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Abstract 

In this paper, we give a fast algorithm to compute the parameters of an inversion formula for any nonsingular block 
L6wner matrix. The connection with matrix rational interpolation is given. 
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1. Introduction 

The present paper gives some results on block Lfwner matrices, i.e. matrices of the form 

I C i -  D j ]  j=O'l ..... n - l ,  

Yl -- Zj l i=O, l  ..... m-1 

the C{s, D/s being p x q blocks. The investigation is restricted to square nonsingular matrices. 
Particularly, this means that m p  = nq. The method of UV-reduction proposed in [17, Part II, 
p.136] for Toeplitz-like operators proves to be very useful here giving a simple inversion formula 
(and a criterion of nonsingularity). Generalization of LSwner's well-known results leads to an 
interpolation interpretation of the parameters of the inversion formula. More exactly, four couples 
of matrix polynomials [V(x), U(x)], [fr(x), O(x)], [Q(x), e(x)] and [~(x), P(x)] appear, the first 
and third satisfying the linearized conditions for a set of interpolation nodes {~} and a set of 
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corresponding (matrix) values {Fe}: 

v ( x )  - u(x)F  = o, 

Q(~) - P(~)Fe = O, 

v ( x )  U(x)  O:"x"[-x] ,  

Q(x) ~ 0:qXq[x], P(x)  ~ ~:q×p[x], 

deg U (x) = m, deg Q (x) = m, 

deg V (x) < m, deg P(x)  < m. 

Thus, the first system gives a solution of the rational interpolation problem 

= (1) 

if the values U(~) are nonsingular. Similarly, the second and fourth couples satisfy 

~(~ )  -- F,~O(,2) = O, O(~) -- F~P(X) = O. 

L6wner matrices (by some authors called divided differences or interpolation matrices) with 1 x 1 
blocks were introduced in the inspiring paper [-19] as a tool to investigate monotone matrix 
functions (see also [11]) and to solve the scalar rational interpolation problem (see also [-6, 3]). 
Starting from a L6wner matrix, one can investigate the connection to Hankel, Toeplitz, B6zout 
matrices and to rational interpolation as was done in [12, 27]. In [26], an inversion formula is 
given for a L6wner matrix. In [1], the block L6wner matrix is used as a tool to construct a minimal 
state-variable realization from interpolation data (see also [-4]). 

In Section 2, a criterion of invertibility and an inversion formula for the block L6wner matrix is 
constructed based on the UV-reduction. Section 3 shows the connection with matrix rational 
interpolants. In Section 4, we find interesting properties of the matrices 

T(x)=  L -  P(x)  Q(x)J and ~ ( x ) =  [/~(x) O(x)]" 

Section 5 is an application of the results of [24] where a unified approach to solve a wide class 
of interpolation problems in O(n 2) operations is given (n denotes the number of interpolation 
data). We use it to find T(x )  and ~(x) and thus also to compute L-  1. We also give the connection 
to the polynomial approach used in linear system theory to solve rational interpolation 
problems, more specifically, to the behavioral approach to linear exact modelling described in 
[5]. In Section 6, we give the connection with matrix continued fractions. Section 7 deals 
with the rational interpolation problem (1) in more detail, studying the (un)attainability 
or (in)accessibility of interpolation points (for the scalar case, see [6, 21] and for multiple 
points [27]). 
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2. Inversion formula 

Consider an (m × n) block L6wner matrix 

Yi --  Zj _ . l i=o ,  1 , 2  . . . . .  m - 1  

with C~, Dg ~ ~:P×q and y~, zi E U: such that Y = {Yo ,Y l ,  . . .  , Y m - t }  and Z = {Zo,Z~, . . .  ,zn-1} have 
m, respectively n different elements and Y n Z = 0. 

We assume that the block L6wner matrix is square, i.e., mp = nq. In this section, we give an 
invertibility criterion for such a square block L6wner matrix. If the inverse exists, we construct an 
inversion formula. To this end, we use the method of UV-reduction proposed in [ 17, Part  II, p.136] 
for Toeplitz-like operators. 

Theorem 2.1 (UV-reduction). Given a block Li iwner matr ix  

L=[Ci_D____ili=o,I,2 ..... .-1, 
Yi --  Zj _ ] i = 0 , 1 , 2  . . . . .  m - 1  

then 

i+ol diag(yi)L - L diag(zj) = C1. [Iq Iq ... 

Urn- 1 

with 

diag (yi) = diag(yolp,  Yl Ip, . . . ,  Ym- t Ip) 

and 

I il Iq] --  Ip [Do D1 ... Dn-1] (2) 

Theorem 2.2. Given the block Li~wner matr ix  L = [(Ci - Di) / (y i  - zi)]. Consider the equations 

[Po P1 ... P m _ l ] L = [ I q  Iq ... Iq], (3) 

[Uo U1 ... U m - 1 ] L  = [Do O1 ... Dn-l-], (4) 

diag(zj) = diag(zolq,  z l Iq, . . . ,  zn-  1 I+). 

Proofi Evident by direct computat ion of both sides. []  

Using the UV-reduction, we get the following inversion formula and invertibility criterion for 
a block L6wner matrix. 
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Pl  Ip 
L ~ ° , 

 oi-1 L J,J 

L = Cl 

1 C2- I  

(5) 

(6) 

Eqs. (3) and (4) are solvable (similarly, (5) and (6) are solvable) iff the block Li~wner matrix 

Dj]j=o, 1 , 2  . . . . .  n -  1 

L : I C ~ - ~  z ]  ~ i = 0 . i , 2  . . . . .  m - !  

is nonsingular. 
I f  L is nonsingular, its inverse L -1  can be written as 

[~iPj__Piujlj=O,l,2 . . . . .  m - 1  

L-1  = ~ ~ Zi _ [ i = 0 , 1 , 2  . . . . .  n - 1  " 

Note that 

P j ~ I  :q×v, j = 0 , 1 , . . . , m - 1 ,  

UjE~ pxp, j = 0 , 1 , . . . , m - 1 ,  

P i ~ l  :q×p, i = 0 , 1  . . . .  , n - l ,  

l~i~l  :q×q, i = 0 , 1 , . . . , n - 1 .  

Proof. It is clear that if L is invertible, Eqs. (3) and (4) are solvable. Suppose now that (3) and (4) are 
solvable. If c ~ Ker L, we get from (3), 

[Iq Iq ... Iq-]c = 0 

and from (2)-(4) that 

Ldiag(zj)c = 0 or diag(zj)c e KerL. 

Repeating the same reasoning, we derive 

z i l  -iJ=O, 1 . . . . .  n - l ~  
J q-If=O,1 . . . . .  n - 1  ~: = O. 

Because the block Vandermonde matrix [z~Iq] is nonsingular (since zi # z i , j  # i), it follows that 
c = O. Hence, L is invertible. 
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Assume now that L is invertible. Multiplying (2) to the left and right by L -  1, we get 

L-  1 diag(yi) - diag(z j )L-  1 Ecol 
= L -  1 C1. [Iq Iq ... Iq]L  - 1 - L  -1 

Cm--  | 

Using the definition of P~, Us, Pi and 01, we derive 

L -  1 diag(yi) - diag(z j )L-  1 

[Do D1 

L vol L'J U1 [Po P, ... P s -  ~] - P1 [Uo U1 "'" Urn-  1]" 0., p i_, 

Taking the (i,j)(q x p)-block of the left- and right-hand side, it follows that 

(L-1) , , ly j  -- z ,(L-1)i . j .= O,P 1 - P,U i. 

Therefore, the (i,j) block of L-1 can be written as 

(L- ' ) i . j  - OiPj - P, Uj [] 
yj  -- Zi 

... D , _ l J L  -1 

265 

3. The connection with matrix rational interpolants 

In this section, we give the relationship between P, U, P, 0 and certain matrix rational interpo- 
lants. 

Definition 3.1 (Degree of  polynomial matrices). Given P(x )e  0:P×q[x], we write d e g P ( x ) <  n iff 
each of the polynomial elements of P(x) has degree smaller than n. We say deg P(x) = n iff 

Z n -  1 P(x) = P,z" + P,_ 1 + "'" + Po with P, e U :p×q having full rank. 

Take the following basis for the vector space D:, [x] of all polynomials having degree ~< n: 

{bo, b l, . . . ,  b . -  1, b} 

with 

. - 1  

b(x) = [-I ( x -  z j) 
j = O  
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and 

b(x) 
bj(x) ( x - z  j)' j = O ' l ' ' ' ' ' n - l "  

Similarly we can write a basis for U:mEZ]: {ao,a~,...,am-l,a} based on the points Y = 
{Yo,Ya,...,Ym-~} instead of the points Z = {Zo,Zl,...,z,-1}. 

and 

Constructing the following matrix polynomials from the solutions of Eqs. (4) and (6), 

n - 1  

Dzq×q[x]~O(x) = b(x)Iq - • bj(x)t~j, 
j=O 

n - - 1  

g:P×q[x]mlT(x) = -  Z by(x)DjUj, 
j=O 

m - - 1  

UzP×P[x]3U(x) = a(x)Ip-  • ai(x)Ui 
i = 0  

m - 1  

~:p×q[x]~V(x) = -  Y, ai(x)U, Ci, 
, = 0  

we get the following interpretation for ~ and U. 

(7) 

(8) 

(9) 

(lo) 

Theorem 3.1 (Connection with matrix rational interpolation). I f  the matrix polynomials V(x) and 
~(x) are given by (7) and (8), the matrix rational function 

R(x) = 17(x) O(x) -1 

represents the unique matrix rational function having deg 17(x) ~< n - 1 and deg U (x) = n such that 
R(x) satisfies the linearized interpolation conditions, i.e. 

V(2) = F~U(ff) VX~ YwZ,  (11) 

with 

and 

F . ~ = C i  i f  x = yi 

Fyc = Di i f  x = zi. 

A similar result is also true for U(x)- 1V(x), given by (9) and (10). Moreover, they represent the same 
matrix rational function, i.e. 

g(x)  = ~(x) O(x)-  ~ = U-(x)- 1V(x). 

Proof. Let us look at all matrix rational functions R(x) of the form (deg ~< n -  1)(deg = n) -1 
interpolating the data. We can always normalize R (x) such that the highest degree coefficient of the 
denominator  is Iq. 
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We take the basis {bo, b l , . . . ,  bn-1, b} based on the interpolat ion points  Z = {Zo, z l , . . . ,  z,_ 1} 
and parametrize R(x)  such that  

R(x) = A(x )B(x ) -  1, 

with 

n - 1  

B(x)  = b ( x ) I q -  ~ bj(x)Bj ,  (12) 
j=O 

n - 1  

A(x)  = -  ~ b j (x )A  i. (13) 
j=O 

The matr ix rational function has to satisfy the linearized interpolat ion conditions,  i.e. 

A(y i )  = C~B(yi), i = 0, 1, ... ,m - 1, (14) 

A(z j )  = DjB(zi) ,  j = 0, 1 , . . . ,  n - 1. (15) 

Using the parametr iza t ion (12) and (13), the interpolat ion condit ions (15) can be rewritten as 

bj(z j )A i = bj (z j )DjBj  or A t = DjBj,  j = O, 1 , . . . , n  - 1. 

Once we have the B~, we can compute  the A t. How do we compute  the Bj? Rewriting (14) gives us 

- ~ bj(yl)D~Bj = Ci b ( y i ) I q -  bj(yi)B~ 
j = 0  j = 0  

o r  

n-1 

E 
j=O 

b j ( y l ) ( C ~ -  Dj )Bj  = C,b(y~). 

Using the definition of bj(x), i.e. 

b(x) 
bj(x) = 

X - -  Z j  

we derive the equat ion  

. - 1  b(yi)  

j = o Y~ - zj 
- -  (Ci - Dj )Bj  = Cib(y~). 

Because b(yi)  # O, 

n 

B j = C i ,  i = 0 , 1  . . . .  , m - - 1 .  
j=O 
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Hence, the coefficients Bj are uniquely determined as the solution of the following set of linear 
equations 

I II 1 
Bo Co 

L B1 C1 

B._ 1 C,,- 1 

Therefore, iT(x) = B(x) and 17(x) = A(x). 
Similarly, we can prove that U-~(x)V(x)  is the only matrix rational function satisfying the 

linearized interpolation conditions and having the form 

(deg = m)- l(deg < m). 

It remains to show that 

o r  

u -  l(x) V(x) = ¢(x) g(x)- 

V(x) ¢ ( x )  = V(x) O(x). 

The matrix rational functions U - 1 (x) V(x) and 17(x) U(x)- 1 both satisfy similar linearized interpo- 
lation conditions, i.e. 

17(if) - FxU(ff) = 0 (16) 

and 

V(:~) - U(:~)Fe¢ = 0 (17) 

V 2  ~ Y u Z .  Multiplying (16) to the left by U(~) and (17) to the right by ~(~) and subtracting, we 
get 

U(X) tT(X) = V(~) tT(x). 

Hence, there exists some polynomial matrix M ( x ) ~  ~:P×q [x] such that 

U(x) V(x) = V(x) U(x) + a(x)b(x)M(x).  

Because deg(U(x)17(x)) and deg(V(x)U(x)) < m + n, M(x) = O. 
This completes the proof. [] 

Similarly, we can use P and/3 to construct matrix polynomials and give an interpretation as 
a tangential interpolation problem. 

Define P(x), O(x), P(x) and Q(x) based on the solutions of Eqs. (3) and (5) as follows: 

n - - 1  

g:q×P[x]3P(x) = Z bj(x)Pj, (18) 
j=O 
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and 

n - 1  

O:~×P[x]~O.(x) = b(x)Ip + Z bj(x)D~Pj, (19) 
j=O 

m - i  

Fq×P[x]~P(x) = ~, ai(x)Pi (20) 
i = 0  

m - 1  

~:q×q[x]gQ(x) = a(x)Iq + ~ ai(x)PiCi. (21) 
i = 0  

The parameters P and P of the inversion formula of a block L6wner matrix are related to an 
interpolation problem as follows. 

Theorem 3.2 (Connection to a tangential interpolation problem). I f  the polynomial matrices Q_.(x) 
and P(x) are given by (18) and (19), the matrix polynomial couple (O_.(x), P(x)) is the only couple such 
that 
• O(x)~ 0:l'×P[x] and degQ(x) = n; P(x)e  0:q×P[x] and deg/3(x) < n; highest degree coefficient of 

O_.(x) is Ip; 
• O(x) = F~P(~) VY,~ Y • Z .  
Similarly, if Q(x) and P(x) are given by (20) and (21), the matrix polynomial couple (Q(x), P(x)) is the 
only couple such that 
• Q(x) ~ ~:q×q[x] and deg Q(x) = m; P(x) ~ O:q×p[x] and deg P(x) < m; highest degree coefficient of 

Q (x) is Iq; 
• O(£) = P(g)F~ V £ e  Y w Z .  
Moreover, 

P(x)Q(x) = Q(x)P(x). 

Proofl The proof goes along the same lines as the previous proof. We give the proof for the couple 
(Q(x), P(x)). 

We can parametrize P(x) and Q(x) as follows: 

and 

m - 1  

P(x) = Z ai(x)Pi 
i = 0  

m - 1  

Q(x) = a(x)Iq + ~ ai(x)Qi. 
i = 0  

Because P and Q have to satisfy the interpolation conditions 

Q(yi) = P(yi)Ci, i = o, 1, . . . ,m - 1, 

we get that Qi = PiCi. 
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o r  

o r  

o r  

The remaining interpolation conditions, j = 0, 1,. . . ,  n - 1, transform into 

m - 1  m - 1  

a(zj)Iq + ~" ai(zj)PiCi = Y, ai(zj)PiDj 
i = 0  i = 0  

m - 1  

i = 0  
a i ( z j )P i (C i -  D j) = - a ( z j ) I q  

. 1  

P, 
i = o  Yi --  

[Po P1 ... P, , , -1]L = [Iq Iq ... Iq]. 

Because L is nonsingular, the solution is unique. As in the previous proof, it is easy to show that 

P(x)Q(x)  = O(x)P(x) .  [] 

4. Some properties of the parameters of the inversion formula 

In this section, we indicate how to compute P, P, U and ~. The interpolation conditions of 
Theorems 3.1 and 3.2 on the corresponding polynomial matrices P(x), P(x), U(x) and U(x) can be 
summarized as follows: 

Look for a polynomial matrix 

7(x) 
such that 

• [Ip - F,]  T(£) = O, ~ /~e  Y w Z ,  
• deg ¢(x) = n, 
• highest degree coefficient of ¢(x) is Ip+q (hence, deg det ¢(x) = n(p + q)). 

If we partition the matrix ¢(x), we get 

T(x) = [- O(x) 17(x)1 (22) 
LP(x) tT(x)]" 

Hence, ~(x) is unique. 
In the same way, Q(x), P(x), V(x) and U(x) can be found as the blocks of a square polynomial 

matrix T(x)  ~ ~ '  + q) × ~" + q) Ix], 

T(x)  = [ U(x) -- V (x )7  (23) 
k --  n ( x )  Q(x)_] 
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such that 

[ F ~ ] = O , V ~ E Y u Z ,  • T ( ~ )  Iq 

• deg T(x) = m (hence, degdet T(x) = m(p + q)), 
• highest degree coefficient of T(x) is I,+q. 
Clearly, T(x) is also unique. 

The polynomial matrices T(x) and T(x) are related as follows. 

Theorem 4.1. The polynomial matrices T(x) and T(x) given by (22) and (23) satisfy 

T(x) T(x) = T(x) T(x) = a(x)b(x)Iv+q. 

Moreover,  

det T(x) = (a(x)b(x)) q, det T(x) = (a(x)b(x)) p. 

Proof. Using the linearized interpolation conditions, we write 

[ ~ a(x)b(x)lq F(x) l ~(x) = a(x)b(x)R(x) (24) 

with R(x) ~ [FtV+q)×tP+q)[x] and F(x) ~ [FP×q[x] such that F(~) = F~. 
A possible choice for F(x) is the interpolating matrix polynomial of degree < m + n. Taking the 

determinant of left- and right-hand side of Eq. (24) gives us 

(a(x)b(x)) q det T(x) = (a(x)b(x)) {p +q) det R(x). 

Because dega(x) = m, degb(x) -- n and degdet ~(x) = n(p + q), we derive 

d e g d e t R ( x ) = n q - m p = 0  or d e t R ( x ) = c # 0 .  

Hence, R(x) is a unimodular matrix and det ~ ( x ) =  c(a(x)b(x)) p. Because the highest degree 
coefficient of 2~(x) is Iv+q, det T(x) is a monic polynomial. The polynomials a(x) and b(x) are 
monic. Therefore, c = 1 (similarly for T(x)). 

Take the inverse of left- and right-hand side of Eq. (24) 

Ip a(x)b(x~) 1 
' - - -  

1 a(x)b(x) R-  1 (x) 
0 a(x)b(x) Iq 

o r  

a(x)b(x) f ( x ) -  ~ = R-  l(x) a(x)b(x)lq_]" 

The right-hand side of (25) is a polynomial matrix. Hence, 

T*(x) = a(x)b(x) ~(x)- 1 

(25) 
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is polynomial. Moreover, because 

T(X) -1 = Ip+qX -n  o r - O _ ( X - n - 1 ) ,  

we get that 

T*(x) = a(x)b(x)(Ip+qX -n + O_ (x -n- 1)) 

= Iv+qX m + O_(Xm-1). 

Multiplying (25) to the right by 

[;(x)b(x)lp F(X)llq J 

we derive the following interpolation conditions on T*(x): 

T,(x) [ a(X)bo(X)I v F(x)-] Iq J = a(x)b(x)R-l(x)" 

Hence, r*(x)= r(x). [] 

Note that the previous result is an extension of the classical duality between type I (Latin) and 
type II (German) polynomial systems in a normal point of the Pad6-Hermite approximation 
problem [20, 18, 10]. 

The following theorem is based on the results of [24]. Column and row reducedness of 
a polynomial matrix is also defined in Definition 6.1. 

Theorem 4.2 (Connection with module theory). The polynomial matrix T(x) given by (22)forms 
a column (and row) reduced basis matrix for the submodule ~ of all polynomial (p + q)-tuples 
p(x) ~ g:tv+q)× 1 [x] satisfying 

[Ip -Fx]p ( :g )=O V ~ Y u Z .  

Similarly, the polynomial matrix T(x) given by (23)forms a row (and column) reduced basis matrix for 
the submodule S of all polynomial (p + q)-tuples p(x) e ~:l×tp+q)[x] satisfying 

[F~I=O V ~ e Y u Z .  P(X) Iq 

Proof. We prove the theorem for the polynomial matrix T(x). It is clear that the columns of T(x) 
are U: [x]-linearly independent and satisfy the interpolation conditions. Clearly, ~(x) is column 
(and row) reduced. Moreover, 

degdet T(x) = n(p + q) 

which is equal to the number of independent interpolation conditions 

p(m + n) = qn + pn = n(p + q). 

This proves the theorem for T(x). [] 
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5. Efficient computation of T(x) and T(x) 

Using the results of [24], we get the following algori thm to compute  T(x) and T(x) in a recursive 
way. 

Algorithm 5.1 
given 

. ~ =  Y u Z  with Y = {Yo ,Y l , . . . ,Ym-1}  and Z =  {Zo,Zl , . . . , zn-1}  

pm = qn 
initialization 

~(x) = Iv+q with column degrees6= [61. . .6p+q]  = [ 0 0 . . . 0 ]  e N p+q 
T(x) = Ip+q 

while X # do 
take an arbitrary Y ̀~ X; X = )(\{Y`} 
for i e  {1 ,2 , . . . ,p}  do 

• compute the residuals, i.e., 
[F l x t p + q ) 9 [ r  1 r2 . . .  rp+q] = e i [ I  p --  Fe] T(Y`) 
with 1:1 ×Pgei = [0 ... 0 10 ... 0] (1 on the ith place) 

• t ake j  = min{kIbk = 6*} with 6" = min{6, l r l  # 0} 
• T(x) = ~ ( x ) W ( x )  with column degrees 

[ 6 1 , . . . , 6 j - 1 ,  6j "3 I- 1, 6 j + l , . . . , 6 p + q ]  
T(x) = (x -- Y`) W - l(x) T(x) 

with 

rj 

rj  

W(x) = rj 
- r l  - r 2  . . . .  rj-1 ( x - Y , )  

finally 
~'(X) = T ( x ) n -  1 

T(x) = HT(x )  
with H = highest degree coefficient of  T(x). 

- -  r j +  1 . . .  

rj 

- -  r p + q  

rj  

Algori thm 5.1 requires O((m + n) 2) operat ions in the field I:. 
Once  we have T(x) and ~(x), we can immediately  part i t ion ~(x) and T(x) to get the parameters  

of the inversion formula• 
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Note: Algorithm 5.1 is based on the updating procedure described in [24] which computes basis 
matrices connected to a general matrix rational interpolation problem. In each step of Algo- 
rithm 5.1 the set )? decreases. The polynomial matrix T(x) is a row reduced basis matrix for the 
submodule S of all polynomial (p + q)-tuples p(x) ~ ~: x × tp+q) [x] satisfying 

[ F ~ ] = O  V ~ ( Y u Z ) \ X .  
P('~) Iq 

The polynomial matrix T(x) is a column reduced basis matrix for the submodule g of all 
polynomial (p + q)-tuples p(x) ~ F tp+q)× t [x] satisfying 

[Ip - F~]p(~) = 0 V ~  ( Y u Z ) \ X .  

Finally, the basis matrices T(x) and ~(x), the output  of Algorithm 5.1, have the special form as 
described by Theorem 4.2 because the matrix rational interpolation problem is connected to 
a nonsingular square block LiSwner matrix. 

We want to make the link here with the behavioral approach to linear exact modelling [5]. 
Suppose we look for all matrix rational functions Z of size p × q given the first part of the Taylor 

series expansion of Z for a finite number of points ~, i.e. 

Z(x) = Z(~) + (x - £)Z¢X)(~) + ... + (x - ~)tKx-~)Z¢~x-~)(£)/(x~ - 1)! + O((x - ~)K~). 

This is equivalent to looking for all linear systems having transfer function Z(x) which have output  
Y~(t) corresponding to input Ue(t) with 

[ Y~(t) ] = W~(t) 
u (t) J 

= e  ~t ~ Z ( x ) ] t ~ - l / ( ~ : e -  1)' + -.. + t ~ - J - 1 / ( K s ~ - j  - 1)! 
t L  Iq J 

Hence, if we take only function values and no derivatives, we look for all Z(x) such that Z(~) = F~. 
The input /output  data set is 

W~(t) = [wl,~(t),...,wq,~(t)] = U~(t)J Iq " 

If we take the polynomial-exponential "time series" wi,~(t), V ~ ~ Y u Z as the data set, the rows of 
a row reduced autoregressive equation representation O*(x) described in [5] form what is called in 
[24] a 0-reduced basis for the submodule connected to the matrix rational interpolation problem. 
Hence, the autoregressive equation representation O*(x) being row reduced with highest degree 
coefficient Ip+q is nothing else but our T(x) matrix. Moreover, the recursive update described in 
[5, Section 8] is very similar to the update described in [24] and worked out in our algorithm of 
Section 5. 
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If we take the input /output  data 

,, r i~ l 
= L :I' 

we get the row reduced autoregressive equation representation TX(x). 
Note that ~(x) and TV(x) can be seen as 0(x)-matrices playing a central role in [4]. 
If one also wants to consider pole information for the matrix rational interpolant, this problem 

can be solved as a no-pole problem when enough interpolation data are known at each pole [22]. 
In Algorithm 5.1 one new datum is added at each step. In [25] it is described how a new basis 

matrix can be computed from a previous one adding several data all at once, a so-called 
"look-ahead" step. Taking more data at each step could be used to enhance the numerical stability 
of the algorithm (for the scalar rational interpolation problem, see [8]) as was done for Hankel and 
Toeplitz matrices (see, e.g., [9, 14-16]). 

6. Matrix continued fraction representations 

If we denote the successive polynomial matrices W(x) appearing in Algorithm 5.1 as 
Wl(x), W2(x), .. . ,  Wl(x), with l = p(m + n), denote H -1 as W~+I, and partition W~(x) as 

= l 
L P,(x) O,(x)J' 

with Qi(x) p x p, we have the following connection with matrix continued fractions. 

Theorem 6.1. The matrix rational function ¢ (x) ~ (x)- 1 of Theorem 3.1 is the (l + 1)st convergent of 
the matrix continued fraction 

¢2(x) + 02(x) - 
el(X) + 0,(x) t72(x) + &(x) • 

¢2(x) + 02(x) " 
0I(X ) "At- e l ( x )  02(x  ) --[- e2(x) .- 

The matrix rational function ~(x)Q(x)-1 is the (l + 1)st convergent of the matrix continued fraction 

P2(x) + 02(x) 
Pl(X) + Us (x) ~=(~) 7 ¢2(x) .5. 

O.l(x) + ¢," . &(x) + 02(x)~" 
txj ~ + ¢2(x) 

The notation A/B stands for AB-1.  There are similar results for U (x)- X V (x) and Q(x)- X P(x). 

The matrix continued fraction is very similar to the one introduced in [2] to decompose matrix 
formal power series in x-1,  i.e., solving the rational interpolation problem around the multiple 
point oo (see also [23]). By changing the variable as described in, e.g., [7, 5], the so-called minimal 
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partial realization problem a round  c~ can be changed into a matrix rational interpolat ion 
problem a round  0. The matr ix cont inued fraction can be interpreted as a cascade interconnect ion 
of linear two-por t  systems (see, e.g., [5, Section 10]). 

Before we can prove previous theorem, we need some addit ional  results. We use the nota t ion  
W/d(x ) for 

Wi, j(x) = Wi(x)Wi+l(x)... Wj(x), i <~j. 

W/,~(x) is par t i t ioned similarly to Wi(x) as 

LPl, j(x) ~3i, j(x)_l" 

Definition 6.1 (Column reduced polynomial matrix). A polynomial  matrix P(x) ~ ~:[x] n×" is called 
column reduced iff 

P(x) = (P* + O _ ( x - ' ) ) x  ~ 

with P* ~ U :"×~ nonsingular  and X ~ = diag(x ~', x~, . . . ,  x~'), 6 ~ t~ ~. The natural  number  3i is called 
the co lumn degree of the ith co lumn of P(x) and P* is called the highest degree coefficient (hdc) of 
P(x). Row reducedness is defined in a similar way. 

L e m m a  6.2. The polynomial matrices Wl,i(x), i = 1, 2 , . . . ,  l + 1, are column reduced with an upper 
triangular and nonsingular hdc. 

Proof. This is true for W L x (x). Suppose it is true for W L i - t  (x). The choice of j in Algori thm 5.1 
guarantees that  the hdc of the kth co lumn of W~,i(x) is a nonzero  multiple of the hdc of the kth 
co lumn of W L i- ~ (x) to which in some cases a nonzero multiple of the hdc of a previous column of 
1411,i-z (x) is added. This proves the lemma. []  

Note  that  the previous l emma implies that  H and H -  ~ are nonsingular  and upper  tr iangular  
matrices. 

L e m m a  6.3. The polynomial matrices Oi,j(x) and O.i,j(x) are nonsingular, i <<.j <~ l + 1. 

Proof. We start from the following equality: 

I4"1, s(x) = Wl, i-  ~ (x) wi, j(x). 

Because each Wk(X) is invertible, also W1.i-x (x) is invertible. Hence, 

Wi,j(x) = W~,,_ ~ (x) -  ~ W~, j(x). 

F r o m  

w1.Ax)  = (A + O_(x-1))x ~' 
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w l , i - l ( x )  = (B + O _ ( x -  1))x x~ 

with A and B nonsingular and upper triangular, we get 

w~,j(x) = x-X~(B -1 + O_(x -1 ) ) (A  + O _ ( x - 1 ) ) x  ~' 

= x - ~ ( B - 1 A  + O _ ( x - 1 ) ) x  ~' 

with B-  aA nonsingular and upper triangular. Hence, the (1, 1) block Ol,j(x) and the (2, 2) block 
Ui,j(x) of Wi, j(x) are invertible. [] 

Now we have all the ingredients to give the proof of Theorem 6.1. 

Proof of Theorem 6.1. We give the proof only for 17(x)U(x)- 1. The proof for P(x)0(x)-  1 is similar. 
We rewrite 17(x) U(x)- 1 as follows: 

17(x)O(x) -1 = 171.,+ 1(x)01.,+ l(x) -1 

01(X) 172,,+1(X) + 17,(X) 02,,+l(X) 
= Pl (X) 172,, +1 iX) + 01 (X) 02,, +I(X)" 

Because 02,t+l(x) is invertible, we get 

171(x) + 01(x)Z2,,+l(x) 
17(x) O(x)-  1 = 01(x) + Pl(x)Z2,i+l(x) 

with Z2,l + 1 (x) = 172,l + 1 (x) 02,t + 1 (x)- 1. Following the same reasoning for Z2,t + 1 (x), Z3,1 + 1 (x) . . . .  
leads us to the matrix continued fraction representation for 17(x)0(x)-1. [] 

Note that also each convergent i, i = 1, 2, . . . ,  l is well-defined and connected to a matrix rational 
interpolation problem considering the first i interpolation conditions. 

7. Unattainable points 

Definition 7.1. Consider the linearized interpolation problem given by (11). Then the interpo- 
lation point Yi (or zj) is called attainable iff the matrix 0(yi) (or O(zj)) is nonsingular so that 
the corresponding interpolation condition can be written as a proper rational interpolation 
condition 

17(y,) 0 (y , ) -1  = c, .  

We give a small example showing that the nonsingularity of the (block) L6wner matrix does not 
necessarily guarantee that for 17(x)0(x)-1 = U(x)-lV(x) all the interpolation points are attain- 
able. 
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Take p = q = 1, m = n = 2 and 

y o = 0 ,  C o = 2 ,  Yl = 1 ,  C 1 = 6 ,  

Zo = 2, Do = 4, zl = 3, D1 = 3. 

The L6wner  matr ix 

E 1 L =  - 2  - 

is nonsingular  with de te rminant  -~6. 
We get U and U as the solut ion of 

and 

[Co] 
L U =  C1 

UL = [Do Dx]. 

We derive 

U = [ - 6  112 and U = [ 0 - 2 ] .  

Hence, 

l~(x) = x 2 + x, 17(x) = 12x, 

U(x) = x 2 + x, V(x) = 12x. 

The  rat ional  function 

12x 
TY(x) t T ( x ) -  1 = U(x)-i V ( x )  = 

x2 q - x  

has an unat ta inable  point  for x = Yo = 0. 
This is also mirrored in the fact that  Uo = O. 
Before we give equivalent condi t ions  for the attainability of the interpolat ion points, we show the 

following equality. 

L e m m a  7.1. It  holds that 

det U (x) = det 1.7 (x). 

Proof. By elementary block el imination operations,  it is easy to show that  

T ( x ) - '  = I  U(x)-  ' + U(x)-IV(x)A(x)-IP(X)A (X)- 1p(x) U(x)-IV(x)A(x)-I]A (x)- 1 
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with A(x) = Q(x) -P(x)U(x) - lV(x) .  
a(x)b(x)T(x) -1 = ~ ( x ) , w e  also have 

U(x) = a(x)b(x)d(x) -1. 

Therefore, 

Moreover,  det T(x) = det A (x)det U(x). Because 

det T(x) = det A (x) det U(x) 

= (a(x)b(x)) q det U(x)/det ~(x). 

Because det r(x) = (a(x)b(x)) q, det g(x) = det if(x). [] 

Corollary 7.1. The interpolation point Yi (or zj) is attainable iff detU(yi) =detU(yl) v~O (or 
detU(zj) = de t~(z j )  ~: 0). 

Theorem 7.2. If  the block L6wner matrix L = [(Ci - Dj)/(yi - zi) ] is nonsingular, the Smith canoni- 
cal form of the polynomial matrices 

LI(X)= 

I - a(x) Ip -7 

L+row ao(X)Ip [ ,  

am-, (x)I, 1 

where :iio...on-jl Ci - -  D j  L+row Y/---- z-~i 

resp., 

Lz = -b(x)Iq,bo(x)Iq,...,b.-l(X)Iq 

where [co ]1 = . - -  D j  

L+¢o~ Cm-1 -~J 

is 

[': o 1 
S v ( x )  ' 
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resp., 

where Sv(x)e ~:P×P[x], resp. So(x)~ ~:q×q[x] are the Smith canonical forms of the polynomial 
matrices U (x), resp. U (x), and N =mp = nq. 

(This result can be compared  with a result for Hankel  matrices [13, Theorem 2.12]. In a future 
paper, we shall elaborate on this.) 

Proof. Let us prove the assertion for Ll(x). Because L is nonsingular ,  there is a matrix M1 of 
d imension N x (N + p) such that  

MIL+row = IN. 

Then  

I - a ( x ) I v ~ [  

- I v ,  U o , . . . ,  U m  - 1 L + row " 0 U (x) J 

a,._ l(X)Ip _] 

for a polynomial  matr ix  P(x). Because U(x) is nonsingular  (det U(x) = x N + ... ~ 0), the last 
matr ix on the right is nonsingular .  Hence, the (constant) t ransformat ion matr ix on the left is 
unimodular .  The  matrix on the right can be evidently mult ipl ied by a un imodula r  matr ix R(x) to 
the right to get 

Then,  it is easy to come over to 

by un imodula r  t ransformat ions  again. []  

In the sequel, we shall need the following corollary. 

C o r o l l a r y  7.2. 

ao(x)Ip 
d e t U ( x ) = ~ l d e t  L+row " ' 

am- 1 (X)Ip 
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I L+eol ] 
det O(x) =/£2 det - b(x)Iq, bo(x)Iq . . . . .  b , -  1 (x)Iq 

where/£1 and / £ 2  are nonzero constants. 

The characterization of solvability of the rational interpolation problem is the following. 

Theorem 7.3. Let the block L6wner matrix L = [(Ci - Dj)/(yi - z j)] be nonsingular. Then all the 
interpolation points are attainable iff both matrices L + row and L +~o~ (defined in the previous theorem) 
have all block minors formed of  m x n blocks of  dimension p x q different from zero. 

Proof. Deleting the ith block row from [(Ci - Dj)/(yi - z j)], denote the resulting matrix by L~. By 
Theorem 7.2, 

[ D° "" D"- x 

is nonsingular iff U(y~)~  O. An analogous assertion holds for O(z~). With this fact and with 
Lemma 7.1, the proof becomes evident. []  

Now we show that if ~ is an unattainable point that 

lim U (x)- 1 V (x) = lim 17 (x) t.7 (x)- 1 4: Fe. 

We need the following lemma. 

Lemma 7.4. I f  U(2) is singular, then U(x) and V(x) have a left common divisor the determinant of  
which is a constant multiple of  (x - 2). Similarly for 17(x) and U (x). 

Proof. If U(ff) is singular, there exists a vector c e 0 :p such that 

cXU(x) = (x - ~)u(x), with u(x) ~ ~:v× 1 [x]. 

Multiplying 

F F ( x ) l  a(x)b(x)R'(x) IV(x)  - V(x)] L I .  = 

to the left by c à , we also get that ca`V(x) = (x - ~)v(x) with v(x) polynomial. If C ~ ~zp×p is any 
nonsingular matrix with its first row equal to c r, then 

G ( x ) = C  -1 Ex + 0 i 1 0 0  0 1 
is a common left divisor of U(x) and V(x) and det G(x) = (x - ff)(det C)-  a ~ 0: Ix]. []  
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Theorem 7.5. I f  U(2) is singular, then 

lim U(x)- 1V(x) 4= F~. 

Moreover, for any common left divisor G(x) of U(x) and V(x) with det G(£) = 0, after deletin9 this 
divisor even the linearized interpolation condition in ~ is not satisfied, i.e. 

U'(~)Fe -- V'(~) # 0 

with U(x) = G(x) U'(x) and V(x) = G(x) V'(x). Similarly, for V(x) and U(x). 

Proof. If U(~) is singular, we know from the previous lemma that there is at least one common left 
divisor G(x) of U(x) and V(x) such that ff is a zero of det G(x). Take such a G(x) with 

det G(x) = (x - ~)ap(x), with p(Y) # 0 and 3 > 0. 

Defining the polynomial  matrices U'(x) and V'(x) by 

U(x) = G(x) U'(x), V(x) = G(x) V'(x), 

we can write 

[ U'(x) -- V'(x)][a(X)bo(X)I p F ( x ) ]  -~ 
-- P(x) Q ( / ) J  Iq _] = a(x)b(x) [ G(;  ) I01" (26) 

We assume now that U'(~)F~ - V'(ff) = 0 or 

- P ( x )  Q(x )  J Iq _] = (x - # ) R ' ( x )  (27) 

with R'(x) m ~[x]  ~p+q)×~p+q). Looking at the factor (x - #) in the determinant  of the right-hand 
sides of (26) and (27), we get 

( x  - = ( x  - x )  

with detR'(x) = (x - ~)Kp'(x) where x ~> 0 is the multiplicity of the root  ff in detR'(x). Hence, 
6 = - r c  ~< 0. Therefore, our assumption cannot  be true or 

U'(X)F~ - V'(~) # O. 

In the sequel, take for G(x) a greatest common left divisor of U(x) and V(x). Hence, U'(x) and V'(x) 
are left coprime. Also, :~ is a zero of det G(x). There are two possibilities. 
• U'(~) is nonsingular. Hence, 

lim U(x) -1V(x) = V'(~) -~ V'(~) # F~. 
X - - ~  

• U'(Y) is singular. Hence, the matrix rational function U'(x)- ~ V'(x) has a pole in Y. Therefore, 

lim U(x)- ~ V(x) = lim U'(~)- t V'(~) # F~. 

This proves the theorem. [ ]  
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The  next  theorem shows tha t  the zeros of the de t e rminan t  of a c o m m o n  left divisor of U (x) and  
V(x) can only  be in te rpo la t ion  points.  

Theorem 7.6. The determinant of  a common left divisor of  U(x) and V(x) divides (a(x)b(x))L 
Similarly, the determinant of  a common right divisor of  V (x) and t~ (x) divides (a(x)b(x) F. 

Proof.  If  G(x) is a c o m m o n  left divisor of  U(x) and  V(x), we can rewrite T(x) as 

o - P(x) O(x) d 

with U (x) = G(x) U' (x) and  V (x) = G(x) V' (x). Because det  T (x) = (a(x)b(x) ) q, det G(x) is a divisor 
of(a(x)b(x))  q. [] 

Using the last two theorems,  we get the fol lowing corollary.  

Corol lary  7.3. I f  U (x) and V (x) are left coprime, there are no unattainable points. I f  U (x) and V (x) 
are not left coprime, with G(x) a greatest common left divisor, the zeros of  the determinant o f  G(x) are 
the unattainable points. 
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