MINIMAL PAIRWISE BALANCED DESIGNS

R. G. STANTON

Department of Computer Science, University of Manitoba, Winnipeg, Canada, R3T 2N2

An expression involving a "remainder term" is given for the number of blocks in a minimal pairwise balanced design in which the length of the longest block is specified. The allows a simple presentation and unification of a number of earlier results derived by various authors.

1. Introduction

Suppose that we are given a set V made up of v elements 1, 2, 3, ..., v. A pairwise balanced design is a collection F of blocks with the property that every pair of elements from V occurs exactly λ times among the blocks of F. In the rest of this paper, we shall restrict attention to the particular case $\lambda = 1$. We shall also introduce the parameter k to designate the length of the longest block in the family F (this block may not be unique; usually, there will be several blocks of length k).

As a simple example, let us look at the case $v = 7$, $k = 4$. There are six non-isomorphic pairwise balanced designs with these parameters, and it is instructive to list them.

(a) Blocks 1234, 1567, 9 pairs; total of 11 blocks.
(b) Blocks 1234, 567, 12 pairs; total of 14 blocks.
(c) Blocks 1234, 156, 257, 367, 6 pairs; total of 10 blocks.
(d) Blocks 1234, 156, 257, 9 pairs; total of 12 blocks.
(e) Blocks 1234, 156, 12 pairs; total of 14 blocks.
(f) Blocks 1234, 15 pairs; total of 16 blocks.

It is clear that the minimal pairwise balance design with $v = 7$, $k = 4$, is the design labelled (c).

In general, we use the symbol $g^{(k)}(1, 2; v)$ to designate the minimum cardinality of any pairwise balanced design on a set of v elements with longest block having length k. Thus, we have shown, by exhaustive search, that $g^{(4)}(1, 2; v) = 10$. Of course, the minimal design may not be unique; it is perfectly possible for two non-isomorphic designs to possess the same minimal cardinality.

We shall frequently abbreviate $g^{(k)}(1, 2; v)$ to $g^{(k)}(v)$ or simply, in this paper, to g.
2. Elementary relations

In the minimal design, we let \(b_i \) represent the number of blocks of length \(i \), where \(i < k \). If \(i = k \), we designate one particular block of length \(k \) to be the “longest block”, and we use \(b_k \) to designate the number of other blocks of length \(k \). Thus, the total number of blocks of length \(k \) is \(b_k + 1 \). We often refer to the designated “longest block” as the base block; it plays a very specialized role in the theory.

By counting blocks, and then by counting appearances of pairs within blocks, we immediately obtain two relations.

\[
b_2 + b_3 + b_4 + b_5 + \cdots + b_k = g - 1 \quad (1)
\]

\[
2b_2 + 6b_3 + 12b_4 + 210b_5 + \cdots + k(k - 1)b_k = v(v - 1) - k(k - 1)
= (v - k)(v + k - 1). \quad (2)
\]

To obtain a third relation, we define \(b_{ij} \) to be the number of blocks of length \(i \) that pass through point \(j \) on the base block \((j = 1, 2, 3, \ldots, k) \). Since every pair containing \(j \) must appear in the set of blocks, we immediately have

\[
\Sigma_i(i - 1)b_{ij} = v - k, \quad (3)
\]

and this result holds for every point \(j \). Hence we may sum over \(j \) and obtain

\[
\Sigma_i\Sigma_j(i - 1)b_{ij} = k(v - k). \quad (4)
\]

This summation is over all blocks of length \(i \) that meet the base block. However, there may be some blocks of length \(i \) that are disjoint from the base block; suppose that the number of these is \(b_{i0} \). Then we may form the sum

\[
\Sigma_i(i - 1)b_{i0} = E, \quad (5)
\]

where the quantity \(E \) (for excess) is certainly nonnegative. Since we know that

\[
b_i = b_{i0} + b_{i1} + b_{i2} + b_{i3} + \cdots + b_{ik}, \quad (6)
\]

we can add equations (4) and (5) to end up with

\[
b_2 + 2b_3 + 3b_4 + 4b_5 + \cdots + (k - 1)b_k = k(v - k) + E. \quad (7)
\]

We now combine equations (1), (2), and (7) in such a way as to eliminate adjacent columns in the equations. For instance, using multipliers 2, 1, -4, would eliminate the terms in \(b_3 \) and \(b_4 \) to leave

\[
2(b_2 + 3b_3 + 6b_4 + \cdots).
\]

We shall multiply the three equations by \(s(s + 1) \), 1, \(-2(s + 1)\), respectively, in order to eliminate those terms involving \(b_{s+1} \) and \(b_{s+2} \). The resulting expression involves the quantity

\[
P = b_s + b_{s+3} + 3(b_{s-1} + b_{s+4}) + 6(b_{s-2} + b_{s+5}) + 10(b_{s-3} + b_{s+6}) + \cdots \quad (8)
\]

It is clear that \(P \) is nonnegative.
The result of combining
\[s(s + 1)(1) + (2) - 2(s + 1)(7) \]
is the relation
\[s(s + 1)(g - 1) + (v - k)(v + k - 1) - 2(s + 1)k(v - k) = 2E(s + 1) + 2P. \tag{9} \]
If we solve for \(g \) from Eq. (9), the result is
\[g = 1 + (v - k)(2sk - v + k + 1)/s(s + 1) + 2E/s + 2P/s(s + 1), \tag{10} \]
where the quantities \(E \) and \(P \) are non-negative. If we drop the terms in \(E \) and \(P \), we obtain a lower bound that was established by Stinson [5] in 1982, using generalized variance techniques.

Theorem 1 (Stinson). \(g \geq 1 + (v - k)(2sk - v + k + 1)/s(s + 1) \).

This result is true for all values of \(s \); we can easily determine the most effective value for \(s \) by writing \(F(s) = 1 + (v - k)(2sk - v + k + 1)/s(s + 1) \); then we find
\[F(s) - F(s - 1) = 2(v - k)(v - 1 - sk)/s(s - l)(s + 1). \]
This equation shows that \(F(s) \) is increasing so long as \(sk \) lies below \((v - 1) \). Hence, to obtain the strongest result from (10), we should assign to \(s \) the value \([v - 1]/k\]; of course, if the quantity \((v - 1)/k\) should happen to be an integer, then both \(F(s) \) and \(F(s - 1) \) are equal.

Now, let us consider the case of a very long block whose length \(k \) lies between \(v/2 \) and \(v \). For \(k \) in this region, we select \(s = 1 \), and thus obtain a result due to Woodall [6].

Theorem 2 (Woodall). \(If \) \(k \) \(lies \) \(between \) \(v/2 \) \(and \) \(v \), \(then \) \(g \geq 1 + (v - k)(3k - v + 1)/2 \).

We note that the Woodall bound is always an integer. Consequently, Eq. (9) can be applied to give

Corollary 2.1. The Woodall bound can only be achieved if \(F = P = 0 \), that is, all blocks meet the long base block, and their lengths are either 2 or 3.

This bound can actually be met by using an easy construction based on 1-factors of the \((v - k)\) points not in the long block; see [4] for details.

However, Eq. (9) gives us more information than simply the Woodall bound and its converse. Suppose that we now let \(k \) lie between \(v/3 \) and \(v/2 \); then we take \(s = 2 \). (We should remark that special techniques may have to be applied when one is at the exact boundary of this region, that is, where \(s \) is changing from 1 to 2 or from 2 to 3.) In this case, the term \(2E/s \) in (9) becomes \(E \); because \(E \) is
a non-negative integer, we see that E must be zero if the Stinson bound is met. If we write S for the Stinson bound, and require that it be "met" (that is, $g = \lfloor S \rfloor$), then we have

$$g = S + 2P/s(s + 1) = S + (b_2 + b_3)/3,$$

where the second term is less than unity. Consequently, we have

Theorem 3. If k lies between $v/3$ and $v/2$, and the Stinson bound is met (in the nearest-integer sense), then $E = 0$, that is, all blocks meet the base block. Furthermore, all of the blocks have lengths 3 or 4, except that there may possibly be one or two rogue blocks (this corresponds to the case $P = 1$ or $P = 2$), and the number of these is given by the relation

$$[S] - S = (b_2 + b_3)/3.$$

There is currently a great deal of work being done for k lying in this region; see, for example [3], the very important work of Rees in [1] and [2], and the various works cited in [1] and [2]. The use of "frames" (cf. [1]) has been of particular significance in discussing the question.

Actually, Theorem 3 is only a special case of a more general result. Suppose that the Stinson bound is actually met, that is, $g = \lfloor S \rfloor$. Then we prove, without any restriction on k, that is, for all values of $s \geq 2$,

Theorem 4. The Stinson bound can only be met, that is, $g = \lfloor S \rfloor$, if all of the blocks meet the long block.

Proof. We suppose that, if possible, the Stinson bound is met, but that there is a block of length $(s + 1) - z$ that does not meet the base block. This block will contribute an amount $(s - z)$ to E; however, it also contributes an amount $z(z + 1)/2$ to P. There is a certain balancing effect in action here, since small z values make E large and P small, whereas large z values make P large and E small. More precisely, we may write

$$g = S + 2E/s + 2P/s(s + 1),$$

where the contribution of the disjoint block to the "remainder terms" is given by

$$2(s - z)/s + z(z + 1)/s(s + 1) = (z^2 - z(2s + 1) + 2s(s + 1))/s(s + 1).$$

(11)

Now the discrete variable z may range from the value 1, if there is a disjoint block of length s, to the value $(s - 1)$, if there is a disjoint block of length 2. The expression (11) is decreasing and reaches its minimum value (in the permissible range for z) at $s - 1$; this minimum value is

$$(s^2 + s + 2)/(s^2 + s),$$
Minimal pairwise balanced designs

and it is greater than unity. Consequently, it is not possible to have \(g = \lceil S \rceil \) unless there is no disjoint block, that is, \(E = 0 \), as stated in Theorem 4.

It is an obvious corollary that, if the Stinson bound is met (that is, \(g = \lceil S \rceil \)), then

\[
g = S + 2P/s(s + 1).
\]

All blocks have lengths \(s + 1 \) and \(s + 2 \), with the exception of a small number that can be determined from the relation

\[
\lceil S \rceil - S = 2P/s(s + 1),
\]

where \(P \) is given by (8). This relation guarantees that the number of rogue blocks is very small, and that their lengths are close to those of blocks of lengths \(s + 1 \) and \(s + 2 \). \(\square \)

References

[3] R.G. Stanton and J.L. Allston, A census of values for \(g^{(1)}(1, 2; v) \), Ars Combinatoria 21 (1985) 203–216.

