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Abstract

In this paper, we give a fast algorithm to compute the parameters of an inversion formula for any nonsingular block
Lowner matrix. The connection with matrix rational interpolation is given.
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1. Introduction

The present paper gives some results on block Lowner matrices, i.e. matrices of the form
l:ci _ Dj:|j=0,1,...,n—1
Vi — Z; i=0,1,...,m—1’
the C/s, D;’s being p x q blocks. The investigation is restricted to square nonsingular matrices.
Particularly, this means that mp = nq. The method of UV-reduction proposed in [17, Part II,
p.136] for Toeplitz-like operators proves to be very useful here giving a simple inversion formula
(and a criterion of nonsingularity). Generalization of Léwner’s well-known results leads to an
interpolation interpretation of the parameters of the inversion formula. More exactly, four couples

of matrix polynomials [V (x), U(x)], [P (x), T(x)], [Q(x), P(x)] and [((x), P(x)] appear, the first
and third satisfying the linearized conditions for a set of interpolation nodes {X} and a set of
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corresponding (matrix) values {F;}:
V(x)— U(x)F: =0,
Q(x) — P(X)F;z =0,
Vi(x)e FP*1[x], U(x) e FP*P[x],
Q(x)e F[x],  P(x)e F**?[x],
degU(x) =m, deg Q(x) = m,
deg V(x) < m, deg P(x) < m.
Thus, the first system gives a solution of the rational interpolation problem
U~ YX)V(x) = Fz (1)
if the values U (x) are nonsingular. Similarly, the second and fourth couples satisfy
V(x)—F:0(x)=0, Q(x)— F:P(x)=0.

Lowner matrices (by some authors called divided differences or interpolation matrices) with 1 x 1
blocks were introduced in the inspiring paper [19] as a tool to investigate monotone matrix
functions (see also [11]) and to solve the scalar rational interpolation problem (see also [6, 3]).
Starting from a Lowner matrix, one can investigate the connection to Hankel, Toeplitz, Bézout
matrices and to rational interpolation as was done in [12,27]. In [26], an inversion formula is
given for a Lowner matrix. In [1], the block Lowner matrix is used as a tool to construct a minimal
state-variable realization from interpolation data (see also [4]).

In Section 2, a criterion of invertibility and an inversion formula for the block Lowner matrix is
constructed based on the UV-reduction. Section 3 shows the connection with matrix rational
interpolants. In Section 4, we find interesting properties of the matrices

7 uw -ve o [0 P
T(x)‘[—P(x) Q(x)] and T(""[ﬁ(x) U(x)J'

Section 5 is an application of the results of [24] where a unified approach to solve a wide class
of interpolation problems in O(n?) operations is given (n denotes the number of interpolation
data). We use it to find T'(x) and T(x) and thus also to compute L~ !. We also give the connection
to the polynomial approach used in linear system theory to solve rational interpolation
problems, more specifically, to the behavioral approach to linear exact modelling described in
[5]. In Section 6, we give the connection with matrix continued fractions. Section 7 deals
with the rational interpolation problem (1) in more detail, studying the (un)attainability
or (in)accessibility of interpolation points (for the scalar case, see [6,21] and for multiple
points [27]). :
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2. Inversion formula

Consider an (m x n) block Lowner matrix

I I:Cl _ Dj:lj=0,1,2,...,n—1

Yi—Zj li=o0,1,2,...,m—1

with C;, Dje FP*? and y;, z; € F such that Y = {yo,y1,...,Vm-1} and Z = {zo,24,...,2,—1 } have
m, respectively n different elements and YN Z = 0.

We assume that the block Lowner matrix is square, i.e., mp = nq. In this section, we give an
invertibility criterion for such a square block Lowner matrix. If the inverse exists, we construct an
inversion formula. To this end, we use the method of UV-reduction proposed in [17, Part II, p.136]
for Toeplitz-like operators.

Theorem 2.1 (UV-reduction). Given a block Léwner matrix

I I:Cl _ Dj:|j=0’1’2’"""_1

Yi—2Zj li=o0,1,2,....m—1
then
Co I,
) . C, P
diag(y;)L — Ldiag(z;) = : 1, 1, ... I,]— [Dy D, ... D,-{] (2)
Chu-1 I,
with

diag(y;) = diag(yolp, Yilps - s Ym-11p)
and

diag(z;) = diag(zoly, 2114, ... s Za-11,).

Proof. Evident by direct computation of both sides. []

Using the UV-reduction, we get the following inversion formula and invertibility criterion for
a block Lowner matrix.

Theorem 2.2. Given the block Lowner matrix L = [(C; — D;)/(y; — z;)]. Consider the equations
[Po Py ... P,y1L=1[I,1, ... 1,], (3)
[Uo Uy ... Up-11L=[Do Dy ... Dn—l]s C)]
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P, 1,
L P ©
P L,
[ O, Co
A T ©
O] | Cues

Egs. (3) and (4) are solvable (similarly, (5) and (6) are solvable) iff the block Lowner matrix

I l:cl _ Dj]j=0,1,2,...,n—1

Yi— 25 li=o0,1,2,....,m—1

is nonsingular.
If L is nonsingular, its inverse L™ can be written as

L™= [M]M’l’zwm—l
yj — Z

i=0,1,2,...,n—1 )
Note that
PietF??, j=0,1,....m—1,
UjeFP*?, j=0,1,....m—1,
BelFrr, i=0,1,....,n—1,
UieFr*e, i=0,1,...,n—1.
Proof. Itis clear that if L is invertible, Egs. (3) and (4) are solvable. Suppose now that (3) and (4) are
solvable. If ¢ € Ker L, we get from (3),
(I, 1, ... I,[Jc =0
and from (2)—(4) that
Ldiag(z;)c =0 or diag(z;)c € KerL.
Repeating the same reasoning, we derive
77 PN Sy

Because the block Vandermonde matrix [zi1,] is nonsingular (since z; # z;, j # i), it follows that
¢ = 0. Hence, L is invertible.

= 0.

o
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Assume now that L is invertible. Multiplying (2) to the left and right by L™, we get
L~ 1 dlag(y,) - dlag(z])L_ 1

Co IP
C 1

=LY ol I, .. 1JL"' =LY P |[Do Dy ... Dy 1LY
Crn-1 I,

Using the definition of P;, U;, P, and U,, we derive
L™ diag(y;) — diag(z;)L™"

U
= : [Po Pl see Pm—l]_ [UO Ul ves Um—l]'

Un—l Pn—l

Taking the (i, j)(g x p)-block of the left- and right-hand side, it follows that
(L™ ;¥ — 2L~ Y ; = U:P; — B,U;.

Therefore, the (i, j) block of L~ can be written as

U.p;,— PU;

L_1 ii
(s Yi— &

a

3. The connection with matrix rational interpolants

265

In this section, we give the relationship between P, U, P, U and certain matrix rational interpo-

lants.

Definition 3.1 (Degree of polynomial matrices). Given P(x)e FP*?[x], we write deg P(x) < n iff
each of the polynomial elements of P(x) has degree smaller than n. We say deg P(x) = n iff

P(x) = P,z"+ P,_,z" "' + - + P, with P, € F?*4 having full rank.

Take the following basis for the vector space F,[x] of all polynomials having degree <n:

{b()sbla'-',bn—l,b}

with

b = T (x = 2)
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j=0,1,...,n— 1.

Similarly we can write a basis for F,[z]: {ao,ay,...,am-1,a} based on the points Y =
{Y0s¥1,---»Ym-1} instead of the points Z = {z¢,21,...,Z,-1}.
Constructing the following matrix polynomials from the solutions of Egs. (4) and (6),

Fafs0(x) = b, — 3 b0, ™
Frxa[x]aV(x) = — "il b;(x)D;U;, @®)
j=0
FPolxlsU) = a@l, — 3 aU ©
and
FPra[x]aV(x) = — mf a;(x)U;C;, (10)
i=0

we get the following interpretation for U and U.

Theorem 3.1 (Connection with matrix rational interpolation). If the matrix polynomials V (x) and
U(x) are given by (7) and (8), the matrix rational function

R(x) = P(x)0(x)?

represents the unique matrix rational function having deg V(x) < n — 1 and deg U(x) = n such that
R(x) satisfies the linearized interpolation conditions, i.e.

V(x)=FU(X) VXeYuZ, (11)
with

and
Fj=Di if.)E:Zi.

A similar result is also true for U(x)~ 1V (x), given by (9) and (10). Moreover, they represent the same
matrix rational function, i.e.

R(x)=V(x)U(x)™! = U(x)" 'V (x).

Proof. Let us look at all matrix rational functions R(x) of the form (deg < n — 1)(deg = n)~!
interpolating the data. We can always normalize R(x) such that the highest degree coefficient of the
denominator is I,.
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We take the basis {bo,b;,...,b,-1,b} based on the interpolation points Z = {z¢,z1,...,2,—1}
and parametrize R(x) such that

R(x) = A(x)B(x)~",
with
-1

MM=MM&—§:MM&, (12)

Am=—Eﬁﬂmf (13)

The matrix rational function has to satisfy the linearized interpolation conditions, i.e.
Ay)=CB(y), i=0,1,...,.m—1, (14)
A(z;) = D;B(z;), j=0,1,...,n—1. (15)

Using the parametrization (12) and (13), the interpolation conditions (15) can be rewritten as
bj(zj)A;=bj(z;)D;B; or A;=D;B;, j=0,1,...,n—1

Once we have the B;, we can compute the 4;. How do we compute the B;? Rewriting (14) gives us

n—1 -1

- /_Yo bj(y)D;B; = C; (b(yi)lq - n;} b,—(yi)Bj>

J
or

n—1

bj(y:)(C; — Dj)B; = C;b(y;).
=0

J
Using the definition of b;(x), i.e.
b(x)

s
x—Zj

bi(x) =

we derive the equation

v 20 (¢, _p)B, = cb(r).

j=0 Yi — Zj

Because b(y;) # 0,

n—1 s — :
) <C—'-—&>B,~=Ci, i=01....m—1.

j=o \ Vi — 2;
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Hence, the coefficients B; are uniquely determined as the solution of the following set of linear
equations

BO CO

B C

L 1 — .1
Bn—l Cm—l

Therefore, U(x) = B(x) and V(x) = A(x).
Similarly, we can prove that U~ !(x)V(x) is the only matrix rational function satisfying the
linearized interpolation conditions and having the form

(deg = m)~ Y(deg < m).
It remains to show that

U () V(%) = V(x)T(x)*
or

Ux)V(x) = V(x)U(x).

The matrix rational functions U ~(x) V(x) and ¥ (x) U (x) ! both satisfy similar linearized interpo-
lation conditions, i.e.

V(X) - F:U(x)=0 (16)
and
V(E) - UFE)F;=0 (17)

V X € Y U Z. Multiplying (16) to the left by U (%) and (17) to the right by U (%) and subtracting, we
get

Ux)V(x) = V) U (x).
Hence, there exists some polynomial matrix M(x) € FP*?[x] such that
Ux)V(x) = V(x)U(x) + a(x)b(x) M(x).
Because deg(U (x) V(x)) and deg(V(x)U(x)) < m + n, M(x) = 0.
This completes the proof. []

Similarly, we can use P and P to construct matrix polynomials and give an interpretation as
a tangential interpolation problem.
Define P(x), J(x), P(x) and Q(x) based on the solutions of Egs. (3) and (5) as follows:

[F""”[x]aﬁ(x) = nil bj(x)ﬁj, (18)
j=0
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FP*P[x]20(x) = b(x)I, + ng b;(x)D;P;, (19)

F2*P[x]3P(x) = mil a;(x) P; (20)
and

F7*[x]3Q(x) = a(x)1, + mil a;(x) P,C;. (21

(4]

The parameters P and P of the inversion formula of a block Léwner matrix are related to an
interpolation problem as follows.

Theorem 3.2 (Connection to a tangential interpolation problem). If the polynomial matrices ((x)
and P(x) are given by (18) and (19), the matrix polynomial couple ((x), P(x)) is the only couple such
that

o O(x) e F?*?[x] and deg O(x) = n; P(x) € F**?[x] and deg P(x) < n; highest degree coefficient of
Q(x) is Ip;

e 0(x)=F:P(Xx) VXieYUZ

Similarly, if Q(x) and P(x) are given by (20) and (21), the matrix polynomial couple (Q(x), P(x)) is the

only couple such that

e Q(x) € F*9[x] and deg Q(x) = m; P(x) € F?*P[x] and deg P(x) < m; highest degree coefficient of
Q(x) is I;

e Q(X)=P(X)F; VxeYUZ.

Moreover,

P(x)0(x) = Q(x) P(x).

Proof. The proof goes along the same lines as the previous proof. We give the proof for the couple

(Q(x), P(x)).

We can parametrize P(x) and Q(x) as follows:

PE =Y a®P,

i=0

and

00 = alWly + T a(x)0:

Because P and Q have to satisfy the interpolation conditions
Q(yl)=P(yl)Cn i=0’1"",m_'1,
we get that @, = P,C;.
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The remaining interpolation conditions, j = 0,1, ...,n — 1, transform into

m—1 m—1
a(Zj)Iq + Z a,-(Zj)P,-C,- = Z ai(Zj)PiDj
i=0

i=0
or

mil a;(z;)Pi(C; — D;) = —al(z)1,

i=0

m-1 (C,— D,
2 (52

i=0 Yi— zj

or

or
[PO P1 Pm_1]L = [Iq Iq Iq]
Because L is nonsingular, the solution is unique. As in the previous proof, it is easy to show that

P)0(x)=0xP). 0O

4. Some properties of the parameters of the inversion formula

In this section, we indicate how to compute P, P, U and U. The interpolation conditions of
Theorems 3.1 and 3.2 on the corresponding polynomial matrices P(x), P(x), U(x) and U(x) can be
summarized as follows:

Look for a polynomial matrix

T(x) e FPraxprary]
such that

o [I,—F:]T(X)=0,VXe YUZ,
e deg T(x) =n, _ _
o highest degree coeflicient of T(x) is I+, (hence, deg det T(x) = n(p + g)).

If we partition the matrix T'(x), we get

=~ [0 7x
””‘[mm qu' @2

Hence, T'(x) is unique.
In the same way, Q(x), P(x), V(x) and U(x) can be found as the blocks of a square polynomial
matrix T(x) e F@+9*r+d[x],

_ Ux) —V&
o= gy Qm] @)
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such that
o T(X) [Z *
e deg T(x) = m (hence, degdet T'(x) = m(p + q)),
o highest degree coefficient of T'(x) is I, .
Clearly, T'(x) is also unique. N

The polynomial matrices T(x) and T'(x) are related as follows.

]=0, VxeYuZ,

Theorem 4.1. The polynomial matrices T(x) and T(x) given by (22) and (23) satisfy
T(x)T(x) = T(x) T(x) = a(x)b(x)1,+,.
Moreover,

det T(x) = (a(x)b(x))?,  det T(x) = (a(x)b(x))”.
Proof. Using the linearized interpolation conditions, we write

I, — F(x) _
|: 0 a(bx) Iq] T(x) = a(x)b(x)R(x) (24)

with R(x) e FP*9**9[x] and F(x) e F7*9[x] such that F(x) = F;.
A possible choice for F(x) is the interpolating matrix polynomial of degree < m + n. Taking the
determinant of left- and right-hand side of Eq. (24) gives us

(a(x)b(x))?det T'(x) = (a(x)b(x))?*? det R(x).
Because dega(x) = m, degb(x) = n and degdet T'(x) = n(p + g), we derive
degdetR(x) =nqg—mp =0 or detR(x)=c #0.

Hence, R(x) is a unimodular matrix and det T'(x) = c(a(x)b(x))?. Because the highest degree
coefficient of T'(x) is I »+q> det T(x) is a monic polynomial. The polynomials a(x) and b(x) are
monic. Therefore, ¢ = 1 (similarly for T(x)).

Take the inverse of left- and right-hand side of Eq. (24)

1
I, —— F(x)
~ 41 7 a(x)b(x) 1 _
Tk L =2 kW
a(x)b(x) ?
or
a(x)b(x)T(x)~! =R_1(x)|})" . (;);(S)I ] (25)

The right-hand side of (25) is a polynomial matrix. Hence,
T*(x) = a(x)b(x) T(x) ™"
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is polynomial. Moreover, because
T() ' =1, x " +0_(x"""1),
we get that
T*(x) = a(x)b(x),+,x "+ O_(x™"" 1)
=1, X"+ O_(x""1).
Multiplying (25) to the right by

a(x)b(x)I, F(x)
0 1,

we derive the following interpolation conditions on T*(x):

T* () [a(x)l())(x)lp FI(x)

Hence, T*(x) = T(x). O

] = a(x)b(x) R~ (x).

q

Note that the previous result is an extension of the classical duality between type I (Latin) and
type II (German) polynomial systems in a normal point of the Padé—Hermite approximation
problem [20, 18, 10].

The following theorem is based on the results of [24]. Column and row reducedness of
a polynomial matrix is also defined in Definition 6.1.

Theorem 4.2 (Connection with module theory). The polynomial matrix T(x) given by (22) forms
a column (and row) reduced basis matrix for the submodule S of all polynomial (p + q)-tuples
p(x) e F@T9x1157 satisfying

[I, —Flp(X)=0 VxeYUZ.

Similarly, the polynomial matrix T (x) given by (23) forms a row (and column) reduced basis matrix for
the submodule S of all polynomial (p + q)-tuples p(x) € F! *?*D[x] satisfying

p(x)[f*] =0 VieYuUZ

q

Proof. We prove the theorem for the polynomial matrix T'(x). It is clear that the columns of T (x)
are F[x]-linearly independent and satisfy the interpolation conditions. Clearly, T(x) is column
(and row) reduced. Moreover,

degdet T(x) =n(p + q)

which is equal to the number of independent interpolation conditions
p(m +n)=gqn + pn=n(p + q).

This proves the theorem for T(x). [
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5. Efficient computation of T (x) and 7'(x)

Using the results of [247], we get the following algorithm to compute T'(x) and T'(x) in a recursive
way.

Algorithm 5.1
given
X=YUZwithY ={yo,V1,--sVm-1y and Z = {20,21,...,Zp-1}
F;eFP 9 VxeX
pm = qn
initialization .
T(x) = I,., with column degrees 6 = [8;...8,+,] =[00...0] e N?*4
T(x)_= I,
while X # do
take an arbitrary X € X; X = X\ {x}
forie{l1,2,...,p} do
e compute the residuals, i.e.,
FLxP*D50rr,...rprd = e[l, — F]1T(X)
with F1*?3¢; =[0...010...0] (1 on the ith place)
o take j = min{k|d, = 6*} with 6* = min{d;|r; # 0}
o T(x) = T(x)W(x) with column degrees
[51, ,51'—1, 5j -+ 1, 5j+1, ,(Sp+q:]
T(x)=(x— X)W 1 (x)T(x)

with
-, —_
T
. T
W(x)= _
—ry —ry o —Tiog (X—=X) —Tier ot —Tpag
T
L i _
finally
T(x)=T)H !
T(x)=HT(x)

with H = highest degree coefficient of T (x).

Algorithm 5.1 requires O((m + n)?) operations in the field F.

Once we have T'(x) and T(x), we can immediately partition T(x) and T(x) to get the parameters
of the inversion formula.
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Note: Algorithm 5.1 is based on the updating procedure described in [24] which computes basis
matrices connected to a general matrix rational interpolation problem. In each step of Algo-
rithm 5.1 the set X decreases. The polynomial matrix T(x) is a row reduced basis matrix for the
submodule S of all polynomial (p + g)-tuples p(x) € F!*?*9[x] satisfying

F; _

p(x) [I"] =0 Vxe(YUuZ)\X.
q

The polynomial matrix T'(x) is a column reduced basis matrix for the submodule § of all

polynomial (p + g)-tuples p(x) € F?*9*1[x] satisfying

[[, —F:]p(X)=0 Vxe(YUZ\X.

Finally, the basis matrices T'(x) and T(x), the output of Algorithm 5.1, have the special form as
described by Theorem 4.2 because the matrix rational interpolation problem is connected to
a nonsingular square block Lowner matrix.
We want to make the link here with the behavioral approach to linear exact modelling [5].
Suppose we look for all matrix rational functions Z of size p x q given the first part of the Taylor
series expansion of Z for a finite number of points X, i.e.

Z(x)=Z(X) + (x = X)ZD(X) + - + (x — %)= DZETD(E)/(k: — D! + O((x — X))

This is equivalent to looking for all linear systems having transfer function Z(x) which have output
Y<(t) corresponding to input Ug(t) with

|: Yi(t):| — W)

Us(t)
_ e {[ZI(’”} 5 e — Dl 4 e+ [Z”;‘*)] I (g — = 1)

o +[z“*;”(>€)}}

Hence, if we take only function values and no derivatives, we look for all Z(x) such that Z(x) = F;.
The input/output data set is

Wi(t) = [wy (1), ..., we ()] = |:in?):| — ¥ |:fx:|

If we take the polynomial-exponential “time series” w; ;(t), V X € Y U Z as the data set, the rows of
a row reduced autoregressive equation representation 6*(x) described in [5] form what is called in
[24] a 0-reduced basis for the submodule connected to the matrix rational interpolation problem.
Hence, the autoregressive equation representation 6*(x) being row reduced with highest degree
coefficient I, , is nothing else but our T'(x) matrix. Moreover, the recursive update described in
[5, Section 8] is very similar to the update described in [24] and worked out in our algorithm of
Section 5.
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If we take the input/output data

| 1
Wf(t) =e* ItFI,J_T},

we get the row reduced autoregressive equation representation T'7(x).

Note that T'(x) and TT(x) can be seen as §(x)-matrices playing a central role in [4].

If one also wants to consider pole information for the matrix rational interpolant, this problem
can be solved as a no-pole problem when enough interpolation data are known at each pole [22].

In Algorithm 5.1 one new datum is added at each step. In [25] it is described how a new basis
matrix can be computed from a previous one adding several data all at once, a so-called
“look-ahead” step. Taking more data at each step could be used to enhance the numerical stability
of the algorithm (for the scalar rational interpolation problem, see [8]) as was done for Hankel and
Toeplitz matrices (see, e.g., [9, 14-16]).

6. Matrix continued fraction representations

If we denote the successive polynomial matrices W(x) appearing in Algorithm 5.1 as
Wi(x), Wy(x), ..., Wi(x), with | = p(m + n), denote H™! as W, ,, and partition W;(x) as

[0 T
mm—[mﬂ am}

with 0;(x) p x p, we have the following connection with matrix continued fractions.

Theorem 6.1. The matrix rational function V(x)U(x) ™! of Theorem 3.1 is the (I + 1)st convergent of
the matrix continued fraction

. V. 02(x)
Pi(x) + 04(x) Uzz(();))_:_%z g; =

2 5 V2(x) + 0, (x) =
IR ARy AT

The matrix rational function P(x)Q(x) ™! is the (I + 1)st convergent of the matrix continued fraction
Py(x) + Oy(x) =

02(x) + Va(x) =

Iiz(x) + IZ2(x)i_33.

Q2(x) + Va(x) =

The notation A/B stands for AB™'. There are similar results for U(x)™ 'V (x) and Q(x) ™ *P(x).

Pi(x) + U, (x)

0:(x) + P1(x)

The matrix continued fraction is very similar to the one introduced in [2] to decompose matrix
formal power series in x~ !, i.e., solving the rational interpolation problem around the multiple
point oo (see also [23]). By changing the variable as described in, e.g., [7, 5], the so-called minimal



276 M. Van Barel, Z. Vavrin | Journal of Computational and Applied Mathematics 69 (1996) 261-284

partial realization problem around oo can be changed into a matrix rational interpolation
problem around 0. The matrix continued fraction can be interpreted as a cascade interconnection
of linear two-port systems (see, €.g., [5, Section 10]).

Before we can prove previous theorem, we need some additional results. We use the notation
Wi, j(x) for

Wi, j(x) = Wix)Wis1(x) ... Wilx), i<
W; j(x) is partitioned similarly to W;(x) as

Qi,j(x) I7”(x) ]

Wi ix) = [ P i(x) U (%)

Definition 6.1 (Column reduced polynomial matrix). A polynomial matrix P(x) e F[x]"*" is called
column reduced iff

P(x) = (P* + O_(x"1))x°

with P* € F"*" nonsingular and x° = diag(x®, x, ..., x*), 8 € N*, The natural number §; is called
the column degree of the ith column of P(x) and P* is called the highest degree coeflicient (hdc) of
P(x). Row reducedness is defined in a similar way.

Lemma 6.2. The polynomial matrices W, i(x), i = 1,2,...,1 + 1, are column reduced with an upper
triangular and nonsingular hdc.

Proof. This is true for Wy ((x). Suppose it is true for W, ;_(x). The choice of j in Algorithm 5.1
guarantees that the hdc of the kth column of W, ;(x) is a nonzero multiple of the hdc of the kth
column of W, ;_,(x) to which in some cases a nonzero multiple of the hdc of a previous column of
W,.i—1(x) is added. This proves the lemma. []

Note that the previous lemma implies that H and H~! are nonsingular and upper triangular
matrices.

Lemma 6.3. The polynomial matrices U; ;(x) and 0. j(x) are nonsingular, i <j <1+ 1.

Proof. We start from the following equality:
Wi i(x) = Wy -1 ()W, j(x).

Because each W, (x) is invertible, also Wi ;_(x) is invertible. Hence,
W, i(x) = Wy,i-1(x)” ! Wy, ;(x).

From

Wi (x) = (4 + O_(x™1)x"
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and
Wi,i-1(x) = (B + O_(x"1))x*
with A and B nonsingular and upper triangular, we get
W, i(x)=x"2(B~1 + O_(x""))(4 + O_(x~1))x>
=x"%B 714 +0_(x"1)x"

with B~ 14 nonsingular and upper triangular. Hence, the (1, 1) block §; ;(x) and the (2, 2) block
U..;(x) of W, ;(x) are invertible. [

Now we have all the ingredients to give the proof of Theorem 6.1.

Proof of Theorem 6.1. We give the proof only for V(x)U(x)~*. The proof for P(x)((x) ! is similar.
We rewrite V(x)U(x)™! as follows:
I7(")6(9‘)_1 = I71,z+ 1(x)(71,,+ ()71

_ 0:(x) I_~72,1+1(>C) + Vi) U,141(x)
Pi(x) Vs, 141(x) + UI(XWZ,I+ 1(x)’

Because U, ;. (x) is invertible, we get

5oy Vi) + 010 Z2,141(x)
VU = 5 0 T P9 Zs 101

with Z, ;+,1(x) = 172,,+1(x) U,.1+1(x)" . Following the same reasoning for Z, ;1 1(x), Z3 ;4 1(x), ...
leads us to the matrix continued fraction representation for V(x)U(x)"*. 0O

Note that also each convergent i,i = 1,2, ...,1is well-defined and connected to a matrix rational
interpolation problem considering the first i interpolation conditions.

7. Unattainable points

Definition 7.1. Consider the linearized interpolation problem given by (11). Then the interpo-
lation point y; (or z;) is called attainable iff the matrix O(y;) (or U(zj)) is nonsingular so that
the corresponding interpolation condition can be written as a proper rational interpolation
condition

V(y)O(y) ™' = C.
We give a small example showing that the nonsingularity of the (block) Léwner matrix does not

necessarily guarantee that for V(x)U(x)™! = U(x)~ 'V (x) all the interpolation points are attain-
able.



278 M. Van Barel, Z. Vavkin | Journal of Computational and Applied Mathematics 69 (1996) 261—284

Takep=gq=1,m=n=2and
y0=0, C0=2, y1=1, C1=6,
ZO=2, D0=4, Zl=3, D1=3

The Lowner matrix

!
L‘[—z —%]

is nonsingular with determinant —3.
We get U and U as the solution of

LO = [g‘l’]
and

UL =[Dy D,].
We derive

6
U=[_12} and U=[0 —-2].

Hence,
Ux)=x2+x, V(x)=12,
Ux)=x*+x, V(x)=12x.
The rational function

12x

POU@™ =UE™VE) =7

has an unattainable point for x = y, = 0.

This is also mirrored in the fact that Uy = 0.

Before we give equivalent conditions for the attainability of the interpolation points, we show the
following equality.
Lemma 7.1. It holds that

det U(x) = det U(x).

Proof. By elementary block elimination operations, it is easy to show that

Ty = I:U(x)‘1 + U(x)" 'V (x)4(x)” 1 P(x) U(x)'lV(x)A(x)_l]
X o= A(x)"1P(x) A(x)"!
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with  A(x) = Q(x) — P(x)U(x)"'V(x). Moreover, det T(x)= detA(x)detU(x). Because
a(x)b(x)T(x)~! = T(x), we also have

U(x) = a(x)b(x)4(x)~ .
Therefore,
det T(x) = det A(x)det U(x)
= (a(x)b(x))*det U(x)/det U (x).
Because det T'(x) = (a(x)b(x))%, detU(x) = det U(x). O

Corollary 7.1. The interpolation point y; (or z;) is attainable iff detU(y;) =detU(y;) #0 (or
det U(z;) = det U(z;) # 0).

Theorem 7.2. Ifthe block Lowner matrix L = [(C; — D;)/(y: — z;)] is nonsingular, the Smith canoni-
cal form of the polynomial matrices

—ax)1,
ao(x)I
Ll(x) - L 0( ) 1'7 ,
+row .
am—l(x)lp
where
Dy...D,_
L+row - I:Cl _ DJ] ’
Yi—2z;
resp.,
L = L+col
2 —~ b)), bo(X) gy ..., a1 (X)1, |’
where
Co
) C,—D;
L+col = . I: y _ Z.J]
Cm—l l !

is
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resp.,

In 0

0 Sg(x) |

where Sy(x) € FP*P[x], resp. Sp(x) € F*4[x] are the Smith canonical forms of the polynomial
matrices U(x), resp. U(x), and N = mp = nq.

(This result can be compared with a result for Hankel matrices [13, Theorem 2.12]. In a future
paper, we shall elaborate on this.)

Proof. Let us prove the assertion for L;(x). Because L is nonsingular, there is a matrix M, of
dimension N x (N + p) such that

ML, =Ix.
Then
— a(x)I,
[ M, ] ao(X)M, | _ [IN P(x)]
—1,,Up, ..., Un—1 L iow : 0 U(x)
Am—1(X)1,

for a polynomial matrix P(x). Because U(x) is nonsingular (detU(x) = x¥ + -.. # 0), the last
matrix on the right is nonsingular. Hence, the (constant) transformation matrix on the left is
unimodular. The matrix on the right can be evidently multiplied by a unimodular matrix R(x) to
the right to get

[Iy O

| 0 U |

Then, it is easy to come over to
[Iy 0

| 0 SU(X)

by unimodular transformations again. []

In the sequel, we shall need the following corollary.

Corollary 7.2.
— ax)1,
x)1
det U(x) = x; det @ty |

+ row

am—l(x)Ip
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L+col ]
- b(X)Iq, bO(x)Iq’ 9bn—1(x)1q ’

where K, and K, are nonzero constants.

det U(x) = k, det [

The characterization of solvability of the rational interpolation problem is the following.

Theorem 7.3. Let the block Lowner matrix L = [(C; — D;)/(y: — z;)] be nonsingular. Then all the
interpolation points are attainable iff both matrices L ; .o, and L . ) (defined in the previous theorem)
have all block minors formed of m x n blocks of dimension p x q different from zero.

Proof. Deleting the ith block row from [(C; — D;)/(y; — z;)], denote the resulting matrix by L;. By
Theorem 7.2,

Dy...Dy-y
L;

is nonsingular iff U(y;) # 0. An analogous assertion holds for U(z;). With this fact and with
Lemma 7.1, the proof becomes evident. []

Now we show that if X is an unattainable point that

lim U(x)™ 'V (x) = lim V(x)0 (x)"* # F;.

X=X

We need the following lemma.

Lemma 7.4. If U(xX) is singular, then U(x) and V(x) have a left common divisor the determinant of
which is a constant multiple of (x — X). Similarly for V(x) and U(x).

Proof. If U(x) is singular, there exists a vector ¢ € F? such that
cTU(x) = (x — X)u(x), with u(x) e FP*![x].
Multiplying

F(x)

(U —V(x)][ h

:I = a(x)b(x)R’(x)

q

to the left by T, we also get that ¢V (x) = (x — X)v(x) with v(x) polynomial. If C € F?*” is any
nonsingular matrix with its first row equal to c', then

x—x%x 0 ... 0

0 1 0

Gx)=C"1 . . .
0 o ... 1

is a common left divisor of U(x) and V(x) and det G(x) = (x — x)(detC) "' e F[x]. O
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Theorem 7.5. If U(x) is singular, then
lim U(x) "'V (x) # F;.

XX

Moreover, for any common left divisor G(x) of U(x) and V (x) with det G(X) = 0, after deleting this
divisor even the linearized interpolation condition in X is not satisfied, i.e.

UX)F; — V'(x)#0
with U(x) = G(x)U’(x) and V(x) = G(x)V'(x). Similarly, for V(x) and U(x).
Proof. If U(x) is singular, we know from the previous lemma that there is at least one common left
divisor G(x) of U(x) and V' (x) such that x is a zero of det G(x). Take such a G(x) with
det G(x) = (x — x)°p(x), with p(x) # 0 and & > 0.
Defining the polynomial matrices U’(x) and V'(x) by
Ulx) = Gx)U'(x),  V(x)=Gx)V'(x),

Wwe can write

B g()(:;) - Z(S;) Va(X)l;(x)Ip F I(X) — a(x)b(x) [G()(C))_ 10} (26)
We assume now that U'(x)F; — V'(x) =0 or
B }l)f( )(:)C) - g(g) a(X)%(x)I » F I(:C) - (x — HR'() 27

with R'(x) e F[x]®*9*@®*D L ooking at the factor (x — %) in the determinant of the right-hand
sides of (26) and (27), we get

(x _ x)(p+q)—6 = (x _ x)(p+q)+k
with det R'(x) = (x — X)“p’(x) where x = 0 is the multiplicity of the root x in det R’(x). Hence,
0 = —k < 0. Therefore, our assumption cannot be true or

U'(X)F; — V'(x) #0.

In the sequel, take for G(x) a greatest common left divisor of U(x) and V (x). Hence, U’(x) and V’(x)
are left coprime. Also, x is a zero of det G(x). There are two possibilities.
e U’(x) is nonsingular. Hence,

lim U(x)~ 'V (x) = U'(X)"V'(X) # F.

e U’(x) is singular. Hence, the matrix rational function U’(x)~1V’(x) has a pole in x. Therefore,

lim U(x)™'V(x) = lim U'(%)"'V'(%) # Fs.

XX

This proves the theorem. [
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The next theorem shows that the zeros of the determinant of a common left divisor of U(x) and
V(x) can only be interpolation points.

Theorem 7.6. The determinant of a common left divisor of U(x) and V(x) divides (a(x)b(x))%.
Similarly, the determinant of a common right divisor of V(x) and U(x) divides (a(x)b(x))".

Proof. If G(x) is a common left divisor of U(x) and V(x), we can rewrite T(x) as

| Gx) 0 Ukx) —V'(x)
=" o cre 0w
with U(x) = G(x)U’(x) and V (x) = G(x) V'(x). Because det T(x) = (a(x)b(x))?, det G(x) is a divisor
of (a(x)b(x))!. O

Using the last two theorems, we get the following corollary.

Corollary 7.3. If U(x) and V (x) are left coprime, there are no unattainable points. If U(x) and V(x)
are not left coprime, with G(x) a greatest common left divisor, the zeros of the determinant of G(x) are
the unattainable points.

References

[1] B.D.O. Anderson and A.C. Antoulas, Rational interpolation and state variable realizations, Linear Algebra Appl.
137/138 (1990) 479-509.
[2] A.C. Antoulas, On recursiveness and related topics in linear systems, IEEE Trans. Automat. Control AC-31 (1986)
1121-1135.
[3] A.C. Antoulas and B.D.Q. Anderson, On the scalar rational interpolation problem, IM A J. Math. Control Inform.
3 (1986) 61-88.
[4] A.C. Antoulas, J.A. Ball, J. Kang and J.C. Willems, On the solution of the minimal rational interpolation problem,
Linear Algebra Appl. 137/138 (1990) 511-573.
[5] A.C. Antoulas and J.C. Willems, A behavioral approach to linear exact modeling, IEEE Trans. Automat. Control
AC-38 (1993) 1776-1802.
[6] V. Belevitch, Interpolation matrices, Philips Res. Rep. 25 (1970) 337-369.
[7] A. Bultheet and M. Van Barel, Minimal vector Padé approximation, J. Comput. Appl. Math. 32 (1990) 27-37.
[8] S. Cabay, M.H. Gutknecht and R. Meleshko, Stable rational interpolation?, Tech. Report 93-12, IPS-ETH, Ziirich,
1993.
[9] S.Cabay and R. Meleshko, A weakly stable algorithm for Padé approximants and the inversion of Hankel matrices,
SIAM J. Matrix Anal. Appl. 14 (1993) 735-765.
[10] J. Coates, On the algebraic approximation of functions, I-IIl, Proc. Kon. Nederl. Akad. Wet. 69 (1966) 421-461;
also: Indag. Math. 28 (1966).
[11] W.F. Donoghue, Jr., Monotone Matrix Functions and Analytic Continuation, Grundlehren Math. Wiss. 207
(Springer, Berlin, 1974).
[12] M. Fiedler, Hankel and Loewner matrices, Linear Algebra Appl. 58 (1984) 75-95.
[13] M. Fiedler, Quasidirect decompositions of Hankel and Toeplitz matrices, Linear Algebra Appl. 61 (1984) 155-174.
[14] R.W. Freund and H. Zha, Formally biorthogonal polynomials and a look-ahead Levinson algorithm for general
Toeplitz systems, Linear Algebra Appl. 188/189 (1993) 255-303.



284 M. Van Barel, Z. Vaviin | Journal of Computational and Applied Mathematics 69 (1996) 261-284

[15] R.W. Freund and H. Zha, A look-ahead strategy for the solution of general Hankel systems, Numer. Math. 64
(1993) 295-322.

[16] M.H. Gutknecht and M. Hochbruck, Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz
systems, Tech. Report 93-11, IPS, ETH Ziirich, 1993.

[17] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators (Akademie Verlag, Berlin/
Birkhiuser, Basel, 1984).

[18] H. Jager, A multidimensional generalization of the Padé table, Proc. Kon. Nederl. Akad. Wet. 67 (1964) 193-249;
also: Indag. Math. 26 (1964).

[19] K. Léwner, Uber monotone Matrixfunktionen, Math. Z. 38 (1934) 177-216.

[20] K. Mahler, Perfect systems, Compositio Math. 19 (1968) 95-166.

[21] J. Meinguet, On the solubility of the Cauchy interpolation problem, in: A. Talbot, Ed., Proc. Univ. Lancaster Symp.
on Approximation Theory and Application (Academic Press, New York, 1970) 137-164.

[22] M. Van Barel, B. Beckermann, A. Bultheel and G. Labahn, Matrix rational interpolation with poles as interpola-
tion points, in: A.M. Cuyt, Ed., Nonlinear Numerical Methods and Rational Approximation II (Kluwer, Dordrecht,
1994) 137-148.

[23] M. Van Barel and A. Bultheel, A canonical matrix continued fraction solution of the minimal (partial) realization
problem, Linear Algebra Appl. 122/123/124 (1989) 973-1002.

[24] M. Van Barel and A. Bultheel, A general module theoretic framework for vector M-Padé and matrix rational
interpolation, Numer. Algorithms 3 (1992) 451-461.

[25] M. Van Barel and A. Bultheel, The “look-ahead” philosophy applied to matrix rational interpolation problems, in:
U. Helmke, R. Mennicken and J. Saurer, Eds., Systems and Networks: Mathematical Theory and Applications, Vol.
II: Invited and Contributed Papers, Math. Res. 79 (Akademie Verlag, Berlin, 1994) 891-894.

[26] Z. Vavfin, Inverses of Lowner matrices, Linear Algebra Appl. 63 (1984) 227-236.

[27] Z. Vaviin, A unified approach to Loewner and Hankel matrices, Linear Algebra Appl. 143 (1991) 171-222.



