Inversion of a block Löwner matrix

M. Van Barel ${ }^{\text {a,* }}$, Z. Vavrín ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium
${ }^{\text {b }}$ Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 11567 Prague, Czech Republic

Received 14 June 1994; revised 24 March 1995

Abstract

In this paper, we give a fast algorithm to compute the parameters of an inversion formula for any nonsingular block Löwner matrix. The connection with matrix rational interpolation is given.

Keywords: (Block) Löwner matrix; Inversion formula; (Matrix) Rational interpolation; (Un)Attainable points; (In)Accessible points

AMS classification: primary 15A09; secondary 41A20

1. Introduction

The present paper gives some results on block Löwner matrices, i.e. matrices of the form

$$
\left[\frac{C_{i}-D_{j}}{y_{i}-z_{j}}\right]_{i=0,1, \ldots, m-1}^{j=0,1, \ldots, n-1}
$$

the C_{i} 's, D_{j} 's being $p \times q$ blocks. The investigation is restricted to square nonsingular matrices. Particularly, this means that $m p=n q$. The method of UV-reduction proposed in [17, Part II, p.136] for Toeplitz-like operators proves to be very useful here giving a simple inversion formula (and a criterion of nonsingularity). Generalization of Löwner's well-known results leads to an interpolation interpretation of the parameters of the inversion formula. More exactly, four couples of matrix polynomials $[V(x), U(x)],[\widetilde{V}(x), \tilde{U}(x)],[Q(x), P(x)]$ and $[\widetilde{Q}(x), \widetilde{P}(x)]$ appear, the first and third satisfying the linearized conditions for a set of interpolation nodes $\{\bar{x}\}$ and a set of

[^0]corresponding (matrix) values $\left\{F_{\bar{x}}\right\}$:
\[

$$
\begin{aligned}
& V(\bar{x})-U(\bar{x}) F_{\bar{x}}=0, \\
& Q(\bar{x})-P(\bar{x}) F_{\bar{x}}=0, \\
& V(x) \in \mathbb{F}^{p \times q}[x], \quad U(x) \in \mathbb{F}^{p \times p}[x], \\
& Q(x) \in \mathbb{F}^{q \times q}[x], \quad P(x) \in \mathbb{F}^{q \times p}[x], \\
& \operatorname{deg} U(x)=m, \quad \operatorname{deg} Q(x)=m, \\
& \operatorname{deg} V(x)<m, \quad \operatorname{deg} P(x)<m .
\end{aligned}
$$
\]

Thus, the first system gives a solution of the rational interpolation problem

$$
\begin{equation*}
U^{-1}(\bar{x}) V(\bar{x})=F_{\bar{x}} \tag{1}
\end{equation*}
$$

if the values $U(\bar{x})$ are nonsingular. Similarly, the second and fourth couples satisfy

$$
\tilde{V}(\bar{x})-F_{\bar{x}} \tilde{U}(\bar{x})=0, \quad \tilde{Q}(\bar{x})-F_{\bar{x}} \tilde{P}(\bar{x})=0
$$

Löwner matrices (by some authors called divided differences or interpolation matrices) with 1×1 blocks were introduced in the inspiring paper [19] as a tool to investigate monotone matrix functions (see also [11]) and to solve the scalar rational interpolation problem (see also [6,3]). Starting from a Löwner matrix, one can investigate the connection to Hankel, Toeplitz, Bézout matrices and to rational interpolation as was done in [12, 27]. In [26], an inversion formula is given for a Löwner matrix. In [1], the block Löwner matrix is used as a tool to construct a minimal state-variable realization from interpolation data (see also [4]).

In Section 2, a criterion of invertibility and an inversion formula for the block Löwner matrix is constructed based on the UV-reduction. Section 3 shows the connection with matrix rational interpolants. In Section 4, we find interesting properties of the matrices

$$
T(x)=\left[\begin{array}{rr}
U(x) & -V(x) \\
-P(x) & Q(x)
\end{array}\right] \text { and } \quad \tilde{T}(x)=\left[\begin{array}{cc}
\tilde{Q}(x) & \tilde{V}(x) \\
\tilde{P}(x) & \tilde{U}(x)
\end{array}\right]
$$

Section 5 is an application of the results of [24] where a unified approach to solve a wide class of interpolation problems in $\mathrm{O}\left(n^{2}\right)$ operations is given (n denotes the number of interpolation data). We use it to find $T(x)$ and $\tilde{T}(x)$ and thus also to compute L^{-1}. We also give the connection to the polynomial approach used in linear system theory to solve rational interpolation problems, more specifically, to the behavioral approach to linear exact modelling described in [5]. In Section 6, we give the connection with matrix continued fractions. Section 7 deals with the rational interpolation problem (1) in more detail, studying the (un)attainability or (in)accessibility of interpolation points (for the scalar case, see [6,21] and for multiple points [27]).

2. Inversion formula

Consider an $(m \times n)$ block Löwner matrix

$$
L=\left[\frac{C_{i}-D_{j}}{y_{i}-z_{j}}\right]_{i=0,1,2, \ldots, m-1}^{j=0,1,2, \ldots, n-1}
$$

with $C_{i}, D_{j} \in \mathbb{F}^{p \times q}$ and $y_{i}, z_{j} \in \mathbb{F}$ such that $Y=\left\{y_{0}, y_{1}, \ldots, y_{m-1}\right\}$ and $Z=\left\{z_{0}, z_{1}, \ldots, z_{n-1}\right\}$ have m, respectively n different elements and $Y \cap Z=\emptyset$.

We assume that the block Löwner matrix is square, i.e., $m p=n q$. In this section, we give an invertibility criterion for such a square block Löwner matrix. If the inverse exists, we construct an inversion formula. To this end, we use the method of UV-reduction proposed in [17, Part II, p.136] for Toeplitz-like operators.

Theorem 2.1 (UV-reduction). Given a block Löwner matrix

$$
L=\left[\frac{C_{i}-D_{j}}{y_{i}-z_{j}}\right]_{i=0,1,2, \ldots, m-1}^{j=0,1,2, \ldots, n-1}
$$

then

$$
\operatorname{diag}\left(y_{i}\right) L-L \operatorname{diag}\left(z_{j}\right)=\left[\begin{array}{c}
C_{0} \tag{2}\\
C_{1} \\
\vdots \\
C_{m-1}
\end{array}\right]\left[\begin{array}{llll}
I_{q} & I_{q} & \ldots & I_{q}
\end{array}\right]-\left[\begin{array}{c}
I_{p} \\
I_{p} \\
\vdots \\
I_{p}
\end{array}\right]\left[\begin{array}{llll}
D_{0} & D_{1} & \ldots & D_{n-1}
\end{array}\right]
$$

with

$$
\operatorname{diag}\left(y_{i}\right)=\operatorname{diag}\left(y_{0} I_{p}, y_{1} I_{p}, \ldots, y_{m-1} I_{p}\right)
$$

and

$$
\operatorname{diag}\left(z_{j}\right)=\operatorname{diag}\left(z_{0} I_{q}, z_{1} I_{q}, \ldots, z_{n-1} I_{q}\right)
$$

Proof. Evident by direct computation of both sides.
Using the UV-reduction, we get the following inversion formula and invertibility criterion for a block Löwner matrix.

Theorem 2.2. Given the block Löwner matrix $L=\left[\left(C_{i}-D_{j}\right) /\left(y_{i}-z_{j}\right)\right]$. Consider the equations

$$
\begin{align*}
& {\left[\begin{array}{llll}
P_{0} & P_{1} & \ldots & P_{m-1}
\end{array}\right] L=\left[\begin{array}{llll}
I_{q} & I_{q} & \ldots & I_{q}
\end{array}\right]} \tag{3}\\
& {\left[\begin{array}{lllll}
U_{0} & U_{1} & \ldots & U_{m-1}
\end{array}\right] L=\left[\begin{array}{lllll}
D_{0} & D_{1} & \ldots & D_{n-1}
\end{array}\right]} \tag{4}
\end{align*}
$$

$$
\begin{align*}
& L\left[\begin{array}{c}
\tilde{P}_{0} \\
\tilde{P}_{1} \\
\vdots \\
\tilde{P}_{n-1}
\end{array}\right]=\left[\begin{array}{c}
I_{p} \\
I_{p} \\
\vdots \\
I_{p}
\end{array}\right], \tag{5}\\
& L\left[\begin{array}{c}
\tilde{U}_{0} \\
\tilde{U}_{1} \\
\vdots \\
\tilde{U}_{n-1}
\end{array}\right]=\left[\begin{array}{c}
C_{0} \\
C_{1} \\
\vdots \\
C_{m-1}
\end{array}\right] . \tag{6}
\end{align*}
$$

Eqs. (3) and (4) are solvable (similarly, (5) and (6) are solvable) iff the block Löwner matrix

$$
L=\left[\frac{C_{i}-D_{j}}{y_{i}-z_{j}}\right]_{i=0,1,2, \ldots, m-1}^{j=0,1,2, \ldots, n-1}
$$

is nonsingular.
If L is nonsingular, its inverse L^{-1} can be written as

$$
L^{-1}=\left[\frac{\tilde{U}_{i} P_{j}-\widetilde{P}_{i} U_{j}}{y_{j}-z_{i}}\right]_{i=0,1,2, \ldots, n-1}^{j=0,1,2, \ldots, m-1}
$$

Note that

$$
\begin{array}{ll}
P_{j} \in \mathbb{F}^{q \times p}, & j=0,1, \ldots, m-1, \\
U_{j} \in \mathbb{F}^{p \times p}, & j=0,1, \ldots, m-1, \\
\tilde{P}_{i} \in \mathbb{F}^{q \times p}, & i=0,1, \ldots, n-1, \\
\tilde{U}_{i} \in \mathbb{F}^{q \times q}, & i=0,1, \ldots, n-1 .
\end{array}
$$

Proof. It is clear that if L is invertible, Eqs. (3) and (4) are solvable. Suppose now that (3) and (4) are solvable. If $c \in \operatorname{Ker} L$, we get from (3),

$$
\left[\begin{array}{llll}
I_{q} & I_{q} & \ldots & I_{q}
\end{array}\right] c=0
$$

and from (2)-(4) that

$$
L \operatorname{diag}\left(z_{j}\right) c=0 \quad \text { or } \quad \operatorname{diag}\left(z_{j}\right) c \in \operatorname{Ker} L .
$$

Repeating the same reasoning, we derive

$$
\left[z_{j}^{i} I_{q}\right]_{i=0,1, \ldots, n-1}^{j=0,1, \ldots, n-1} c=0 .
$$

Because the block Vandermonde matrix $\left[z_{j}^{i} I_{q}\right]$ is nonsingular (since $z_{i} \neq z_{j}, j \neq i$), it follows that $\mathcal{c}=0$. Hence, L is invertible.

Assume now that L is invertible. Multiplying (2) to the left and right by L^{-1}, we get

$$
\begin{aligned}
& L^{-1} \operatorname{diag}\left(y_{i}\right)-\operatorname{diag}\left(z_{j}\right) L^{-1} \\
& \quad=L^{-1}\left[\begin{array}{c}
C_{0} \\
C_{1} \\
\vdots \\
C_{m-1}
\end{array}\right]\left[\begin{array}{llll}
I_{q} & I_{q} & \ldots & I_{q}
\end{array}\right] L^{-1}-L^{-1}\left[\begin{array}{c}
I_{p} \\
I_{p} \\
\vdots \\
I_{p}
\end{array}\right]\left[\begin{array}{llll}
D_{0} & D_{1} & \ldots & D_{n-1}
\end{array}\right] L^{-1} .
\end{aligned}
$$

Using the definition of $P_{j}, U_{j}, \tilde{P}_{i}$ and \tilde{U}_{i}, we derive

$$
\begin{aligned}
& L^{-1} \operatorname{diag}\left(y_{i}\right)-\operatorname{diag}\left(z_{j}\right) L^{-1} \\
& \quad=\left[\begin{array}{c}
\tilde{U}_{0} \\
\tilde{U}_{1} \\
\vdots \\
\tilde{U}_{n-1}
\end{array}\right]\left[\begin{array}{llll}
P_{0} & P_{1} & \ldots & P_{m-1}
\end{array}\right]-\left[\begin{array}{c}
\tilde{P}_{0} \\
\tilde{P}_{1} \\
\vdots \\
\tilde{P}_{n-1}
\end{array}\right]\left[\begin{array}{llll}
U_{0} & U_{1} & \ldots & U_{m-1}
\end{array}\right]
\end{aligned}
$$

Taking the $(i, j)(q \times p)$-block of the left- and right-hand side, it follows that

$$
\left(L^{-1}\right)_{i, j} y_{j}-z_{i}\left(L^{-1}\right)_{i, j}=\tilde{U}_{i} P_{j}-\tilde{P}_{i} U_{j}
$$

Therefore, the (i, j) block of L^{-1} can be written as

$$
\left(L^{-1}\right)_{i, j}=\frac{\widetilde{U}_{i} P_{j}-\tilde{P}_{i} U_{j}}{y_{j}-z_{i}} .
$$

3. The connection with matrix rational interpolants

In this section, we give the relationship between $P, U, \tilde{P}, \tilde{U}$ and certain matrix rational interpolants.

Definition 3.1 (Degree of polynomial matrices). Given $P(x) \in \mathbb{F}^{p \times q}[x]$, we write $\operatorname{deg} P(x)<n$ iff each of the polynomial elements of $P(x)$ has degree smaller than n. We say $\operatorname{deg} P(x)=n$ iff $P(x)=P_{n} z^{n}+P_{n-1} z^{n-1}+\cdots+P_{0}$ with $P_{n} \in \mathbb{F}^{p \times q}$ having full rank.

Take the following basis for the vector space $\mathbb{F}_{n}[x]$ of all polynomials having degree $\leqslant n$:

$$
\left\{b_{0}, b_{1}, \ldots, b_{n-1}, b\right\}
$$

with

$$
b(x)=\prod_{j=0}^{n-1}\left(x-z_{j}\right)
$$

and

$$
b_{j}(x)=\frac{b(x)}{\left(x-z_{j}\right)}, \quad j=0,1, \ldots, n-1 .
$$

Similarly we can write a basis for $\mathbb{F}_{m}[z]:\left\{a_{0}, a_{1}, \ldots, a_{m-1}, a\right\}$ based on the points $Y=$ $\left\{y_{0}, y_{1}, \ldots, y_{m-1}\right\}$ instead of the points $Z=\left\{z_{0}, z_{1}, \ldots, z_{n-1}\right\}$.

Constructing the following matrix polynomials from the solutions of Eqs. (4) and (6),

$$
\begin{align*}
& \mathbb{F}^{q \times q}[x] \ni \tilde{U}(x)=b(x) I_{q}-\sum_{j=0}^{n-1} b_{j}(x) \tilde{U}_{j}, \tag{7}\\
& \mathbb{F}^{p \times q}[x] \ni \tilde{V}(x)=-\sum_{j=0}^{n-1} b_{j}(x) D_{j} \tilde{U}_{j}, \tag{8}\\
& \mathbb{F}^{p \times p}[x] \ni U(x)=a(x) I_{p}-\sum_{i=0}^{m-1} a_{i}(x) U_{i} \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbb{F}^{p \times q}[x] \ni V(x)=-\sum_{i=0}^{m-1} a_{i}(x) U_{i} C_{i}, \tag{10}
\end{equation*}
$$

we get the following interpretation for \tilde{U} and U.
Theorem 3.1 (Connection with matrix rational interpolation). If the matrix polynomials $\tilde{V}(x)$ and $\widetilde{U}(x)$ are given by (7) and (8), the matrix rational function

$$
R(x)=\tilde{V}(x) \tilde{U}(x)^{-1}
$$

represents the unique matrix rational function having $\operatorname{deg} \tilde{V}(x) \leqslant n-1$ and $\operatorname{deg} \tilde{U}(x)=n$ such that $R(x)$ satisfies the linearized interpolation conditions, i.e.

$$
\begin{equation*}
\tilde{V}(\bar{x})=F_{\bar{x}} \tilde{U}(\bar{x}) \quad \forall \bar{x} \in Y \cup Z, \tag{11}
\end{equation*}
$$

with

$$
F_{\bar{x}}=C_{i} \quad \text { if } \bar{x}=y_{i}
$$

and

$$
F_{\bar{x}}=D_{i} \quad \text { if } \bar{x}=z_{i}
$$

A similar result is also true for $U(x)^{-1} V(x)$, given by (9) and (10). Moreover, they represent the same matrix rational function, i.e.

$$
R(x)=\tilde{V}(x) \widetilde{U}(x)^{-1}=U(x)^{-1} V(x)
$$

Proof. Let us look at all matrix rational functions $R(x)$ of the form ($\operatorname{deg} \leqslant n-1)(\operatorname{deg}=n)^{-1}$ interpolating the data. We can always normalize $R(x)$ such that the highest degree coefficient of the denominator is I_{q}.

We take the basis $\left\{b_{0}, b_{1}, \ldots, b_{n-1}, b\right\}$ based on the interpolation points $Z=\left\{z_{0}, z_{1}, \ldots, z_{n-1}\right\}$ and parametrize $R(x)$ such that

$$
R(x)=A(x) B(x)^{-1},
$$

with

$$
\begin{align*}
& B(x)=b(x) I_{q}-\sum_{j=0}^{n-1} b_{j}(x) B_{j} \tag{12}\\
& A(x)=-\sum_{j=0}^{n-1} b_{j}(x) A_{j} . \tag{13}
\end{align*}
$$

The matrix rational function has to satisfy the linearized interpolation conditions, i.e.

$$
\begin{array}{ll}
A\left(y_{i}\right)=C_{i} B\left(y_{i}\right), & i=0,1, \ldots, m-1 \\
A\left(z_{j}\right)=D_{j} B\left(z_{j}\right), & j=0,1, \ldots, n-1 \tag{15}
\end{array}
$$

Using the parametrization (12) and (13), the interpolation conditions (15) can be rewritten as

$$
b_{j}\left(z_{j}\right) A_{j}=b_{j}\left(z_{j}\right) D_{j} B_{j} \quad \text { or } \quad A_{j}=D_{j} B_{j}, \quad j=0,1, \ldots, n-1 .
$$

Once we have the B_{j}, we can compute the A_{j}. How do we compute the B_{j} ? Rewriting (14) gives us

$$
-\sum_{j=0}^{n-1} b_{j}\left(y_{i}\right) D_{j} B_{j}=C_{i}\left(b\left(y_{i}\right) I_{q}-\sum_{j=0}^{n-1} b_{j}\left(y_{i}\right) B_{j}\right)
$$

or

$$
\sum_{j=0}^{n-1} b_{j}\left(y_{i}\right)\left(C_{i}-D_{j}\right) B_{j}=C_{i} b\left(y_{i}\right) .
$$

Using the definition of $b_{j}(x)$, i.e.

$$
b_{j}(x)=\frac{b(x)}{x-z_{j}}
$$

we derive the equation

$$
\sum_{j=0}^{n-1} \frac{b\left(y_{i}\right)}{y_{i}-z_{j}}\left(C_{i}-D_{j}\right) B_{j}=C_{i} b\left(y_{i}\right) .
$$

Because $b\left(y_{i}\right) \neq 0$,

$$
\sum_{j=0}^{n-1}\left(\frac{C_{i}-D_{j}}{y_{i}-z_{j}}\right) B_{j}=C_{i}, \quad i=0,1, \ldots, m-1
$$

Hence, the coefficients B_{j} are uniquely determined as the solution of the following set of linear equations

$$
L\left[\begin{array}{c}
B_{0} \\
B_{1} \\
\vdots \\
B_{n-1}
\end{array}\right]=\left[\begin{array}{c}
C_{0} \\
C_{1} \\
\vdots \\
C_{m-1}
\end{array}\right]
$$

Therefore, $\tilde{U}(x)=B(x)$ and $\tilde{V}(x)=A(x)$.
Similarly, we can prove that $U^{-1}(x) V(x)$ is the only matrix rational function satisfying the linearized interpolation conditions and having the form

$$
(\operatorname{deg}=m)^{-1}(\operatorname{deg}<m)
$$

It remains to show that

$$
U^{-1}(x) V(x)=\widetilde{V}(x) \widetilde{U}(x)^{-1}
$$

or

$$
U(x) \tilde{V}(x)=V(x) \tilde{U}(x)
$$

The matrix rational functions $U^{-1}(x) V(x)$ and $\tilde{V}(x) \tilde{U}(x)^{-1}$ both satisfy similar linearized interpolation conditions, i.e.

$$
\begin{equation*}
\tilde{V}(\bar{x})-F_{\bar{x}} \tilde{U}(\bar{x})=0 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
V(\bar{x})-U(\bar{x}) F_{\bar{x}}=0 \tag{17}
\end{equation*}
$$

$\forall \bar{x} \in Y \cup Z$. Multiplying (16) to the left by $U(\bar{x})$ and (17) to the right by $\tilde{U}(\bar{x})$ and subtracting, we get

$$
U(\bar{x}) \tilde{V}(\bar{x})=V(\bar{x}) \tilde{U}(\bar{x})
$$

Hence, there exists some polynomial matrix $M(x) \in \mathbb{F}^{p \times q}[x]$ such that

$$
U(x) \tilde{V}(x)=V(x) \tilde{U}(x)+a(x) b(x) M(x)
$$

Because $\operatorname{deg}(U(x) \tilde{V}(x))$ and $\operatorname{deg}(V(x) \tilde{U}(x))<m+n, M(x)=0$.
This completes the proof.
Similarly, we can use P and \tilde{P} to construct matrix polynomials and give an interpretation as a tangential interpolation problem.

Define $\widetilde{P}(x), \tilde{Q}(x), P(x)$ and $Q(x)$ based on the solutions of Eqs. (3) and (5) as follows:

$$
\begin{equation*}
\mathbb{F}^{a \times p}[x] \ni \tilde{P}(x)=\sum_{j=0}^{n-1} b_{j}(x) \widetilde{P}_{j} \tag{18}
\end{equation*}
$$

$$
\begin{align*}
& \mathbb{F}^{p \times p}[x] \ni \tilde{Q}(x)=b(x) I_{p}+\sum_{j=0}^{n-1} b_{j}(x) D_{j} \tilde{P}_{j}, \tag{19}\\
& \mathbb{F}^{q \times p}[x] \ni P(x)=\sum_{i=0}^{m-1} a_{i}(x) P_{i} \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbb{F}^{q \times q}[x] \ni Q(x)=a(x) I_{q}+\sum_{i=0}^{m-1} a_{i}(x) P_{i} C_{i} \tag{21}
\end{equation*}
$$

The parameters P and \tilde{P} of the inversion formula of a block Löwner matrix are related to an interpolation problem as follows.

Theorem 3.2 (Connection to a tangential interpolation problem). If the polynomial matrices $\tilde{Q}(x)$ and $\tilde{P}(x)$ are given by (18) and (19), the matrix polynomial couple $(\widetilde{Q}(x), \tilde{P}(x))$ is the only couple such that

- $\widetilde{Q}(x) \in \mathbb{F}^{p \times p}[x]$ and $\operatorname{deg} \widetilde{Q}(x)=n ; \widetilde{P}(x) \in \mathbb{F}^{q \times p}[x]$ and $\operatorname{deg} \widetilde{P}(x)<n$; highest degree coefficient of $\tilde{Q}(x)$ is I_{p};
- $\widetilde{Q}(\bar{x})=F_{\bar{x}} \widetilde{P}(\bar{x}) \forall \bar{x} \in Y \cup Z$.

Similarly, if $Q(x)$ and $P(x)$ are given by (20) and (21), the matrix polynomial couple $(Q(x), P(x))$ is the only couple such that

- $Q(x) \in \mathbb{F}^{q \times q}[x]$ and $\operatorname{deg} Q(x)=m ; P(x) \in \mathbb{F}^{q \times p}[x]$ and $\operatorname{deg} P(x)<m$; highest degree coefficient of $Q(x)$ is I_{q};
- $Q(\bar{x})=P(\bar{x}) F_{\bar{x}} \forall \bar{x} \in Y \cup Z$.

Moreover,

$$
P(x) \tilde{Q}(x)=Q(x) \tilde{P}(x)
$$

Proof. The proof goes along the same lines as the previous proof. We give the proof for the couple $(Q(x), P(x))$.

We can parametrize $P(x)$ and $Q(x)$ as follows:

$$
P(x)=\sum_{i=0}^{m-1} a_{i}(x) P_{i}
$$

and

$$
Q(x)=a(x) I_{q}+\sum_{i=0}^{m-1} a_{i}(x) Q_{i}
$$

Because P and Q have to satisfy the interpolation conditions

$$
Q\left(y_{i}\right)=P\left(y_{i}\right) C_{i}, \quad i=0,1, \ldots, m-1,
$$

we get that $Q_{i}=P_{i} C_{i}$.

The remaining interpolation conditions, $j=0,1, \ldots, n-1$, transform into

$$
a\left(z_{j}\right) I_{q}+\sum_{i=0}^{m-1} a_{i}\left(z_{j}\right) P_{i} C_{i}=\sum_{i=0}^{m-1} a_{i}\left(z_{j}\right) P_{i} D_{j}
$$

or

$$
\sum_{i=0}^{m-1} a_{i}\left(z_{j}\right) P_{i}\left(C_{i}-D_{j}\right)=-a\left(z_{j}\right) I_{q}
$$

or

$$
\sum_{i=0}^{m-1} P_{i}\left(\frac{C_{i}-D_{j}}{y_{i}-z_{j}}\right)=I_{q}
$$

or

$$
\left[\begin{array}{llll}
P_{0} & P_{1} & \ldots & P_{m-1}
\end{array}\right] L=\left[\begin{array}{llll}
I_{q} & I_{q} & \ldots & I_{q}
\end{array}\right]
$$

Because L is nonsingular, the solution is unique. As in the previous proof, it is easy to show that

$$
P(x) \widetilde{Q}(x)=Q(x) \tilde{P}(x)
$$

4. Some properties of the parameters of the inversion formula

In this section, we indicate how to compute P, \tilde{P}, U and \tilde{U}. The interpolation conditions of Theorems 3.1 and 3.2 on the corresponding polynomial matrices $P(x), \widetilde{P}(x), U(x)$ and $\tilde{U}(x)$ can be summarized as follows:

Look for a polynomial matrix

$$
\tilde{T}(x) \in \mathbb{F}^{(p+q) \times(p+q)}[x]
$$

such that

- $\left[I_{p}-F_{\bar{x}}\right] \tilde{T}(\bar{x})=0, \forall \bar{x} \in Y \cup Z$,
- $\operatorname{deg} \tilde{T}(x)=n$,
- highest degree coefficient of $\tilde{T}(x)$ is I_{p+q} (hence, $\operatorname{deg} \operatorname{det} \tilde{T}(x)=n(p+q)$).

If we partition the matrix $\tilde{T}(x)$, we get

$$
\tilde{T}(x)=\left[\begin{array}{cc}
\tilde{Q}(x) & \tilde{V}(x) \tag{22}\\
\tilde{P}(x) & \tilde{U}(x)
\end{array}\right]
$$

Hence, $\tilde{T}(x)$ is unique.
In the same way, $Q(x), P(x), V(x)$ and $U(x)$ can be found as the blocks of a square polynomial matrix $T(x) \in \mathbb{F}^{(p+q) \times(p+q)}[x]$,

$$
T(x)=\left[\begin{array}{rr}
U(x) & -V(x) \tag{23}\\
-P(x) & Q(x)
\end{array}\right]
$$

such that

- $T(\bar{x})\left[\begin{array}{c}F_{\bar{x}} \\ I_{q}\end{array}\right]=0, \forall \bar{x} \in Y \cup Z$,
- $\operatorname{deg} T(x)=m$ (hence, $\operatorname{deg} \operatorname{det} T(x)=m(p+q)$),
- highest degree coefficient of $T(x)$ is I_{p+q}.

Clearly, $T(x)$ is also unique.
The polynomial matrices $T(x)$ and $\tilde{T}(x)$ are related as follows.
Theorem 4.1. The polynomial matrices $T(x)$ and $\tilde{T}(x)$ given by (22) and (23) satisfy

$$
T(x) \tilde{T}(x)=\tilde{T}(x) T(x)=a(x) b(x) I_{p+q}
$$

Moreover,

$$
\operatorname{det} T(x)=(a(x) b(x))^{q}, \quad \operatorname{det} \tilde{T}(x)=(a(x) b(x))^{p}
$$

Proof. Using the linearized interpolation conditions, we write

$$
\left[\begin{array}{cc}
I_{p} & -F(x) \tag{24}\\
0 & a(x) b(x) I_{q}
\end{array}\right] \tilde{T}(x)=a(x) b(x) R(x)
$$

with $R(x) \in \mathbb{F}^{(p+q) \times(p+q)}[x]$ and $F(x) \in \mathbb{F}^{p \times q}[x]$ such that $F(\bar{x})=F_{\bar{x}}$.
A possible choice for $F(x)$ is the interpolating matrix polynomial of degree $<m+n$. Taking the determinant of left- and right-hand side of Eq. (24) gives us

$$
(a(x) b(x))^{q} \operatorname{det} \tilde{T}(x)=(a(x) b(x))^{(p+q)} \operatorname{det} R(x) .
$$

Because $\operatorname{deg} a(x)=m, \operatorname{deg} b(x)=n$ and $\operatorname{deg} \operatorname{det} \tilde{T}(x)=n(p+q)$, we derive

$$
\operatorname{deg} \operatorname{det} R(x)=n q-m p=0 \quad \text { or } \quad \operatorname{det} R(x)=c \neq 0
$$

Hence, $R(x)$ is a unimodular matrix and $\operatorname{det} \tilde{T}(x)=c(a(x) b(x))^{p}$. Because the highest degree coefficient of $\tilde{T}(x)$ is I_{p+q}, det $\tilde{T}(x)$ is a monic polynomial. The polynomials $a(x)$ and $b(x)$ are monic. Therefore, $c=1$ (similarly for $T(x)$).

Take the inverse of left- and right-hand side of Eq. (24)

$$
\tilde{T}(x)^{-1}\left[\begin{array}{cc}
I_{p} & \frac{1}{a(x) b(x)} F(x) \\
0 & \frac{1}{a(x) b(x)} I_{q}
\end{array}\right]=\frac{1}{a(x) b(x)} R^{-1}(x)
$$

or

$$
a(x) b(x) \tilde{T}(x)^{-1}=R^{-1}(x)\left[\begin{array}{cc}
I_{p} & -F(x) \tag{25}\\
0 & a(x) b(x) I_{q}
\end{array}\right] .
$$

The right-hand side of (25) is a polynomial matrix. Hence,

$$
T^{*}(x)=a(x) b(x) \tilde{T}(x)^{-1}
$$

is polynomial. Moreover, because

$$
\tilde{T}(x)^{-1}=I_{p+q} x^{-n}+\mathrm{O}_{-}\left(x^{-n-1}\right)
$$

we get that

$$
\begin{aligned}
T^{*}(x) & =a(x) b(x)\left(I_{p+q} x^{-n}+\mathrm{O}_{-}\left(x^{-n-1}\right)\right) \\
& =I_{p+q} x^{m}+\mathrm{O}_{-}\left(x^{m-1}\right)
\end{aligned}
$$

Multiplying (25) to the right by

$$
\left[\begin{array}{lc}
a(x) b(x) I_{p} & F(x) \\
0 & I_{q}
\end{array}\right]
$$

we derive the following interpolation conditions on $T^{*}(x)$:

$$
T^{*}(x)\left[\begin{array}{cc}
a(x) b(x) I_{p} & F(x) \\
0 & I_{q}
\end{array}\right]=a(x) b(x) R^{-1}(x)
$$

Hence, $T^{*}(x)=T(x)$.
Note that the previous result is an extension of the classical duality between type I (Latin) and type II (German) polynomial systems in a normal point of the Padé-Hermite approximation problem [20, 18, 10].

The following theorem is based on the results of [24]. Column and row reducedness of a polynomial matrix is also defined in Definition 6.1.

Theorem 4.2 (Connection with module theory). The polynomial matrix $\tilde{T}(x)$ given by (22) forms a column (and row) reduced basis matrix for the submodule \tilde{S} of all polynomial $(p+q)$-tuples $\boldsymbol{p}(x) \in \mathbb{F}^{(p+q) \times 1}[x]$ satisfying

$$
\left[\begin{array}{ll}
I_{p} & \left.-F_{\bar{x}}\right] p(\bar{x})=0 \quad \forall \bar{x} \in Y \cup Z . . . ~
\end{array}\right.
$$

Similarly, the polynomial matrix $T(x)$ given by (23) forms a row (and column) reduced basis matrix for the submodule S of all polynomial $(p+q)$-tuples $\boldsymbol{p}(x) \in \mathbb{F}^{1 \times(p+q)}[x]$ satisfying

$$
\boldsymbol{p}(\bar{x})\left[\begin{array}{l}
F_{\bar{x}} \\
I_{q}
\end{array}\right]=0 \quad \forall \bar{x} \in Y \cup Z .
$$

Proof. We prove the theorem for the polynomial matrix $\tilde{T}(x)$. It is clear that the columns of $\tilde{T}(x)$ are $\mathbb{F}[x]$-linearly independent and satisfy the interpolation conditions. Clearly, $\tilde{T}(x)$ is column (and row) reduced. Moreover,

$$
\operatorname{deg} \operatorname{det} \tilde{T}(x)=n(p+q)
$$

which is equal to the number of independent interpolation conditions

$$
p(m+n)=q n+p n=n(p+q)
$$

This proves the theorem for $\tilde{T}(x)$.

5. Efficient computation of $T(x)$ and $\tilde{T}(x)$

Using the results of [24], we get the following algorithm to compute $T(x)$ and $\tilde{T}(x)$ in a recursive way.

Algorithm 5.1

given

$$
\begin{aligned}
& \bar{X}=Y \cup Z \text { with } Y=\left\{y_{0}, y_{1}, \ldots, y_{m-1}\right\} \text { and } Z=\left\{z_{0}, z_{1}, \ldots, z_{n-1}\right\} \\
& F_{\bar{x} \in \mathbb{F}^{p \times q}}, \forall \bar{x} \in \bar{X} \\
& p m=q n
\end{aligned}
$$

initialization
$\widetilde{T}(x)=I_{p+q}$ with column degrees $\vec{\delta}=\left[\delta_{1} \ldots \delta_{p+q}\right]=[00 \ldots 0] \in \mathbb{N}^{p+q}$ $T(x)=I_{p+q}$
while $\bar{X} \neq$ do
take an arbitrary $\bar{x} \in \bar{X} ; \bar{X}=\bar{X} \backslash\{\bar{x}\}$
for $i \in\{1,2, \ldots, p\}$ do

- compute the residuals, i.e., $\mathbb{F}^{1 \times(p+q)} \ni\left[r_{1} r_{2} \ldots r_{p+q}\right]=e_{i}\left[I_{p}-F_{\bar{x}}\right] \tilde{T}(\bar{x})$ with $\mathbb{F}^{1 \times p} \ni e_{i}=[0 \ldots 010 \ldots 0]$ (1 on the ith place)
- take $j=\min \left\{k \mid \delta_{k}=\delta^{*}\right\}$ with $\delta^{*}=\min \left\{\delta_{i} \mid r_{i} \neq 0\right\}$
- $\tilde{T}(x)=\tilde{T}(x) W(x)$ with column degrees $\left[\delta_{1}, \ldots, \delta_{j-1}, \delta_{j}+1, \delta_{j+1}, \ldots, \delta_{p+q}\right]$ $T(x)=(x-\bar{x}) W^{-1}(x) T(x)$
with

$$
W(x)=\left[\begin{array}{ccccccc}
r_{j} & & & & & & \\
& r_{j} & & & & & \\
& & \ddots & & & & \\
& & & r_{j} & & & \\
-r_{1} & -r_{2} & \cdots & -r_{j-1} & (x-\bar{x}) & -r_{j+1} & \cdots \\
& & & & & r_{j} & \\
& & & & & & \ddots
\end{array}\right]
$$

finally
$\tilde{T}(x)=\tilde{T}(x) H^{-1}$
$T(x)=H T(x)$
with $H=$ highest degree coefficient of $\tilde{T}(x)$.

Algorithm 5.1 requires $\mathrm{O}\left((m+n)^{2}\right)$ operations in the field \mathbb{F}.
Once we have $T(x)$ and $\tilde{T}(x)$, we can immediately partition $\tilde{T}(x)$ and $T(x)$ to get the parameters of the inversion formula.

Note: Algorithm 5.1 is based on the updating procedure described in [24] which computes basis matrices connected to a general matrix rational interpolation problem. In each step of Algorithm 5.1 the set \bar{X} decreases. The polynomial matrix $T(x)$ is a row reduced basis matrix for the submodule S of all polynomial $(p+q)$-tuples $\boldsymbol{p}(x) \in \mathbb{F}^{1 \times(p+q)}[x]$ satisfying

$$
\boldsymbol{p}(\bar{x})\left[\begin{array}{c}
F_{\bar{x}} \\
I_{q}
\end{array}\right]=0 \quad \forall \bar{x} \in(Y \cup Z) \backslash \bar{X} .
$$

The polynomial matrix $\tilde{T}(x)$ is a column reduced basis matrix for the submodule \tilde{S} of all polynomial $(p+q)$-tuples $\boldsymbol{p}(x) \in \mathbb{F}^{(p+q) \times 1}[x]$ satisfying

$$
\left[\begin{array}{ll}
I_{p} & -F_{\bar{x}}
\end{array}\right] \boldsymbol{p}(\bar{x})=0 \quad \forall \bar{x} \in(Y \cup Z) \backslash \bar{X}
$$

Finally, the basis matrices $T(x)$ and $\tilde{T}(x)$, the output of Algorithm 5.1, have the special form as described by Theorem 4.2 because the matrix rational interpolation problem is connected to a nonsingular square block Löwner matrix.

We want to make the link here with the behavioral approach to linear exact modelling [5].
Suppose we look for all matrix rational functions Z of size $p \times q$ given the first part of the Taylor series expansion of Z for a finite number of points \bar{x}, i.e.

$$
Z(x)=Z(\bar{x})+(x-\bar{x}) Z^{(1)}(\bar{x})+\cdots+(x-\bar{x})^{\left(\kappa_{\bar{x}}-1\right)} Z^{\left(\kappa_{\bar{x}}-1\right)}(\bar{x}) /\left(\kappa_{\bar{x}}-1\right)!+\mathbf{O}\left((x-\bar{x})^{\kappa_{\bar{x}}}\right) .
$$

This is equivalent to looking for all linear systems having transfer function $Z(x)$ which have output $Y_{\bar{x}}(t)$ corresponding to input $U_{\bar{x}}(t)$ with

$$
\begin{aligned}
{\left[\begin{array}{c}
Y_{\bar{x}}(t) \\
U_{\bar{x}}(t)
\end{array}\right]=} & W_{\bar{x}}(t) \\
= & \mathrm{e}^{\bar{x} t}\left\{\left[\begin{array}{c}
Z(\bar{x}) \\
I_{q}
\end{array}\right] t^{\kappa_{\bar{x}}-1} /\left(\kappa_{\bar{x}}-1\right)!+\cdots+\left[\begin{array}{c}
Z^{(j)}(\bar{x}) \\
0
\end{array}\right] t^{\kappa_{\bar{x}}-j-1} /\left(\kappa_{\bar{x}}-j-1\right)!\right. \\
& \left.+\cdots+\left[\begin{array}{c}
Z^{\left(\kappa_{\bar{x}}-1\right)}(\bar{x}) \\
0
\end{array}\right]\right\}
\end{aligned}
$$

Hence, if we take only function values and no derivatives, we look for all $Z(x)$ such that $Z(\bar{x})=F_{\bar{x}}$. The input/output data set is

$$
W_{\bar{x}}(t)=\left[w_{1, \bar{x}}(t), \ldots, w_{q, \bar{x}}(t)\right]=\left[\begin{array}{l}
Y_{\bar{x}}(t) \\
U_{\bar{x}}(t)
\end{array}\right]=\mathrm{e}^{\bar{x} t}\left[\begin{array}{l}
\mathrm{F}_{\bar{x}} \\
\mathrm{I}_{q}
\end{array}\right]
$$

If we take the polynomial-exponential "time series" $w_{i, \bar{x}}(t), \forall \bar{x} \in Y \cup Z$ as the data set, the rows of a row reduced autoregressive equation representation $\theta^{*}(x)$ described in [5] form what is called in [24] a 0 -reduced basis for the submodule connected to the matrix rational interpolation problem. Hence, the autoregressive equation representation $\theta^{*}(x)$ being row reduced with highest degree coefficient I_{p+q} is nothing else but our $T(x)$ matrix. Moreover, the recursive update described in [5 , Section 8] is very similar to the update described in [24] and worked out in our algorithm of Section 5.

If we take the input/output data

$$
W_{\bar{x}}(t)=\mathrm{e}^{\bar{x} t}\left[\begin{array}{c}
I_{p} \\
F_{\bar{x}}^{T}
\end{array}\right]
$$

we get the row reduced autoregressive equation representation $\tilde{T}^{\mathrm{T}}(x)$.
Note that $\tilde{T}(x)$ and $T^{\mathrm{T}}(x)$ can be seen as $\theta(x)$-matrices playing a central role in [4].
If one also wants to consider pole information for the matrix rational interpolant, this problem can be solved as a no-pole problem when enough interpolation data are known at each pole [22].

In Algorithm 5.1 one new datum is added at each step. In [25] it is described how a new basis matrix can be computed from a previous one adding several data all at once, a so-called "look-ahead" step. Taking more data at each step could be used to enhance the numerical stability of the algorithm (for the scalar rational interpolation problem, see [8]) as was done for Hankel and Toeplitz matrices (see, e.g., $[9,14-16]$).

6. Matrix continued fraction representations

If we denote the successive polynomial matrices $W(x)$ appearing in Algorithm 5.1 as $W_{1}(x), W_{2}(x), \ldots, W_{l}(x)$, with $l=p(m+n)$, denote H^{-1} as W_{l+1}, and partition $W_{i}(x)$ as

$$
W_{i}(x)=\left[\begin{array}{cc}
\tilde{Q}_{i}(x) & \tilde{V}_{i}(x) \\
\tilde{P}_{i}(x) & \tilde{U}_{i}(x)
\end{array}\right]
$$

with $\tilde{Q}_{i}(x) p \times p$, we have the following connection with matrix continued fractions.
Theorem 6.1. The matrix rational function $\tilde{V}(x) \tilde{U}(x)^{-1}$ of Theorem 3.1 is the $(l+1)$ st convergent of the matrix continued fraction

$$
\frac{\tilde{V}_{1}(x)+\tilde{Q}_{1}(x) \frac{\tilde{V}_{2}(x)+\tilde{Q}_{2}(x) \cdots}{\frac{\tilde{U}_{2}(x)+\tilde{P}_{2}(x) \cdots}{\cdots}}}{\tilde{U}_{1}(x)+\tilde{P}_{1}(x) \frac{\tilde{V}_{2}(x)+\tilde{Q}_{2}(x) \cdots}{\tilde{U}_{2}(x)+\tilde{P}_{2}(x) \cdots}}
$$

The matrix rational function $\tilde{P}(x) \widetilde{Q}(x)^{-1}$ is the $(l+1)$ st convergent of the matrix continued fraction

$$
\frac{\tilde{P}_{1}(x)+\tilde{U}_{1}(x) \frac{\tilde{P}_{2}(x)+\tilde{U}_{2}(x) \cdots}{\tilde{Q}_{2}(x)+\tilde{V}_{2}(x) \cdots}}{\tilde{Q}_{1}(x)+\tilde{V}_{1}(x) \frac{\tilde{P}_{2}(x)+\tilde{U}_{2}(x) \cdots}{\tilde{Q}_{2}(x)+\tilde{V}_{2}(x) \cdots}} .
$$

The notation A / B stands for $A B^{-1}$. There are similar results for $U(x)^{-1} V(x)$ and $Q(x)^{-1} P(x)$.
The matrix continued fraction is very similar to the one introduced in [2] to decompose matrix formal power series in x^{-1}, i.e., solving the rational interpolation problem around the multiple point ∞ (see also [23]). By changing the variable as described in, e.g., [7, 5], the so-called minimal
partial realization problem around ∞ can be changed into a matrix rational interpolation problem around 0 . The matrix continued fraction can be interpreted as a cascade interconnection of linear two-port systems (see, e.g., [5, Section 10]).

Before we can prove previous theorem, we need some additional results. We use the notation $W_{i, j}(x)$ for

$$
W_{i, j}(x)=W_{i}(x) W_{i+1}(x) \ldots W_{j}(x), \quad i \leqslant j
$$

$W_{i, j}(x)$ is partitioned similarly to $W_{i}(x)$ as

$$
W_{i, j}(x)=\left[\begin{array}{ll}
\tilde{Q}_{i, j}(x) & \tilde{V}_{i, j}(x) \\
\widetilde{P}_{i, j}(x) & \tilde{U}_{i, j}(x)
\end{array}\right]
$$

Definition 6.1 (Column reduced polynomial matrix). A polynomial matrix $P(x) \in \mathbb{F}[x]^{n \times n}$ is called column reduced iff

$$
P(x)=\left(P^{*}+\mathrm{O}_{-}\left(x^{-1}\right)\right) x^{\vec{\delta}}
$$

with $P^{*} \in \mathbb{F}^{n \times n}$ nonsingular and $x^{\widehat{\delta}}=\operatorname{diag}\left(x^{\delta_{1}}, x^{\delta_{2}}, \ldots, x^{\delta_{n}}\right), \vec{\delta} \in \mathbb{N}^{n}$. The natural number δ_{i} is called the column degree of the i th column of $P(x)$ and P^{*} is called the highest degree coefficient (hdc) of $P(x)$. Row reducedness is defined in a similar way.

Lemma 6.2. The polynomial matrices $W_{1, i}(x), i=1,2, \ldots, l+1$, are column reduced with an upper triangular and nonsingular hdc.

Proof. This is true for $W_{1,1}(x)$. Suppose it is true for $W_{1, i-1}(x)$. The choice of j in Algorithm 5.1 guarantees that the hdc of the k th column of $W_{1, i}(x)$ is a nonzero multiple of the hdc of the k th column of $W_{1, i-1}(x)$ to which in some cases a nonzero multiple of the hdc of a previous column of $W_{1, i-1}(x)$ is added. This proves the lemma.

Note that the previous lemma implies that H and H^{-1} are nonsingular and upper triangular matrices.

Lemma 6.3. The polynomial matrices $\tilde{U}_{i, j}(x)$ and $\tilde{Q}_{i, j}(x)$ are nonsingular, $i \leqslant j \leqslant l+1$.
Proof. We start from the following equality:

$$
W_{1, j}(x)=W_{1, i-1}(x) W_{i, j}(x) .
$$

Because each $W_{k}(x)$ is invertible, also $W_{1, i-1}(x)$ is invertible. Hence,

$$
W_{i, j}(x)=W_{1, i-1}(x)^{-1} W_{1, j}(x)
$$

From

$$
W_{1, j}(x)=\left(A+\mathrm{O}_{-}\left(x^{-1}\right)\right) x^{\bar{\delta}_{1}}
$$

and

$$
W_{1, i-1}(x)=\left(B+O_{-}\left(x^{-1}\right)\right) x^{\widehat{\delta}_{2}}
$$

with A and B nonsingular and upper triangular, we get

$$
\begin{aligned}
W_{i, j}(x) & =x^{-\bar{\delta}_{2}}\left(B^{-1}+\mathrm{O}_{-}\left(x^{-1}\right)\right)\left(A+\mathrm{O}_{-}\left(x^{-1}\right)\right) x^{\bar{\delta}_{1}} \\
& =x^{-\vec{\delta}_{2}}\left(B^{-1} A+\mathrm{O}_{-}\left(x^{-1}\right)\right) x^{\bar{\delta}_{1}}
\end{aligned}
$$

with $B^{-1} A$ nonsingular and upper triangular. Hence, the $(1,1)$ block $\tilde{Q}_{i, j}(x)$ and the $(2,2)$ block $\tilde{U}_{i, j}(x)$ of $W_{i, j}(x)$ are invertible.

Now we have all the ingredients to give the proof of Theorem 6.1.
Proof of Theorem 6.1. We give the proof only for $\tilde{V}(x) \tilde{U}(x)^{-1}$. The proof for $\tilde{P}(x) \tilde{Q}(x)^{-1}$ is similar. We rewrite $\tilde{V}(x) \tilde{U}(x)^{-1}$ as follows:

$$
\begin{aligned}
\tilde{V}(x) \tilde{U}(x)^{-1} & =\tilde{V}_{1, l+1}(x) \tilde{U}_{1, l+1}(x)^{-1} \\
& =\frac{\tilde{Q}_{1}(x) \tilde{V}_{2, l+1}(x)+\tilde{V}_{1}(x) \tilde{U}_{2, l+1}(x)}{\widetilde{P}_{1}(x) \tilde{V}_{2, l+1}(x)+\tilde{U}_{1}(x) \tilde{U}_{2, l+1}(x)}
\end{aligned}
$$

Because $\tilde{U}_{2, l+1}(x)$ is invertible, we get

$$
\tilde{V}(x) \widetilde{U}(x)^{-1}=\frac{\tilde{V}_{1}(x)+\tilde{Q}_{1}(x) Z_{2, l+1}(x)}{\tilde{U}_{1}(x)+\widetilde{P}_{1}(x) Z_{2, l+1}(x)}
$$

with $Z_{2, l+1}(x)=\tilde{V}_{2, l+1}(x) \tilde{U}_{2, l+1}(x)^{-1}$. Following the same reasoning for $Z_{2, l+1}(x), Z_{3, l+1}(x), \ldots$ leads us to the matrix continued fraction representation for $\tilde{V}(x) \tilde{U}(x)^{-1}$.

Note that also each convergent $i, i=1,2, \ldots, l$ is well-defined and connected to a matrix rational interpolation problem considering the first i interpolation conditions.

7. Unattainable points

Definition 7.1. Consider the linearized interpolation problem given by (11). Then the interpolation point y_{i} (or z_{j}) is called attainable iff the matrix $\tilde{U}\left(y_{i}\right)$ (or $\tilde{U}\left(z_{j}\right)$) is nonsingular so that the corresponding interpolation condition can be written as a proper rational interpolation condition

$$
\tilde{V}\left(y_{i}\right) \tilde{U}\left(y_{i}\right)^{-1}=C_{i}
$$

We give a small example showing that the nonsingularity of the (block) Löwner matrix does not necessarily guarantee that for $\tilde{V}(x) \tilde{U}(x)^{-1}=U(x)^{-1} V(x)$ all the interpolation points are attainable.

Take $p=q=1, m=n=2$ and

$$
\begin{array}{llll}
y_{0}=0, & C_{0}=2, & y_{1}=1, & C_{1}=6, \\
z_{0}=2, & D_{0}=4, & z_{1}=3, & D_{1}=3 .
\end{array}
$$

The Löwner matrix

$$
L=\left[\begin{array}{rr}
1 & \frac{1}{3} \\
-2 & -\frac{3}{2}
\end{array}\right]
$$

is nonsingular with determinant $-\frac{5}{6}$.
We get \tilde{U} and U as the solution of

$$
L \tilde{U}=\left[\begin{array}{l}
C_{0} \\
C_{1}
\end{array}\right]
$$

and

$$
U L=\left[\begin{array}{ll}
D_{0} & D_{1}
\end{array}\right]
$$

We derive

$$
\tilde{U}=\left[\begin{array}{c}
6 \\
-12
\end{array}\right] \text { and } U=\left[\begin{array}{ll}
0 & -2
\end{array}\right]
$$

Hence,

$$
\begin{array}{ll}
\tilde{U}(x)=x^{2}+x, & \tilde{V}(x)=12 x \\
U(x)=x^{2}+x, & V(x)=12 x
\end{array}
$$

The rational function

$$
\tilde{V}(x) \tilde{U}(x)^{-1}=U(x)^{-1} V(x)=\frac{12 x}{x^{2}+x}
$$

has an unattainable point for $x=y_{0}=0$.
This is also mirrored in the fact that $U_{0}=0$.
Before we give equivalent conditions for the attainability of the interpolation points, we show the following equality.

Lemma 7.1. It holds that

$$
\operatorname{det} U(x)=\operatorname{det} \tilde{U}(x)
$$

Proof. By elementary block elimination operations, it is easy to show that

$$
T(x)^{-1}=\left[\begin{array}{cc}
U(x)^{-1}+U(x)^{-1} V(x) \Delta(x)^{-1} P(x) & U(x)^{-1} V(x) \Delta(x)^{-1} \\
\Delta(x)^{-1} P(x) & \Delta(x)^{-1}
\end{array}\right]
$$

with $\quad \Delta(x)=Q(x)-P(x) U(x)^{-1} V(x) . \quad$ Moreover, $\quad \operatorname{det} T(x)=\operatorname{det} \Delta(x) \operatorname{det} U(x) . \quad$ Because $a(x) b(x) T(x)^{-1}=\widetilde{T}(x)$, we also have

$$
\tilde{U}(x)=a(x) b(x) \Delta(x)^{-1}
$$

Therefore,

$$
\begin{aligned}
\operatorname{det} T(x) & =\operatorname{det} \Delta(x) \operatorname{det} U(x) \\
& =(a(x) b(x))^{q} \operatorname{det} U(x) / \operatorname{det} \tilde{U}(x) .
\end{aligned}
$$

Because det $T(x)=(a(x) b(x))^{q}, \operatorname{det} U(x)=\operatorname{det} \widetilde{U}(x)$.
Corollary 7.1. The interpolation point $y_{i}\binom{$ or }{$z_{j}}$ is attainable iff $\operatorname{det} U\left(y_{i}\right)=\operatorname{det} \tilde{U}\left(y_{i}\right) \neq 0$ (or $\left.\operatorname{det} U\left(z_{j}\right)=\operatorname{det} \tilde{U}\left(z_{j}\right) \neq 0\right)$.

Theorem 7.2. If the block Löwner matrix $L=\left[\left(C_{i}-D_{j}\right) /\left(y_{i}-z_{j}\right)\right]$ is nonsingular, the Smith canonical form of the polynomial matrices

$$
L_{1}(x)=\left[\begin{array}{rr}
& -a(x) I_{p} \\
& a_{0}(x) I_{p} \\
L_{+ \text {row }} & \vdots \\
& a_{m-1}(x) I_{p}
\end{array}\right],
$$

where

$$
L_{+ \text {row }}=\left[\begin{array}{c}
D_{0} \ldots D_{n-1} \\
{\left[\frac{C_{i}-D_{j}}{y_{i}-z_{j}}\right]}
\end{array}\right],
$$

resp.,

$$
L_{2}=\left[\begin{array}{c}
L_{+\operatorname{col}} \\
-b(x) I_{q}, b_{0}(x) I_{q}, \ldots, b_{n-1}(x) I_{q}
\end{array}\right]
$$

where

$$
L_{+\mathrm{col}}=\left[\begin{array}{cc}
C_{0} & \\
\vdots & {\left[\frac{C_{i}-D_{j}}{y_{i}-z_{j}}\right]} \\
C_{m-1} &
\end{array}\right]
$$

is

$$
\left[\begin{array}{cc}
I_{N} & 0 \\
0 & S_{U}(x)
\end{array}\right]
$$

resp.,

$$
\left[\begin{array}{cc}
I_{N} & 0 \\
0 & S_{\tilde{U}}(x)
\end{array}\right]
$$

where $S_{U}(x) \in \mathbb{F}^{p \times p}[x]$, resp. $S_{\tilde{\sigma}}(x) \in \mathbb{F}^{q \times q}[x]$ are the Smith canonical forms of the polynomial matrices $U(x)$, resp. $\tilde{U}(x)$, and $N=m p=n q$.
(This result can be compared with a result for Hankel matrices [13, Theorem 2.12]. In a future paper, we shall elaborate on this.)

Proof. Let us prove the assertion for $L_{1}(x)$. Because L is nonsingular, there is a matrix M_{1} of dimension $N \times(N+p)$ such that

$$
M_{1} L_{+ \text {row }}=I_{N}
$$

Then

$$
\left[\begin{array}{cr}
M_{1} \\
-I_{p}, U_{0}, \ldots, U_{m-1}
\end{array}\right]\left[\begin{array}{rr}
& -a(x) I_{p} \\
& a_{0}(x) I_{p} \\
L_{\text {+row }} & \vdots \\
& a_{m-1}(x) I_{p}
\end{array}\right]=\left[\begin{array}{cc}
I_{N} & P(x) \\
0 & U(x)
\end{array}\right]
$$

for a polynomial matrix $P(x)$. Because $U(x)$ is nonsingular ($\operatorname{det} U(x)=x^{N}+\cdots \neq 0$), the last matrix on the right is nonsingular. Hence, the (constant) transformation matrix on the left is unimodular. The matrix on the right can be evidently multiplied by a unimodular matrix $R(x)$ to the right to get

$$
\left[\begin{array}{cc}
I_{N} & 0 \\
0 & U(x)
\end{array}\right] .
$$

Then, it is easy to come over to

$$
\left[\begin{array}{cc}
I_{N} & 0 \\
0 & S_{U}(x)
\end{array}\right]
$$

by unimodular transformations again.
In the sequel, we shall need the following corollary.

Corollary 7.2.

$$
\operatorname{det} U(x)=\kappa_{1} \operatorname{det}\left[\begin{array}{rr}
& -a(x) I_{p} \\
& a_{0}(x) I_{p} \\
L_{+ \text {row }} & \vdots \\
& a_{m-1}(x) I_{p}
\end{array}\right]
$$

$$
\operatorname{det} \tilde{U}(x)=\kappa_{2} \operatorname{det}\left[\begin{array}{c}
L_{+\operatorname{col}} \\
-b(x) I_{q}, b_{0}(x) I_{q}, \ldots, b_{n-1}(x) I_{q}
\end{array}\right],
$$

where κ_{1} and κ_{2} are nonzero constants.
The characterization of solvability of the rational interpolation problem is the following.
Theorem 7.3. Let the block Löwner matrix $L=\left[\left(C_{i}-D_{j}\right) /\left(y_{i}-z_{j}\right)\right]$ be nonsingular. Then all the interpolation points are attainable iff both matrices $L_{+\mathrm{row}}$ and $L_{+\mathrm{col}}$ (defined in the previous theorem) have all block minors formed of $m \times n$ blocks of dimension $p \times q$ different from zero.

Proof. Deleting the i th block row from $\left[\left(C_{i}-D_{j}\right) /\left(y_{i}-z_{j}\right)\right]$, denote the resulting matrix by L_{i}. By Theorem 7.2,

$$
\left[\begin{array}{c}
D_{0} \ldots D_{n-1} \\
L_{i}
\end{array}\right]
$$

is nonsingular iff $U\left(y_{i}\right) \neq 0$. An analogous assertion holds for $\tilde{U}\left(z_{j}\right)$. With this fact and with Lemma 7.1, the proof becomes evident.

Now we show that if \bar{x} is an unattainable point that

$$
\lim _{x \rightarrow \bar{x}} U(x)^{-1} V(x)=\lim _{x \rightarrow \bar{x}} \tilde{V}(x) \widetilde{U}(x)^{-1} \neq F_{\bar{x}} .
$$

We need the following lemma.
Lemma 7.4. If $U(\bar{x})$ is singular, then $U(x)$ and $V(x)$ have a left common divisor the determinant of which is a constant multiple of $(x-\bar{x})$. Similarly for $\tilde{V}(x)$ and $\tilde{U}(x)$.

Proof. If $U(\bar{x})$ is singular, there exists a vector $c \in \mathbb{F}^{p}$ such that

$$
c^{\mathrm{T}} U(x)=(x-\bar{x}) u(x), \quad \text { with } u(x) \in \mathbb{F}^{p \times 1}[x] .
$$

Multiplying

$$
\left[\begin{array}{ll}
U(x) & -V(x)
\end{array}\right]\left[\begin{array}{c}
F(x) \\
I_{q}
\end{array}\right]=a(x) b(x) R^{\prime}(x)
$$

to the left by c^{T}, we also get that $c^{\mathrm{T}} V(x)=(x-\bar{x}) v(x)$ with $v(x)$ polynomial. If $C \in \mathbb{F}^{p \times p}$ is any nonsingular matrix with its first row equal to c^{T}, then

$$
G(x)=C^{-1}\left[\begin{array}{cccc}
x-\bar{x} & 0 & \ldots & 0 \\
0 & 1 & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

is a common left divisor of $U(x)$ and $V(x)$ and $\operatorname{det} G(x)=(x-\bar{x})(\operatorname{det} C)^{-1} \in \mathbb{F}[x]$.

Theorem 7.5. If $U(\bar{x})$ is singular, then

$$
\lim _{x \rightarrow \bar{x}} U(x)^{-1} V(x) \neq F_{\tilde{x}} .
$$

Moreover, for any common left divisor $G(x)$ of $U(x)$ and $V(x)$ with $\operatorname{det} G(\bar{x})=0$, after deleting this divisor even the linearized interpolation condition in \bar{x} is not satisfied, i.e.

$$
U^{\prime}(\bar{x}) F_{\bar{x}}-V^{\prime}(\bar{x}) \neq 0
$$

with $U(x)=G(x) U^{\prime}(x)$ and $V(x)=G(x) V^{\prime}(x)$. Similarly, for $\tilde{V}(x)$ and $\tilde{U}(x)$.
Proof. If $U(\bar{x})$ is singular, we know from the previous lemma that there is at least one common left divisor $G(x)$ of $U(x)$ and $V(x)$ such that \bar{x} is a zero of $\operatorname{det} G(x)$. Take such a $G(x)$ with

$$
\operatorname{det} G(x)=(x-\bar{x})^{\delta} p(x), \quad \text { with } p(\bar{x}) \neq 0 \text { and } \delta>0
$$

Defining the polynomial matrices $U^{\prime}(x)$ and $V^{\prime}(x)$ by

$$
U(x)=G(x) U^{\prime}(x), \quad V(x)=G(x) V^{\prime}(x)
$$

we can write

$$
\left[\begin{array}{cc}
U^{\prime}(x) & -V^{\prime}(x) \tag{26}\\
-P(x) & Q(x)
\end{array}\right]\left[\begin{array}{cc}
a(x) b(x) I_{p} & F(x) \\
0 & I_{q}
\end{array}\right]=a(x) b(x)\left[\begin{array}{cc}
G(x)^{-1} & 0 \\
0 & I_{q}
\end{array}\right]
$$

We assume now that $U^{\prime}(\bar{x}) F_{\bar{x}}-V^{\prime}(\bar{x})=0$ or

$$
\left[\begin{array}{cc}
U^{\prime}(x) & -V^{\prime}(x) \tag{27}\\
-P(x) & Q(x)
\end{array}\right]\left[\begin{array}{cc}
a(x) b(x) I_{p} & F(x) \\
0 & I_{q}
\end{array}\right]=(x-\bar{x}) R^{\prime}(x)
$$

with $R^{\prime}(x) \in \mathbb{F}[x]^{(p+q) \times(p+q)}$. Looking at the factor $(x-\bar{x})$ in the determinant of the right-hand sides of (26) and (27), we get

$$
(x-\bar{x})^{(p+q)-\delta}=(x-\bar{x})^{(p+q)+\kappa}
$$

with $\operatorname{det} R^{\prime}(x)=(x-\bar{x})^{\kappa} p^{\prime}(x)$ where $\kappa \geqslant 0$ is the multiplicity of the root \bar{x} in $\operatorname{det} R^{\prime}(x)$. Hence, $\delta=-\kappa \leqslant 0$. Therefore, our assumption cannot be true or

$$
U^{\prime}(\bar{x}) F_{\bar{x}}-V^{\prime}(\bar{x}) \neq 0
$$

In the sequel, take for $G(x)$ a greatest common left divisor of $U(x)$ and $V(x)$. Hence, $U^{\prime}(x)$ and $V^{\prime}(x)$ are left coprime. Also, \bar{x} is a zero of $\operatorname{det} G(x)$. There are two possibilities.

- $U^{\prime}(\bar{x})$ is nonsingular. Hence,

$$
\lim _{x \rightarrow \bar{x}} U(x)^{-1} V(x)=U^{\prime}(\bar{x})^{-1} V^{\prime}(\bar{x}) \neq F_{\bar{x}} .
$$

- $U^{\prime}(\bar{x})$ is singular. Hence, the matrix rational function $U^{\prime}(x)^{-1} V^{\prime}(x)$ has a pole in \bar{x}. Therefore,

$$
\lim _{x \rightarrow \bar{x}} U(x)^{-1} V(x)=\lim _{x \rightarrow \bar{x}} U^{\prime}(\bar{x})^{-1} V^{\prime}(\bar{x}) \neq F_{\bar{x}} .
$$

This proves the theorem.

The next theorem shows that the zeros of the determinant of a common left divisor of $U(x)$ and $V(x)$ can only be interpolation points.

Theorem 7.6. The determinant of a common left divisor of $U(x)$ and $V(x)$ divides $(a(x) b(x))^{q}$. Similarly, the determinant of a common right divisor of $\tilde{V}(x)$ and $\tilde{U}(x)$ divides $(a(x) b(x))^{p}$.

Proof. If $G(x)$ is a common left divisor of $U(x)$ and $V(x)$, we can rewrite $T(x)$ as

$$
T(x)=\left[\begin{array}{cc}
G(x) & 0 \\
0 & I_{q}
\end{array}\right]\left[\begin{array}{cc}
U^{\prime}(x) & -V^{\prime}(x) \\
-P(x) & Q(x)
\end{array}\right]
$$

with $U(x)=G(x) U^{\prime}(x)$ and $V(x)=G(x) V^{\prime}(x)$. Because $\operatorname{det} T(x)=(a(x) b(x))^{q}, \operatorname{det} G(x)$ is a divisor of $(a(x) b(x))^{q}$.

Using the last two theorems, we get the following corollary.
Corollary 7.3. If $U(x)$ and $V(x)$ are left coprime, there are no unattainable points. If $U(x)$ and $V(x)$ are not left coprime, with $G(x)$ a greatest common left divisor, the zeros of the determinant of $G(x)$ are the unattainable points.

References

[1] B.D.O. Anderson and A.C. Antoulas, Rational interpolation and state variable realizations, Linear Algebra Appl. 137/138 (1990) 479-509.
[2] A.C. Antoulas, On recursiveness and related topics in linear systems, IEEE Trans. Automat. Control AC-31 (1986) 1121-1135.
[3] A.C. Antoulas and B.D.Q. Anderson, On the scalar rational interpolation problem, IMA J. Math. Control Inform. 3 (1986) 61-88.
[4] A.C. Antoulas, J.A. Ball, J. Kang and J.C. Willems, On the solution of the minimal rational interpolation problem, Linear Algebra Appl. 137/138 (1990) 511-573.
[5] A.C. Antoulas and J.C. Willems, A behavioral approach to linear exact modeling, IEEE Trans. Automat. Control AC-38 (1993) 1776-1802.
[6] V. Belevitch, Interpolation matrices, Philips Res. Rep. 25 (1970) 337-369.
[7] A. Bultheel and M. Van Barel, Minimal vector Padé approximation, J. Comput. Appl. Math. 32 (1990) 27-37.
[8] S. Cabay, M.H. Gutknecht and R. Meleshko, Stable rational interpolation?, Tech. Report 93-12, IPS-ETH, Zürich, 1993.
[9] S. Cabay and R. Meleshko, A weakly stable algorithm for Padé approximants and the inversion of Hankel matrices, SIAM J. Matrix Anal. Appl. 14 (1993) 735-765.
[10] J. Coates, On the algebraic approximation of functions, I-III, Proc. Kon. Nederl. Akad. Wet. 69 (1966) 421-461; also: Indag. Math. 28 (1966).
[11] W.F. Donoghue, Jr., Monotone Matrix Functions and Analytic Continuation, Grundlehren Math. Wiss. 207 (Springer, Berlin, 1974).
[12] M. Fiedler, Hankel and Loewner matrices, Linear Algebra Appl. 58 (1984) 75-95.
[13] M. Fiedler, Quasidirect decompositions of Hankel and Toeplitz matrices, Linear Algebra Appl. 61 (1984) 155-174.
[14] R.W. Freund and H. Zha, Formally biorthogonal polynomials and a look-ahead Levinson algorithm for general Toeplitz systems, Linear Algebra Appl. 188/189 (1993) 255-303.
[15] R.W. Freund and H. Zha, A look-ahead strategy for the solution of general Hankel systems, Numer. Math. 64 (1993) 295-322.
[16] M.H. Gutknecht and M. Hochbruck, Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems, Tech. Report 93-11, IPS, ETH Zürich, 1993.
[17] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators (Akademie Verlag, Berlin/ Birkhäuser, Basel, 1984).
[18] H. Jager, A multidimensional generalization of the Padé table, Proc. Kon. Nederl. Akad. Wet. 67 (1964) 193-249; also: Indag. Math. 26 (1964).
[19] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934) 177-216.
[20] K. Mahler, Perfect systems, Compositio Math. 19 (1968) 95-166.
[21] J. Meinguet, On the solubility of the Cauchy interpolation problem, in: A. Talbot, Ed., Proc. Univ. Lancaster Symp. on Approximation Theory and Application (Academic Press, New York, 1970) 137-164.
[22] M. Van Barel, B. Beckermann, A. Bultheel and G. Labahn, Matrix rational interpolation with poles as interpolation points, in: A.M. Cuyt, Ed., Nonlinear Numerical Methods and Rational Approximation II (Kluwer, Dordrecht, 1994) 137-148.
[23] M. Van Barel and A. Bultheel, A canonical matrix continued fraction solution of the minimal (partial) realization problem, Linear Algebra Appl. 122/123/124 (1989) 973-1002.
[24] M. Van Barel and A. Bultheel, A general module theoretic framework for vector M-Padé and matrix rational interpolation, Numer. Algorithms 3 (1992) 451-461.
[25] M. Van Barel and A. Bultheel, The "look-ahead" philosophy applied to matrix rational interpolation problems, in: U. Helmke, R. Mennicken and J. Saurer, Eds., Systems and Networks: Mathematical Theory and Applications, Vol. II: Invited and Contributed Papers, Math. Res. 79 (Akademie Verlag, Berlin, 1994) 891-894.
[26] Z. Vavrín, Inverses of Löwner matrices, Linear Algebra Appl. 63 (1984) 227-236.
[27] Z. Vavřín, A unified approach to Loewner and Hankel matrices, Linear Algebra Appl. 143 (1991) 171-222.

[^0]: * Corresponding author. This research was supported by the European Union (EU), Human Capital and Mobility (HCM), project ROLLS, Contract CHRX-CT93-0416.

