exactly as expected for alln and for all

s. In particular,E = 2n+ 1.

• Case5. (n1, n2, n) = (n, n, n), n /= 2.

This “cubic” case was treated by Lickteig [23], who showed thatE = !(n+
1)3/(3n+ 1)". This is the expected value forE.

Note that(n+ 1)3/(3n+ 1) is an integer only for (the positive integer)n = 1,
hence this result, unfortunately, does not give information aboutV s(n,n,n) for s < E.
Whens � n+ 1, our Proposition 2.3 gives that the dimension of this variety is the
expected one.

We remark that Cases 3–5 are not covered by our theorems. We can, however,
offer a proof for Case 3 andn = 2.

Example 4.1. Consider the varietyV(2,2,2) ⊂ P
26; in this case we are looking at

3 × 3 × 3 hypermatrices.

By Proposition 2.3 we have dimV 2
(2,2,2) = 13 and dimV 3

(2,2,2) = 20, hence the

hypermatrices of tensor rank 3 form only a 20-dimensional subvariety inP
26. Re-

mark 1.4 gives thatE � 4, but we want to check that we actually have thatV 4
(2,2,2) /=

P
26, i.e. that this variety is defective, and soE = 5 (since, by Theorem 3.1, we know

thatE � 5).
In order to check thatV 4

(2,2,2) /= P
26, it is enough to show that 4 generic 2-fat

points inP
2 × P

2 × P
2 are contained in a hypersurface of degree(1, 1, 1). So let

us consider the four pointsPi × Pi × Pi, i = 1, . . . ,4, whereP1 = (1 : 0 : 0);
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P2 = (0 : 1 : 0);P3 = (0 : 0 : 1);P4 = (1 : 1 : 1) (we can always choose coordi-
nates so that this is the case). If the multihomogeneous coordinates are{x0, x1, x2; y0,

y1, y2; z0, z1, z2}, we have that the matrixx0 x1 x2
y0 y1 y2
z0 z1 z2


has rank 1 at each pointPi × Pi × Pi , i.e. its determinant gives us a form of degree
(1, 1, 1) which passes doubly through our points. Hence dimV 4

(2,2,2) � 25.
Thus the generic 3× 3 × 3 hypermatrix has tensor rank 5 (note that the actual

maximum value for the tensor rank could even be bigger than 5).
We conclude this section with one last observation in the case of three factors,

comparing what we have just seen above and the ideas of Section 2. This observation
shows how Theorem 3.1 could not be obtained by working only with monomial
ideals.

Remark 4.2. Let1 � n1 � n2, n = n1n2 + k with k � 0 andE as in Case1 above.
LetA = An1 × An2 × An. Then:
(a) for n1 = n2 = 1, there is a rook covering withE rooks, which is perfect only in

casen = 1;
(b) for k � n1 + n2, there is a(never perfect) rook covering of A made ofE rooks

(hereE = (n1 + 1)(n2 + 1));
(c) for 0 � k < n1 + n2, n2 /= 1, there are no rook coverings of A withE rooks

(hereE = n+ 1).

Proof. Case (a) can be easily seen. In Case (b), a rook coveringR with |R| = E can
be easily found by choosing all the places on anAn1 × An2 slice ofA. Moreover,
a covering with that cardinality can never be perfect sinceE > n1 + 1 and so there
must be anAn2 × An slice ofA containing at least two rooks.

Case (c). Suppose there is a rook coveringR with |R| = E = n+ 1. Then there
cannot be anAn1 × An2 slice ofA containing no rooks, since every place in such
a slice would have to be “covered” by a rook ofR from outside the slice, and this
would imply |R| � (n1 + 1)(n2 + 1). But (n1 + 1)(n2 + 1) > E = n+ 1.

Thus each of the(n+ 1) An1 × An2 slices contains exactly one rook.
If for all (i, j) ∈ An1 × An2 we have at least one rook in placeai,j,k for somek,

then we must haveE � (n1 + 1)(n2 + 1), and we get again a contradiction. Hence
there is at least one pair(i0, j0) ∈ An1 × An2 such that no rook ofR is in position
ai0,j0,k for all k = 0, . . . , n. Without loss of generality we can supposei0 = j0 = 0.
Hence all elementsri,j,k ∈ R must have eitheri = 0 orj = 0 in order to “cover” the
placesa0,0,k. But in this case, in order to cover all the placesa1,1,k, everyri,j,k ∈ R
should havei /= j ∈ {0, 1}.

Now, sincen2 > 1, it follows thatR cannot be a covering (e.g. the placea1,2,0 is
not covered). �
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