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We use a recent cycle structure theorem to prove that three well-known 
hamiltonian degree conditions (due to Chvatal, Fan, and Bondy) each imply that 

a graph is either pancyclic, bipartite, or a member of an easily identified family of 
exceptions. 0 1990 Academic Press, Inc. 

We consider only finite, undirected graphs without loops or multiple 
edges. Our terminology and notation will be standard except as indicated. 
A good reference for undefined terms is [3]. We mention only that we will 
use d(x) for the degree of a vertex X, dist(x, y) to denote the distance 
between vertices x and y, and p(G), x(G) and d(G) to denote (respectively) 
the independence number, chromatic number, and maximum vertex degree 
of a graph G. Indices throughout the paper are to be taken modulo n. 

Beginning with a classical theorem of Dirac [7], various sufficient condi- 
tions for a graph to be hamiltonian have been given in terms of the vertex 
degrees of the graph. Three well-known such conditions (due to Chvatal, 
Fan, and Bondy) are given below. 

PROPOSITION 1 [6]. Let G be a graph on n > 3 vertices with vertex 
degree sequence d, < d, < . . . <d,,. If d,dk<n/2 implies d,-,>n-k, then 
G is hamiltonian. 
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PROPOSITION 2 [S]. Let G be a 2-connected graph on n vertices. If 
d&(x, y ) = 2 implies max { d(x), d( y ) ) > n/2 for all vertices x and y, then G 
is hamiltonian. 

PROPOSITION 3 [4]. Let G be a 2-connected graph on n vertices. If for 
every set of three independent vertices x, y, and z we have d(x) + d(y) + 
d(z) > 3n/2 - 1, then G is hamiltonian. 

The goal of this paper is to show that each of these three degree condi- 
tions implies substantially more about the cycle structure of G than the 
mere fact that G is hamiltonian. We call an n-vertex graph pancyclic if 
it contains an l-cycle for every 1 such that 3 < 1 <n. We will prove the 
following results. 

THEOREM 1. Let G be a graph on n 2 3 vertices with degree sequence 
d, d d2 d . . . 6 d,. If dk < k < n/2 implies d,, _ k 2 n - k, then G is pancyclic 
or bipartite. 

THEOREM 2. Let G be a 2-connected graph on n vertices. If dist(x, y) = 2 
implies max (d(x), d(y) > 2 n/2 f or all vertices x and y, then G is pancyclic, 
K n/2. n/2 3 K n/2, n/2 - e or the graph F,, in Fig. 1. 

THEOREM 3. Let G be a 2-connected graph on n vertices. Suppose that for 
every set of three independent vertices x, y, and z, we have d(x) + d( y) + 
d(z) 2 3n/2 - 1. Then G is pancyclic, Kn,2, n,2, K,,,2, n/2 - e or C5. 

Although proofs of Theorems 1 and 2 have appeared previously (in [9] 
and [ 11, respectively), the proofs were somewhat ad hoc. By contrast, the 
proofs of Theorems 1, 2, and 3 given below are all straightforward applica- 
tions of a recent cycle structure theorem (Lemma 3 below), which may find 
other applications as well. 

Before giving the proofs of the main theorems, we need a few preliminary 
results. 
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PRELIMINARY RESULTS 

LEMMA 1 [l, Lemma 11. Let G be a graph on n vertices. Suppose G 
contains an (n - 1)-cycle which does not contain the vertex x. If d(x) > n/2, 
then G is pancyclic. 

LEMMA 2 123. Let G be a graph on n vertices containing a hamiltonian 
cycle IY If r contains consecutive vertices x, y such that d(x) + d(y) > n, then 
G is pancyclic. 

Unfortunately, the degree conditions in Propositions 1, 2, and 3 do not 
readily guarantee the existence of a hamiltonian cycle having a consecutive 
pair of vertices x, y satisfying d(x) + d(y) > n. This difficulty is largely 
overcome by the following recent result. 

LEMMA 3 [lo]. Let G be a graph on n vertices with hamiltonian cycle 
r=v1vy41,v1. Suppose that d( vj) + d( vj+, ) > n for some j. Then G is 
pancyclic or bipartite unless all the following conditions are true for G: 

(i) the only cycle length missing in G is n - 1; 

00 vj-2, vj-19 vj, vj+l, vj+2, vj+3 are independent except .for the 
edges of r; 

(iii) d(vj-2), d(vj- I), d(vj+z), d(vj+)) <n/2 (this implies G contains at 
most n/2 vertices of degree at least n/2); 

(iv) if d(vj)=d(vj+,)=n/2, then vjvj-4, vjvj-3, vj+lvj+4, and 
Vj + 1 Vj + 5 are all edges of G. 

Lemma 3 is the key tool needed to give unified proofs of Theorems 1, 2, 
and 3. 

PROOFS OF THE MAIN THEOREMS 

Before proving Theorem 1, we state the following result. 

LEMMA 4 [9, Lemma 21. If G satisfies the degree condition in Theorem 
1 with n odd, or with n even and dn/2 # n/2, then G is pancyclic. 

Proof of Theorem 1. By Proposition 1, G contains a hamiltonian cycle 
r=v~vy-dl,v~* By Lemma 4, we may assume that n is even and 
d,,,2 = n/2. So G has more than n/2 vertices of degree at least n/2. Thus 
d(v,), d( vj + 1) 2 n/2, for some j. But then by Lemma 3(iii), G is pancyclic or 
bipartite. 

This completes the proof of Theorem 1. 1 
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Proof of Theorem 2. By Proposition 2, G contains a hamiltonian cycle 
r=u~uy-4,up Clearly, by the degree condition, d(G) >, n/2. Without loss 
of generality we assume d( 2, 1 ) 3 n/2. 

Consider the vertex pair (v2, un >. If u2u, E E(G), then u2u3 . . . u,u2 is an 
(n - 1 )-cycle in G. Since d( u1 ) 2 n/2, G would be pancyclic by Lemma 1. 
But if u2u, $ E(G), then dist( u2, u,) = 2 and so maxId( d(u,)} > n/2. 
Without loss of generality, we may assume d(u,) >, n/2. If either inequality 
d(u,), d(u,) >, n/2 were strict, then d(u, ) + d(u,) > n and G would be 
pancyclic by Lemma 2. Hence we assume d(u,) = d(u,) = n/2. But then by 
Lemma 3 with j = n, G is pancyclic or bipartite unless conditions (i)-(iv) in 
Lemma 3 all hold. Moreover, it is easy to verify that if G is bipartite, the 
degree condition together with the assumption that d(u,) = d(u,) = n/2 
implies that G must be Kn,2, ,,,* or K,,,, n,2 -e. To complete the proof, it 
suffices to show that the degree condition together with conditions (i)-(iv) 
in Lemma 3 imply that G is the graph F, in Fig. 1. 

By (i), G does not contain an (n - 1 )-cycle and so ujuj+ 2 $ E(G) for any 
j. But then dist(u,, u,.+*) = 2, and so max(d(u,), d(~~+~)) >,n/2. Since this 
holds for every j, it follows that at least n/2 of the vertices of G have degree 
at least n/2. But by Lemma 3(iii), at most n/2 vertices in G have degree at 
least n/2. So exactly n/2 vertices in G have degree at least n/2. Using 
Lemma 2 and Lemma 3(iii), it follows that n ~0 (mod 4) and (since 
d(u,) = d(u,) = n/2) that d( u,) = n/2 if k - 0, 1 (mod 4) while d(uk) < n/2 
otherwise. 

Let A=(tliId(u,)<n/2)=(ui(i-2,3 (mod4)) and B={D~(~(zJ,)=~/~) 
= {Ui(i-0, 1 (mod4)). We now show 

(a) If ui, uj~ A, then Uiui 4 E(G) unless j = if 1. 

For suppose Ui, USE A and UiUjE E(G) but ,j# ik 1. Either Ui_ 1 or Vi+ 1 
belongs to A; without loss of generality, suppose vi+ i E A. Then ui+ 1uJ~ 
E(G), since otherwise dist(ui+ 1, J u.) = 2 and SO max(d(u,+ 1), d(v,)) > n/2, 
which contradicts Vi+ 1, J U.E A. Now either ui- l or uj+ 1 belongs to A. If 
uj- 1 E A, then uj-2Ui+ 1 E E(G) by Lemma 3(iv) and G contains the (n - l)- 
cycle UiUjU,+1Ui+2”‘Uj-2Uj+1U,+2”’ 23,. This contradicts Lemma 3(i). An 
analogous contradiction arises if uj+ i E A. This proves (a). 

We next show 

(b) If UiEB, UjEA, then UiUj$E(G) unless j=ik 1. 

For suppose UiEB, Uj~A and UiUjEE(G) butj#i+ 1. Either ui-- or ui+l 
belongs to A; without loss of generality suppose Vi_ 1 E A. By an argument 
similar to that used in (a) we conclude Ui- 1 u, E E(G). Now (a) implies that 
Uj = Ui-2. This contradiction with Lemma 3(i) proves (b). 

From (a), (b), and the definition of B, we see that the graph induced by 
B is K,,,2. It is then immediate that G must be the graph F,. 
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This completes the proof of Theorem 2. 1 

Proof of Theorem 3. By Proposition 3, G contains a hamiltonian cycle 
l-=U~U2-41nUp 

We first establish the following fact which will be needed later in the 
proof. 

If d( Vj) + d(Uj+ 1) b n for some j, then G is pancyclic, K,,,2, n,2 or K,,,2, n,2 - e. 

(*I 

To prove (*), note that if d(vi) + d(v,+ i) > n, then G would be pancyclic 
by Lemma 2. Thus we assume d(vi) + d(v, + 1 ) = n, with say d(uj) < n/2. But 
then by Lemma 3, G will be pancyclic or bipartite unless conditions (i)-(iv) 
all hold for G. But if conditions (i)-(iv) held for G, then by (ii) 
1 uj-2, uj9 uj+2 } would be an independent set and by (iii) d(Uj_ 2), 
d(q+,)az/2, SO that d(ui-~)+d(u,)+d(vi+,)63n/2-3/2<3n/2-1, a 
contradiction. We conclude that G is pancyclic or bipartite. If G is bipar- 
tite, it follows easily from the degree condition that G must be K,,,2, n,2 or 
K n/2, n/2 - e. This proves (*). 

We assume henceforth that G is not C,, and show next that d(G) > n/2. 
If P(G) = 1 then G is complete and the result is immediate. If /-I(G) > 3, the 
result follows from the degree condition. Hence we may assume b(G) = 2. 
In particular, x(G) > n/2, since any color class contains at most P(G) = 2 
vertices. Since p(G) = 2 and G is not C,, G is not an odd cycle. But if G 
is neither complete nor an odd cycle, then d(G) 2 x(G) > n/2 by a theorem 
of Brooks [S]. 

Let x be a vertex of G with d(x) = d > n/2, where A = d(G). Let y, z 
denote the vertices immediately preceding and succeeding x on K If 
yz E E(G) then (since d(x) > n/2) G would be pancyclic by Lemma 1. Hence 
we assume yz 4 E(G). We may also assume d(y), d(z) < n - d - 1, since 
otherwise either d(x) + d(y) an or d(x) + d(z) >/n and G would be 
pancyclic, K/2, n/2 or K/2, n/2 --e by (*). But then d(y)+d(z)<2(n-A)-2 
< n - 2, and so there exists a vertex u # y, z such that (u, ~7, z) is an 
independent set. Since d(u) + d(u) + d(z) > 3n/2 - 1, we obtain d(u) > 
3n/2-l-(d(y)+d(z)) >, 3n/2-l-(2(n-A)-2) = (A-n/2)+d+l 3 
A + 1, a contradiction. 

This completes the proof of Theorem 3. i 
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