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Abstract

It is a well-known fact that while reducing a symmetric matrix into a similar tridiagonal one, the already
tridiagonal matrix in the partially reduced matrix has as eigenvalues the Lanczos–Ritz values. This behavior
is also shared by the reduction algorithm which transforms symmetric matrices via orthogonal similarity
transformations to semiseparable form. Moreover also the orthogonal reduction to Hessenberg form has a
similar behavior with respect to the Arnoldi–Ritz values.

In this paper we investigate the orthogonal similarity transformations creating this behavior. Two easy
conditions are derived, which provide necessary and sufficient conditions, such that the partially reduced
matrices have the desired convergence behavior. The conditions are easy to check as they demand that in
every step of the reduction algorithm two particular matrices need to have a zero block.
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1. Introduction

It is well-known that while reducing a symmetric matrix into a similar tridiagonal one, the
intermediate tridiagonal matrices contain the Lanczos–Ritz values as eigenvalues. Or for a Hes-
senberg matrix they contain the so-called Arnoldi–Ritz values. More information can be found in
the following books [1,2,4,6–8] and the references therein.

The goal of this paper is not to investigate the convergence behavior of the Ritz-values
(see e.g. [5] and the references therein), nor to prove that certain matrices have close con-
nections with the Lanczos(Arnoldi)–Ritz values (see e.g. [3,4]). Our goal is to investigate the
orthogonal similarity transformations in general causing this behavior. To achieve this goal we
assume that the performed similarity transformation leads to this special convergence behavior.
This gives two necessary conditions which always have to be satisfied. Based on these two
conditions we prove that orthogonal similarity transformations inheriting these conditions have
the desired convergence behavior. In this way we derived necessary and sufficient conditions.
Using the conditions, which are straightforward to check, it is an easy exercise to prove that
the orthogonal similarity transformations of matrices to semiseparable, tridiagonal and/or Hes-
senberg form share the same convergence behavior, with respect to the Lanczos(Arnoldi)–Ritz
values.

The convergence behavior of the Lanczos(Arnoldi)–Ritz values towards the eigenvalues [5]
plays an important role in several applications where one wants to locate specific parts of the
spectrum. Recently the orthogonal similarity transformation of a symmetric matrix into a similar
semiseparable one was derived [9]. This reduction combines the Lanczos–Ritz values behavior,
together with a nested subspace iteration. The knowledge that the subspace iteration works on the
Ritz values is crucial for understanding the convergence behavior in the reduction algorithm. This
combined convergence behavior can also be found in the reduction to a similar semiseparable plus
diagonal matrix [11] or the reduction towards upper triangular semiseparable or Hessenberg-like
form [10]. For these reductions it is important to know that the Ritz values appear in certain blocks
in the matrix. This paper provides easy conditions to check whether these reduction algorithms and
others, e.g. the reduction to tridiagonal or Hessenberg matrices, have the Lanczos(Arnoldi)–Ritz
values appearing in a submatrix.

The paper is organized as follows. In Section 2 we introduce briefly the type of orthogonal
similarity transformation considered, and also the notion of Ritz values and Krylov subspac-
es is briefly refreshed. The orthogonal similarity transformations obeying the desired conver-
gence behavior are investigated in Section 3. This leads to two simple, but necessary conditions.
In Section 4 we prove that the conditions derived in the previous section are also sufficient
to obtain that the partial reduced matrices have the Lanczos(Arnoldi)–Ritz values. The previ-
ous two sections describe the generic case, namely with one Krylov subspace. In case of an
invariant Krylov subspace the theory changes slightly. In Section 5 we investigate, what hap-
pens in the case of invariant subspaces. Some general remarks, and an extra property of the
orthogonal matrices are derived in Section 6. The final section of the paper contains the conclu-
sions.

2. Ritz values and Arnoldi(Lanczos)–Ritz values

We will briefly introduce here the notion of “Ritz values”, related to the orthogonal similarity
transformation. The orthogonal similarity transformations we consider are based on finite induc-
tion. In each induction step a row and a column are added to the desired structure. In this way all
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the columns and rows are transformed, such that the resulting matrix satisfies the desired structure.
Suppose, we have a matrix A(0) = A, which is transformed via an initial orthogonal similarity
transformation into the matrix A(1) = QT

0 A(0)Q0. The initial transformation Q0 is not essential
in the following proof, as it does not affect the reduction algorithms. It does have an effect on
the convergence behavior of the reduction, as will be shown in this subsection. We remark that
in real applications, often a matrix Q0 is chosen in such a way to obtain a specific convergence
behavior.

The other orthogonal transformations Qk , 1 � k � n− 1, are constructed by the reduction
algorithms. Let us denote the orthogonal transformation to go from A(k) to A(k+1) as Qk , and we
denote with Q0:k the orthogonal matrix equal to the product Q0Q1 . . . Qk . This means that

A(k+1) = QT
k A(k)Qk

= QT
k QT

k−1 . . . QT
1 QT

0 AQ0Q1 . . . Qk−1Qk

= QT
0:kAQ0:k.

The matrix A(k+1) is of the following form:(
Rk+1 ×
× Ak+1

)
,

where Rk+1 stands for that part of the matrix of dimension (k + 1)× (k + 1) which is already
transformed to the appropriate form, e.g. tridiagonal, semiseparable, Hessenberg, etc. The matrix
Ak+1 is of dimension (n− k − 1)× (n− k − 1). The × denote arbitrary matrices. They are
unimportant in the remaining part of the exposition. Remark however that the matrices A(k) are
not necessarily symmetric, as the elements × may falsely indicate.

Let us partition the matrix Q0:k as follows:

Q0:k =
(←−

Q 0:k|−→Q 0:k
)

with

{←−
Q 0:k ∈ Rn×(k+1),−→
Q 0:k ∈ Rn×(n−k−1).

This means,

A
(←−

Q 0:k|−→Q 0:k
)
=
(←−

Q 0:k|−→Q 0:k
)(

Rk+1 ×
× Ak+1

)
.

The eigenvalues of Rk+1 are called the Ritz values of A with respect to the subspace spanned by
the columns of

←−
Q 0:k (see e.g. [2]).

Suppose we have now the Krylov subspace of order k with initial vector v:

Kk(A, v) = 〈v, Av, . . . , Ak−1v〉,
where 〈x, y, z〉 denotes the vector space spanned by the vectors x, y and z. For simplicity we
assume in Sections 3 and 4 that the Krylov subspaces we are working with are not invariant,
i.e. that for every k: Kk(A, v) /=Kk+1(A, v), where k = 1, 2, . . . , n− 1. The special case of
invariant subspaces is dealt with in Section 5.

If the columns of the matrix
←−
Q 0:k form an orthonormal basis of the Krylov subspace

Kk+1(A, v), then we say that the eigenvalues of Rk+1 are called the Arnoldi–Ritz values of
A with respect to the initial vector v. If the matrix A is symmetric, one often calls the Ritz values
the Lanczos–Ritz values.
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3. Necessary conditions to obtain the Arnoldi(Lanczos)–Ritz values as eigenvalues
in the already reduced block of the matrix

In this section, we investigate the properties of orthogonal similarity transformations, where the
eigenvalues in the already reduced block of the matrix are the Arnoldi–Ritz values, with respect to
the starting vector v, where v/‖v‖ = ±Q0e1. This makes clear that the initial transformation can
change the convergence behavior, as it changes the Krylov subspace and hence also the Ritz values.
We remark once more that this initial transformation does not change the reduction algorithm as
the actual algorithm reduces the matrix A(1) = QT

0 AQ0 to the desired form. However, in practice
a good choice of the vector v, can have important consequences for the convergence behavior in
applications.

Suppose that our orthogonal similarity reduction of the matrix into another matrix has the
following form after step k − 1 (with k = 1, 2, . . . , n− 1):(

Rk ×
× ×

)
= QT

0:k−1AQ0:k−1.

This means that we start with this matrix at step k of the reduction: with Rk a square matrix of
dimension k, which has as eigenvalues the Arnoldi–Ritz values. Hence, we have the following
properties for the orthogonal matrix Q0:k−1:

(1) The columns of
←−
Q 0:k−1 form an orthogonal basis for Kk(A, v).

(2) The columns of
−→
Q 0:k−1 form an orthogonal basis for the orthogonal complement of

Kk(A, v).

As already mentioned before, for simplicity reasons we assume here that we work with one
non-invariant Krylov subspace Kk(A, v). The more general case is dealt with in Section 5.

After the next step in the transformation we have that the block Rk+1 has the Ritz values as
eigenvalues with respect to Kk+1(A, v). This results in two easy conditions, similar to the ones
described above. After step k, in the beginning of step k + 1 we have:

(1) The columns of
←−
Q 0:k form an orthogonal basis for Kk+1(A, v) =Kk(A, v) + 〈Akv〉.

(2) The columns of
−→
Q 0:k form an orthogonal basis for the orthogonal complement of

Kk+1(A, v).

We have the following equalities:

A= Q0:k−1A
(k)QT

0:k−1

= Q0:kA(k+1)QT
0:k.

This means that the transformation to go from matrix A(k) to matrix A(k+1) can also be written
in the following form:

QT
0:kQ0:k−1A

(k)QT
0:k−1Q0:k = A(k+1).

Using the fact that Qk denotes the orthogonal matrix to go from matrix A(k) to matrix A(k+1),
we get:
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QT
k = QT

0:kQ0:k−1

=
(←−

Q
T
0:k−→

Q
T
0:k

)(←−
Q 0:k−1

∣∣∣−→Q 0:k−1

)

=
(

(Qk)
T
11 (Qk)

T
12

(Qk)
T
21 (Qk)

T
22

)
,

where the (Qk)
T
11, (Qk)

T
12, (Qk)

T
21 and (Qk)

T
22 denote a partitioning of the matrix QT

k . These
blocks have the following dimensions: (Qk)

T
11 ∈ R(k+1)×k , (Qk)

T
12 ∈ R(k+1)×(n−k), (Qk)

T
21 ∈

R(n−k−1)×k and (Qk)
T
22 ∈ R(n−k−1)×(n−k). It can be seen rather easily, by combining the properties

of the matrices Q0:k−1 and Q0:k from above, that the block (Qk)
T
21 has to be zero. This zero block

in the matrix Qk is the first necessary condition.
To obtain a second condition, we will investigate the structure of an intermediate matrix Ã(k)

satisfying

Ã(k) = QT
k A(k)

= QT
k QT

0:k−1AQ0:k−1

= QT
0:kAQ0:k−1,

which can be rewritten as:
Q0:kÃ(k) = AQ0:k−1. (1)

Rewriting Eq. (1) gives us:

A
(←−

Q 0:k−1|−→Q 0:k−1

)
=
(←−

Q 0:k|−→Q 0:k
)

Ã(k).

Because the columns of A
←−
Q 0:k−1 belong to the Krylov subspace: Kk+1(A, v), which is spanned

by the columns of
←−
Q 0:k , we have that Ã(k) has a zero block of dimension (n− k − 1)× k in the

lower left corner. This provides us a second condition.
The two conditions presented here, namely the condition on Ã(k) and the condition on Qk , are

necessary to have the desired convergence properties in the reduction. In the next section we will
prove that they are also sufficient. We will formulate this as a theorem:

Theorem 1. Suppose, we apply an orthogonal similarity transformation on the matrix A (as
described in Section 2), such that the already reduced part Rk in the matrix has the Arnoldi–Ritz
values in each step of the reduction algorithm. Then we have the following two properties for
every 1 � k � n− 1:

• The matrix QT
k , which is the orthogonal matrix to transform A(k) into the matrix A(k+1) =

QT
k A(k)Qk has a zero block of dimension (n− k − 1)× k in the lower left corner.

• The matrix Ã(k) = QT
k A(k) has a zero block of dimension (n− k − 1)× k in the lower left

corner.

4. Sufficient conditions to obtain the convergence behavior

We prove that the properties from Theorem 1 connected to the matrices Qk and Ã(k) are
sufficient to have the Arnoldi–Ritz values as eigenvalues in the blocks Rk .
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Theorem 2. Suppose, we apply an orthogonal similarity transformation on the matrix A (as
described in Section 2), such that we have for A(0) = A:

Q0e1 = ± v

‖v‖ and QT
0 A(0)Q0 = A(1).

Assume that the corresponding Krylov subspace Kk(A, v), will not become invariant for k �
n− 1. Suppose that for every step 1 � k � n− 1 of the reduction algorithm we have the following
two properties:

• the matrix QT
k , which is the orthogonal matrix to transform A(k) into the matrix A(k+1) =

QT
k A(k)Qk has a zero block of dimension (n− k − 1)× k in the lower left corner;

• the matrix Ã(k) = QT
k A(k) has a zero block of dimension (n− k − 1)× k in the lower left

corner.

Then we have that for the matrix A(k+1) partitioned as

A(k+1) =
(

Rk+1 ×
× Ak+1

)
,

the matrix Rk+1 of dimension (k + 1)× (k + 1) has the Ritz values with respect to the Krylov
space Kk+1(A, v).

Proof. We will prove the theorem by induction on k.

Step 1. The theorem is true for k = 1, because QT
0 AQ0 contains clearly the Arnoldi–Ritz value

in the upper left 1× 1 block.

Step k. Suppose the theorem is true for A(1), A(2), . . . , A(k), with k � n− 1. This means that the
columns of

←−
Q 0:k−1 span the Krylov subspace Kk(A, v). Then we will prove now that the con-

ditions are sufficient to have that the columns of
←−
Q 0:k span the Krylov subspace of Kk+1(A, v).

We have the following equalities

Ã(k) = QT
k A(k)

= QT
k QT

0:k−1AQ0:k−1

= QT
0:kAQ0:k−1.

Therefore,

AQ0:k−1 = Q0:kÃ(k)

A
(←−

Q 0:k−1|−→Q 0:k−1

)
=
(←−

Q 0:k|−→Q 0:k
)

Ã(k).

Hence, we have already that the columns of A
←−
Q 0:k−1 are part of the space spanned by the columns

of
←−
Q 0:k . Note that the columns of A

←−
Q 0:k−1 span the same space as AKk(A, v). We have the

following relation:

AKk(A, v) ⊆ Range(
←−
Q 0:k). (2)

With Range(A) we denote the vector space spanned by the columns of the matrix A. We also
have that:

Q0:k = Q0:k−1Qk,
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Q0:kQT
k = Q0:k−1.

Hence,(←−
Q 0:k|−→Q 0:k

)
QT

k =
(←−

Q 0:k−1|−→Q 0:k−1

)
.

Using the zero structure of the matrix QT
k we have:

Range(
←−
Q 0:k−1) =Kk(A, v) ⊆ Range(

←−
Q 0:k).

When we combine this, with Eq. (2) and the fact that our subspace Kk(A, v) is not invariant, i.e.
Kk+1(A, v) /=Kk(A, v), we get:

Range(
←−
Q 0:k) =Kk+1(A, v).

This proves the theorem for A(k+1).

5. The case of invariant subspaces

The theorems and proofs of the previous sections were based on the fact that the Krylov
subspace Kk(A, v) was never invariant. In the case of an invariant subspace, we can apply
deflation and continue working on the deflated part, or we can derive similar theorems as in the
previous sections, but for combined Krylov subspaces. We will investigate these two possibilities
in deeper detail in this section.

5.1. Some notation

We will introduce some extra notation to be able to work in an efficient way with these combined
Krylov subspaces. Let us denote with Kk(A) the following subspace:

Kk(A) =Kl1(A, v1) ∪Kl2(A, v2) ∪ · · · ∪Klt−1(A, vt−1) ∪Kkt (A, vt ).

This means that Kk(A) is the union of t different Krylov subspaces. We make the following
assumptions:

• The dimension of Kk(A) equals k, and k = l1 + l2 + l3 + · · · + lt−1 + kt .
• With li we denote the maximum dimension the Krylov subspace with matrix A and initial vector

vi can reach, before becoming invariant. This means that the Krylov subspaces Kp(A, vi)

with p � li are all equal to Kli (A, vi) /=Kli−1(A, vi). The ki is an index 1 � ki � li for the
Krylov subspace with matrix A and initial vector vi :

Kki
(A, vi) = 〈vi, Avi, . . . , A

ki−1vi〉.
• The starting vectors vi of the different Krylov subspaces are chosen in such a way that they

are not part of the previous Krylov subspaces. This means

vj /∈
j−1⋃
i=1

Kli (A, vi).

In the following two subsections we will note what changes in the theoretical derivations
for obtaining the necessary and sufficient conditions are required. In a final subsection we will
investigate in more detail the case of deflation.
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5.2. The necessary conditions

For the derivation of the necessary conditions we assumed, for simplicity reasons that we were
working with only one Krylov subspace. In the case of invariant subspaces however, we have to
work with a union of these Krylov subspaces. This means that our orthogonal transformations
Q0:k−1 satisfy the following conditions:

(1) The columns of
←−
Q 0:k−1 form an orthogonal basis for

Kk(A) =Kl1(A, v1) ∪ · · · ∪Kkt (A, vt ).

(2) The columns of
−→
Q 0:k−1 form an orthogonal basis for the orthogonal complement of Kk(A).

In fact this is the only thing which changes in these derivations, all the remaining statements
stay valid. The conditions put on the orthogonal matrices Qk and on the matrices Ã(k) remain
valid.

However in the case of invariant subspaces we can derive also the following property. The
occurrence of invariant subspaces, creates zero blocks below the diagonal in the matrices A(k).
Suppose that for a certain k the space Kk(A) becomes invariant. Due to the invariance we have:
AKk(A) ⊂ Kk(A). As the matrix

←−
Q 0:k−1 forms an orthogonal basis for the space Kk(A), we get

the following equations:

QT
0:k−1AQ0:k−1 = A(k),

AQ0:k−1 = Q0:k−1A
(k)

= Q0:k−1

(
Rk ×
0 Ak

)
.

In case of an invariant subspace the matrix A(k) has a zero block of dimension (n− k)× k

in the lower left position. In fact one can apply deflation now and continue working with the
lower right block Ak , e.g. for finding eigenvalues. If one applies deflation after every invariant
subspace, one does in fact not work with the whole space Kk(A), but on separate (invariant)
subspaces. Indeed, after the first invariant subspace Kl1(A) =Kl1(A, v1) one applies deflation
and one starts iterating this procedure on a new matrix Al1 .

5.3. Sufficient conditions

In this subsection, we will take a closer look at the proof of Theorem 2, and investigate the
changes in case of an invariant Krylov subspace.

Suppose at step k of the reduction algorithm we encounter an invariant subspace Kk(A), i.e.
Kk(A) =Kl1(A, v1) ∪ · · · ∪Klt (A, vt ). Only the last lines of the proof of Theorem 2, do not
hold anymore. The following equation however remains valid:

Kk(A) ⊂ Range(
←−
Q 0:k).

This leads to the following equation:(←−
Q 0:k|−→Q 0:k

)
=
(←−

Q 0:k−1|vt+1|−→Q 0:k
)(

W 0
0 I

)
with W a matrix of dimension (k + 1)× (k + 1). Therefore

Range(
←−
Q 0:k) = Kk(A) ∪ 〈vt+1〉
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with

vt+1 /∈ Range(
←−
Q 0:k−1) =

t⋃
i=1

Kli (A, vi).

So, defining Kk+1(A) =Kl1(A, v1) ∪ · · · ∪Klt (A, vt ) ∪K1(A, vt+1) proves the theorem.
One might wonder if it is possible to choose any vector v not in Kk(A), for defining the new

space Kk+1(A), because our matrix QT
k still has to satisfy some conditions. Let us define the

vector w as the orthogonal projection of the vector v onto
−→
Q 0:k−1. Then we have that

Kk(A) ∪ 〈v〉 = Kk(A) ∪ 〈w〉 (3)

with w orthogonal to
←−
Q 0:k−1. We have the relation:

(
←−
Q 0:k|−→Q 0:k)QT

k = (
←−
Q 0:k−1|−→Q 0:k−1),

so if we choose now
←−
Q 0:k = (

←−
Q 0:k−1|w), we see that the conditions put on Qk and Ã(k) still

are satisfied and moreover we have chosen v to be an arbitrary vector not in Kk(A), because the
matrix

←−
Q 0:k spans the space Kk+1(A) = Kk(A) ∪ 〈v〉, due to Eq. (3).

5.4. The case of deflation

Finally we will take a closer look at the case of deflation. Suppose now that for a certain k

we get an invariant space Kk(A) =Kl1(A, v1) ∪ · · · ∪Klt (A, vt ). Suppose we apply deflation
and we can continue iterating the procedure on the matrix Ak . Assume we start on this matrix
the procedure with unit starting vector w, by applying an initial transformation W2. This means
that W2e1 = w. In fact this corresponds to applying the similarity transformation (with W1 an
arbitrary orthogonal matrix):

Qk =
(

W1 0
0 W2

)
,

which satisfies the desired condition (the upper right k × (n− k − 1) block is zero), on the matrix
A(k). Looking closer at the matrix Q0:k we get the following relations:

Q0:k = Q0:k−1Qk

= (
←−
Q 0:k−1|−→Q 0:k−1)Qk.

This means that
←−
Q 0:k = (

←−
Q 0:k−1W1|vt+1).

Clearly the vector vt+1 = −→Q 0:k−1w does not belong to the space Kk(A), moreover the vector
is perpendicular to Kk(A). This last deduction clearly shows the relation between the different
Krylov spaces when applying deflation and the continuation of the reduction process on the
complete matrix.

6. Some general remarks

When we take a closer look at the matrix equation:

QT
k = QT

0:kQ0:k−1
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=
(←−

Q
T
0:k−→

Q
T
0:k

)(←−
Q 0:k−1|−→Q 0:k−1

)
,

we can see that the matrix QT
k has the upper right (k + 1)× (n− k) block of rank less than or

equal to 1. The upper right (k + 1)× (n− k) block corresponds to the product
←−
Q

T
0:k
−→
Q 0:k−1.

The columns of the matrix
←−
Q

T
0:k span the subspace Kk+1(A) = Kk(A)+ 〈Akt vt 〉 (assuming that

Kk(A) is not invariant) and the columns of
−→
Q 0:k−1 span the space orthogonal to Kk(A), which

leads directly to the fact that the product
←−
Q

T
0:k
−→
Q 0:k−1, has rank less than or equal to 1. The

invariant case can be dealt with in a similar way.
The reader can easily verify that the similarity reductions of a symmetric matrix into a similar

tridiagonal or a semiseparable one, and the similarity reduction of a matrix into a similar Hessen-
berg or a matrix having the lower triangular part of semiseparable form [9], perfectly fit in this
scheme. Moreover one can derive that the vector v equals e1, if of course the initial transformation
Q0 equals the identity matrix.

7. Conclusions

In this paper we derived two easy conditions satisfied by orthogonal similarity transformations,
such that the resulting partially reduced matrices have in the already reduced part the Lanczos
(Arnoldi)–Ritz values as eigenvalues. Moreover we proved that these conditions are necessary
and sufficient.
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