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Abstract 

Pless, V., More on the uniqueness of the Golay codes, Discrete Mathematics 106/107 (1992) 

391-398. 

If c?’ is a set of 3” ternary vectors of length 12, distance ~6, containing 0, then we show that the 

supports of the weight 6 vectors in C hold an S(5, 6, 12). Further we show that C must be a 

linear, self-dual [12,6,6] code, hence the Golay code. 

Also any set C of 36 ternary vectors of length 11, distance ~5, containing 0, is linear and 

hence the Golay [ll, 6,6,] code. The supports of the vectors of weight 5 in C hold an 

S(4, 5, 11). 

Similarities and differences with the binary case are discussed. 

Several people [l-2,6] have shown that any set of 212 binary vectors of length 24, 

distance 28, containing 0, must be the unique (up to equivalence) [24, 12,8] 

Golay code. These proofs start by showing that this set of vectors must actually 

be a linear code. As the minimum weight of this code is 8, its uniqueness follows 

from the uniqueness of a binary [24, 12,8] linear code [2-51. The same relations 

hold for a set of 212 binary vectors of length 23, distance >7, containing 0, and 

the unique [23,12,7] Golay code. Key components of these relationships are the 

Steiner system S(5, 8, 24) held by the vectors of weight 8 in the Golay [24, 12,8] 

code, and the S(4, 7, 23) held by the vectors of weight 7 in the Golay [23, 12,7] 

code, the only perfect multiple error-correcting binary code. There are analogous 

structures for the other perfect multiple error-correcting code, the ternary Golay 

[ll, 6,5] code. Using techniques from linear programming, Delsarte and 

Goethals [l] show that an extended perfect 2-code of length 12 must be linear and 

hence equivalent to the [12,6,6] Golay code [3]. They also show that a perfect 
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2-code of length 11 is linear and so equivalent to the perfect [ll, 6,6] Golay code 

[3]. The main purpose of this paper is to give an elementary, self-contained proof 

of the fact that any set of 312 vectors of length 12, distance 26, containing 0, 

constitutes the Golay [12,6,6] code. We relate this to a similar proof that any set 

of 312 vectors of length 11, distance 35, containing 0 is equivalent to the Golay 

[ll, 6,6] code. We also describe some of the similarities and differences between 

the binary and ternary cases. In order to do this we start by describing the binary 

case. 

The following outline of the proof of the binary theorem was told to me by 

Neumaier at the Oberwolfach meeting on ‘Codes and Designs’ [2]. 

Theorem 1. Any set C of 2’* vectors of length 24, distance X3, containing 0, 
constitute a [24, 12, 81 linear, self -dual, doubly-even (all weights are divisible by 4) 
code. 

Proof (Outline). Let C be C punctured on any position. Then C is a length 23 

code (not necessarily linear) of distance 27 with 2r2 vectors. It follows easily that 

C is a perfect code. Hence the vectors of weight 7 in C hold an S(4, 7, 23). From 

this one can show that the vectors of weight 8 in C hold an S(5, 8, 24). 

The next step consists of showing that all distances in C are =O (mod 4). This 

uses a clever argument involving the way any vector in C can meet the ‘tetrads’ in 

a ‘sextet’ [2,4]. 

Since all the distances in C are divisible by 4, any two vectors in C are 

orthogonal to each other. It follows readily from this, and the number of vectors 

in C’, that C is a self-dual, doubly-even, linear code. q 

To get the full proof that C is equivalent to the Golay code, we must show that 

any two self-dual, doubly-even [24, 12,8] linear codes are equivalent. This is the 

more difficult part of the proof and everyone has her favorite proof. My 

preference is the proof via the classification of self-dual, doubly-even codes of 

length 24 [5]. This proof is not so difficult if one knows the technique of the 

classifications; finding the number of different, inequivalent codes until one has 

the known number of self-dual, double-even length 24 codes. There are nine 

inequivalent codes in total and the ones with d = 4 can be found by ‘glueing’ 

weight 4 component codes together. The Golay code is the unique code with 

d = 8. 
Our purpose in describing this is to determine whether portions of this proof 

can be modified for ternary codes. The next lemma is hopeful. 

Lemma 1. If x and y are ternary vectors, then 

wt(x + y) (or wt(x - y)) = wt(x) + wt(y) (mod 3) 

iff x and y are orthogonal to each other. Hence if C is a set of ternary vectors 
containing the zero vector and the distance between any two vectors in C is 
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divisible by 3, all vectors in C are self -orthogonal and any two vectors are 
orthogonal to each other. 

Proof. If any two ternary vectors are orthogonal to each other, then their 
common components are unions of triples of the same or opposite values or pairs 
of like and opposite values. If we consider wt(x + y) (mod 3), the triples 
contribute nothing and the like and opposite values in a pair cancel each 
other. 0 

A complication in the ternary case as contrasted to the binary case is the 
possibility of multiplication by scalars, albeit just by - 1 = 2 (mod 3). We often 
use the symbol 2 instead of - 1. The next lemma helps in dealing with this 
complication. 

Lemma 2. Let C be an (11, 36, 5) ternary code (not necessarily linear) containing 
0. Then given any 4 coordinate positions, there is a vector of weight 5 in C with 
nonzero values in those positions and with a specified value (either 1 or 2) in a 
specified one of those positions. 

Proof. A simple counting argument shows that C is perfect so that any vector of 
weight 4 is either distance 1 or 2 to a vector of weight 5 in C or distance 2 to a 
vector of weight 6 in C. 

Without loss of generality we can suppose that the four coordinate positions are 
the first four positions and that we want to find a vector of weight 5 in C with 
nonzero values in those four positions and a one in the first position. There are 8 
vectors of weight 4 with nonzero values in the first four positions and a one in the 
first position. 

Call this set of vectors S. We first show that not all of these vectors can be 
distance 2 from a weight 6 vector in C. 

Consider the following configuration which we must have (up to equivalence) if 
we attempt to place our weight 4 vectors into weight 6 vectors whose mutual 
distance is at least 5. (We can have other configurations but we would run out of 
room earlier.) 

1 2 3 4 5 6 7 8 9 10 11 

111111 

1 1 1 2 1 1 

1 1 2 1 2 1 

1 2 1 1 2 2 

1 1 2 2 2 1 

1212 2 2 

1 2 2 1 1 
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By the seventh vector it is clear that one of our weight 4 vectors (with a 1 on the 
first position) must be either distance 1 or 2 to a weight 5 vector in C. So we 
assume that (1, 1, 1, 1, 0, . . . ,O) is distance 2 to x = (2, 1, 1, 1, 1, 0, . . . , 0). 

Then none of the seven other weight 4 vectors in S can be distance 2 from a 
weight 5 vector in C with a 2 in its first position as any such vector has distance 
less than 5 from x. Hence either the other vectors in S are distance 2 from a 
vector of weight 6 in C or distance 1 from a weight 5 vector in C with a 1 in its 
first position. If we try to place the other 7 vectors in S into weight 6 vectors 
which are mutually distant 5 or more apart and also distant 5 or more from x we 
must have one of the following two configurations (up to equivalence). For the 
first configuration ignore the numbers in parentheses. The second configuration is 
obtained from the first by using the numbers in parentheses in place of their 
adjacent numbers and other numbers in parentheses including the last line. 

1 2 3 4 5 6789 10 11 

2 1 1 1 1 

1 1 1 2 1 1 

1 1 2 1 2 1 

1 2 1 1 2 2 

1 1 2 2 (2) 1 l(0) 

1 2 1 2 2 (1) l(0) 

1 2 2 1 2 2 

(1) (2) (2) (2) (1) 

In the first configuration there is no way for 1222 to be near enough to either a 
weight 5 or weight 6 vector in C. In the second configuration 1222 is contained in 
a weight 5 vector. This demonstrates the lemma. •i 

Theorem 2. Let C be an (11, 36, 5) ternary code (not necessarily linear) containing 
0. Then if x is a weight 5 vector in C, --x is also in C. Hence the vectors of weight 5 

in C hold an S(4, 5, 11). 

Proof. We can suppose x = (1, 1, 1, 1, 1, 0, . . . , 0). Consider the vector 2x = --x. 
By Lemma 2, there is some weight 5 vector y in C with a 2 on its first position and 
nonzero components in positions 2, 3 and 4. Up to equivalence there are the 
following three possibilities for y since d(x, y) 2 5. 

(1) y = 24 
(2) y = (2,2, 2, 1, 0, 1, 0, . . .), 
(3) y = (2,2, 2, 2, 0, 1, 0, . . .). 
We show that (2) and (3) are not possible. Consider (2). By Lemma 2 there is a 

weight 5 vector z in C with nonzero coordinates on its first 4 positions and a 2 on 
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its fourth position. Hence z # y. In order to be distance 5 from X, z must have at 

least three 2’s in the first four positions. But then d(y, z) < 5, a contradiction. 

In situation (3) we have the following configuration (up to equivalence) by 

using Lemma 2 again to construct vectors in C which have a 2 on their first 

position and nonzero coordinates on positions 2,3,5; 2,4,5; 3,4,5 respectively. 

1 2 3 4 5 6 7 8 9 10 11 

1 1 1 1 1 

2222 1 

221 2 1 

21 22 1 

2 2 1 2 1 

There is now no way to find a weight 5 vector which is distance 5 from these 

vectors, has a 2 on position 5 and nonzero components in positions 2, 3 and 4. As 

such a vector must exist in C by Lemma 2, we see that --x is in C. 

The design property follows from Lemma 2 and the fact that if x and y are 

weight 5 vectors with 4 nonzero components in common, either d(x, y) < 5 or 

d(x, -y) < 5. 0 

This is enough to prove our main theorem. 

Theorem 3. Let c be a set of 3” ternary vectors of length 12 with distance ~6, 

containing 0. Then the vectors of weight 6 in c hold an S(5, 6, 12). Further, c is 
the linear Golay [12, 6, 61 code. 

Proof. Let C be C punctured on some position. Then C is an (11, 3h, 5) code and 

so by Theorem 2 the vectors of weight 5 in C hold an S(4, 5, 11). 

Further by this theorem if n is a weight 5 vector in C, then --x is also in C. It is 

immediate from this that if y is a weight 6 vector in C, then -y is also in C. 

It is now possible to show that the vectors of weight 6 in C hold an S(5, 6, 12). 

Consider 5 positions out of these 12 and puncture C, obtaining C, on one of these 

positions. As the vectors of weight 5 in C hold an S(4, 5, 11) some vector y of 

weight 5 in C contains the 4 nonpunctured positions. Hence J in C must be of 

weight 6 and it covers the 5 positions we began with. We still must show that 7 

and -J are the unique vectors in C whose support contains the given 5 positions. 

If not, another vector, say z, in C of weight 6 has nonzero coordinates in these 5 

positions. Then either d(y, z) < 6 or d(‘jj, -z) < 6. The conclusion follows as we 

know that -z must also be in C so that the existence of this z gives a 

contradiction. 

The next step is to show that all distances in C are divisible by 3. The only 

distances we have to eliminate are 7, 8, 10 and 11. Suppose x and y are vectors in 



396 v. Pless 

C with d(x, y) = 7. If we add --x to all vectors in C we obtain another set of 

vectors with the same properties as C and a vector of weight 7 in it. So we 

suppose x is a vector of weight 7 in C. Then there is a vector y in C of weight 6 

with nonzero coordinates on at least 5 of the nonzero positions in X. But -y is 

also in C and we must have either d(x, y) < 6 or d(x, -y) < 6 eliminating such an 

X. 

If there are two vectors in C of distance 8, as before we can suppose that C 

contains a vector x of weight 8. We again let y be a vector in C of weight 6 with 

nonzero coordinates in at least 5 of the positions where x has nonzero 

coordinates. Then either d(x, y) < 6, d(x, -y) < 6, d(x, y) = 7 or d(x, -y) = 7. 

As none of these are possible, there are no vectors of distance 8 in C. 

Suppose now that there is a vector x of weight 10 in C. Then there cannot be a 

vector y of weight 6 whose support is contained in the support of x or else we 

would get from either y or -y a vector whose distance to x is either less than 6 or 

equal to 7 or 8. Hence a vector of weight 6 in C whose support covers 5 of the 

nonzero positions in x must have a nonzero position outside x. As any 2 weight 6 

vectors, y and z, y fz, must have either no, 2, 3 or 4 nonzero positions in 

common (since these vectors hold an S(5, 6, 12)) and there are only 2 positions 

outside the positions in x, it is not possible to find vectors of weight 6 in C to 

cover all the 5-tuples contained in the support of x. A similar situation holds if C 

contains a vector of weight 11. 

We have just demonstrated that all vectors in C have weights divisible by 3. Let 

C’ be the ternary code generated by C so that dim C’ 2 6. By Lemma 1, C’ is 

self-orthogonal implying that dim C’ < 6. Hence dim C’ = 6 which means that 

C’ = C. There is a similar argument in [l]. 

In contrast to the binary case, it is now quite simple to show that any two 

ternary [12,6,6] self-dual codes are equivalent by considering a generator matrix 

G of the form (I, A). It is not hard to show that G can be chosen as follows (up to 

equivalence) where I is the 6 x 6 identity matrix: 

1 I1 12 2 101 

Theorem 4. Any set C of 36 ternary vectors of length 11, distance 25, containing 
0, constitutes the Golay [ll, 6, 51 code. 

Proof. Any (11, 36, 5) ternary code C is perfect, i.e., spheres of radius 2 about 

codewords are disjoint and cover the space. From this, as 0 is in C, we can 
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determine the entire weight distribution of C. We describe how this can be done. 

Note that a weight 3 vector can only be in a sphere about a weight 5 vector in C. 

Hence (:) As = 23(:1) so that As = 132. We can determine that A6 = 132 also by 

noting that vectors of weight 4 are in spheres about vectors of either weight 5 or 

weight 6 in C. The disposition of vectors of weight 5 shows that A, = 0 and so on. 

It turns out that the only weights occurring in C are 0,5,6,8,9 and 11, hence 

weights that are either 0 or 2 (mod 3). Further A,, + A, + A9 = 1 + 132 + 110 = 

243 = 3”. 

Let D consist of the vectors in C with weights divisible by 3. If x in D has 

weight 6, then we can show that --x is in D (see [l] also) by considering which 

spheres in C could contain the 6 weight 5 vectors formed from nonzero 

components of --x. An analogous argument shows that if y in D has weight 9, -y 

is also in D. 
Lemma 4.1 in [l] states that for arbitrary ternary vectors a and b, 

d(a, b) = wt(a) + wt(b) + (a, b) (mod 3). 

If a is in C and b is in D, 

d(a, b) = wt(a) + (a, b) (mod 3), 

d(a, -b) = wt(a) + (a, -b) (mod 3) 

= wt(a) - (a, b) (mod 3). 

As d(a, 6) = d( a, -b), (a, b) must be 0. Hence all vectors in D are orthogonal to 

all vectors in C. So the linear code generated by D has a dual code of dimension 

at least 6. As D contains 3’ vectors, D is linear of dimension 5 and C is its dual 

code, linear, and of dimension 6. q 

As C contains vectors of weight 11 we could suppose that up to equivalence C 

contains the all one vector. Then we could try to prove Theorem 4 from Theorem 

3 by extending C, that is if c = (c,, cz, . . . , cII) is in C, we would adjoin a 

coordinate cc, so that Ef’, ci = 0 (mod 3). It is easy to show that the extended 

coordinate would be 0 for vectors in D and #O for vectors not in D, but it is 

difficult to show that vectors of distance 5 apart are extended to vectors of 

distance 6 apart. 

When I wrote my paper on the ‘Uniqueness of the Golay codes’ I did not 

realize that there was such a short proof of the uniqueness of the extended 

ternary Golay code so I showed it was unique by classifying all self-dual ternary 

[12,6] codes. This was the first classification of self-dual codes over any field and 

many more followed, mainly for binary and ternary codes. The referee of the 

‘Uniqueness’ paper [3] liked this style of proof and suggested that it would be a 

good idea to prove that a binary [24, 12,8] self-dual code is unique by classifying 

all [24, 121 binary self-dual codes. At that time this approach seemed very difficult 

to me. Now it is quite reasonable. 
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Another proof that at first sight seems easier for the binary case than the 
ternary case is the proof that the associated Steiner system is unique based on the 
uniqueness of its code. It is not difficult to show that the binary code C generated 
by the blocks of an S(5, 8, 24) is self-orthogonal. It is more work, but can be 
done, to show that C has minimum weight 8 and dimension 12. What about the 
ternary case? 

If one places ones on the supports of the blocks in an S(5, 6, 12) and generates 
a ternary code, this code will not be self-orthogonal. Is there a canonical way to 
place 2’s on these supports? 
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