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S U M M A R Y

Objectives: Molecular tests show low sensitivity for smear-negative pulmonary tuberculosis (PTB). A

screening and risk assessment system for smear-negative PTB using artificial neural networks (ANNs)

based on patient signs and symptoms is proposed.

Methods: The prognostic and risk assessment models exploit a multilayer perceptron (MLP) and inspired

adaptive resonance theory (iART) network. Model development considered data from 136 patients with

suspected smear-negative PTB in a general hospital.

Results: MLP showed higher sensitivity (100%, 95% confidence interval (CI) 78–100%) than the other

techniques, such as support vector machine (SVM) linear (86%; 95% CI 60–96%), multivariate logistic

regression (MLR) (79%; 95% CI 53–93%), and classification and regression tree (CART) (71%; 95%

CI 45–88%). MLR showed a slightly higher specificity (85%; 95% CI 59–96%) than MLP (80%; 95%

CI 54–93%), SVM linear (75%, 95% CI 49–90%), and CART (65%; 95% CI 39–84%). In terms of the area

under the receiver operating characteristic curve (AUC), the MLP model exhibited a higher value

(0.918, 95% CI 0.824–1.000) than the SVM linear (0.796, 95% CI 0.651–0.970) and MLR (0.782, 95%

CI 0.663–0.960) models. The significant signs and symptoms identified in risk groups are coherent

with clinical practice.

Conclusions: In settings with a high prevalence of smear-negative PTB, the system can be useful for

screening and also to aid clinical practice in expediting complementary tests for higher risk patients .

� 2016 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
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1. Introduction

The directly observed therapy strategy (DOTS) has improved
tuberculosis (TB) cure rates in several nations, although its use
remains low. Globally, smear-negative pulmonary tuberculosis
(PTB) accounts for 20–50% of active TB.1

The World Health Organization (WHO) has recommended that
those with a chronic cough, i.e., a cough lasting 2 or more weeks,
should have expectorated sputum evaluated by acid-fast bacillus
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(AFB) smear examination or using the Xpert MTB/RIF (Xpert)
assay.1,2 The use of AFB testing and the detection of PTB based
solely on a chronic cough show low accuracy in smear-negative
PTB patients.2–4

To improve the detection of smear-negative PTB cases, the
WHO 2007 algorithm recommends the use of culture, chest X-ray
(CXR), and new diagnostic tests, such as the Xpert assay.3 A recent
meta-analysis compared the performance of Xpert, the micro-
scopic observation drug susceptibility assay (MODS), and the WHO
2007 algorithm for the diagnosis of smear-negative PTB.5 The
pooled sensitivity and specificity were 67% and 98% for Xpert, 73%
and 91% for MODS, and 61% and 69% for the WHO 2007 algorithm,
respectively.5 In addition, in spite of various surmountable barriers
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observed in the implementation of the Xpert assay in nine
countries, the detection of TB cases did not, in fact, increase.6

At screening of smear-negative PTB patients, without a
standardized clinical work-up, misdiagnosis rates may be as high
as 38% in case of assuming that any CXR abnormality would be
considered to define a positive prognostic.7 Other TB risk factors,
such as symptoms suggestive of PTB, i.e., chest pain or haemoptysis,
or systemic symptoms such as weight loss, night sweats, fever,
chills, fatigue, and loss of appetite, would be helpful to rule in or
rule out the diagnosis of TB.8–14

Several studies have proposed scoring systems to identify PTB
using multivariate logistic regression (MLR),15 classification
trees,16 and artificial neural networks (ANNs).17–20 ANNs are
powerful modelling tools, useful for solving complex problems,
and explore existing non-linear relationships between variables
extracted automatically from data. Several medical applications
have benefited from the use of ANNs. This set of techniques usually
outperforms classical methods, such as logistic regression,21 when
modelling clinical data.

A decision support system (DSS) as a first approach for the
diagnosis of smear-negative PTB based on ANNs is proposed
here.22 This DSS serves as a TB prognostic and risk assessment tool
and is based solely on patient signs and symptoms. As a prognostic
it can be useful for the selection of patients for molecular tests,
such as the Xpert assay, while as a risk assessment tool it can form
the basis on which to expedite the use of complementary
examinations for higher risk patients.

2. Study population, design, and methods

2.1. Dataset description

The dataset was based on 136 adults with symptoms and/or
signs suggestive of smear-negative PTB who were referred to the
teaching hospital of the Federal University of Rio de Janeiro (a
general hospital) from January 1, 2010 to December 30, 2011. The
recruitment and enrolment of subjects followed the approach
described in a previous study.23 In brief, subjects who had two
consecutive samples of spontaneous sputum that were AFB smear-
negative, or who had absence of expectorated sputum, excluding
those who had already received anti-TB treatment, were included.

The patients underwent a standardized interview with ques-
tions on demographic variables and clinical history (e.g., smoking,
alcohol abuse, and HIV infection). All underwent HIV testing by
ELISA. Western blot of reactive ELISA cases confirmed an HIV
infection in 64 patients (47%). AIDS cases were identified according
to the Caracas definition of AIDS.24 Clinical samples were sent to
the mycobacteriology laboratory for culture, drug susceptibility
testing, and identification to the species level using techniques
described fully elsewhere.25,26

Patients with a positive culture for Mycobacterium tuberculosis in
a respiratory specimen (confirmed smear-negative PTB) and those
for whom some clinical improvement was observed after 6 months
of solely anti-TB treatment (presumptive smear-negative PTB)
were considered as PTB cases. Subjects for whom (1) AFB smears
and culture for M. tuberculosis were negative, (2) CXR showed no
change after 6 months of follow-up, or (3) the notifiable diseases
surveillance database (SINAN) did not signal a positive PTB
diagnosis within 2 years from the date of their enrolment in the
study, were considered as non-PTB cases. A panel of experts formed
of two pulmonologists reviewed all presumed smear-negative PTB
cases. A third physician reviewed all cases with discordant results.

Based on a panel of three TB expert researchers, the following
12 variables were selected for the development of the ANN models:
age, presence of cough, fever, haemoptysis, anorexia, weight loss,
HIV, night sweats, absence of dyspnoea, smoking, association with
extrapulmonary TB, and previous hospitalization. All signs and
symptoms were coded as +1 and �1 to represent their presence or
absence, and as 0 when the information was not available. Age was
normalized to have 0 mean and to be within the range of �1 to +1.

Relationships among these variables and the diagnosis of
smear-negative PTB were inferred using univariate and multivari-
ate logistic regression (ULR and MLR) models.27 For simplicity, this
set of variables was also evaluated using a wrapper feature
selection method,28 considering a logistic regression model,
according to both forward and backward sequential floating
search procedures (FSFS and BSFS).29 In this analysis, the
probability of inclusion of each variable was 25% and the
probability of exclusion of each variable was 30%. This process
considered the use of the likelihood ratio test.28

2.2. Development of artificial neural networks

ANNs are biologically inspired models able to learn through
examples. Composed of artificial neurons arranged in layers and
interconnected by synaptic weights, the ANNs may acquire
knowledge by weight adaptation during the training process.22

The adoption of ANNs to solve a particular problem involves
two main phases: training and operation. In the first, network
synaptic weights are adapted to solve a particular task, extracting
knowledge from training data. Once the training phase is complete,
ANNs operate only producing outputs based on the stored
knowledge (operating phase).

The proposed screening system exploits a three-layer multi-
layer perceptron (MLP) responsible for TB prognostics, 22 and a
model inspired on adaptive resonance theory (ART),30 here
referred to as iART, to classify patients into low, medium, and
high risk levels. As MLP and iART modules operate in a
complementary fashion, discordant results may signal an atypical
case for further clinical investigation.

The development of the MLP model considered the holdout
approach, resulting in the split of the dataset into a training set and
a testing set.31 The first set was used for MLP training, i.e., for
synaptic weight adaptation, whereas the second was used to
estimate network prediction generalization.

Since generalization of the MLP model was shown to be
sensitive to the composition of the training and test sets, mainly
due to the small dataset size, an instance selection procedure was
applied to define the contents of these sets.32 The procedure
adopted consisted of the production of a cluster of three groups
using the iART model and random splitting of the patients
belonging to each group between the two sets, in the following
proportions of cases: 75% training and 25% testing. The resulting
training and testing sets retained a total of 102 and 34 patients,
respectively, from which 45 (44.5%) and 14 (41.4%), respectively,
were positive cases. This procedure aimed to result in problem
representative sets, thus conjugating robust learning with a
realistic model evaluation.

The MLP module employed a three-layer architecture with
12 input nodes, corresponding to the number of dataset variables
selected by the TB experts as relevant to TB diagnosis, and a single
output neuron, as this model was trained to give the values �1 and +1
to negative and positive cases, respectively. The number of hidden
neurons was chosen using cross-validation (CV) as 15. The hyperbolic
tangent was the activation function of all neurons. The output of
the resulting predictive model is given by the following equation:

yðxÞ ¼ tanh
X15

i¼1

citanh
X12

j¼1

aijxj þ bi

0@ 1Aþ di

0@ 1A (1)

where the vector of input variables is denoted by x, the j-th
component of x is given by xj, the synaptic weights from input and
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output layers are defined by the variables aij, bi and ci, di,
respectively, while the function tanh is the hyperbolic tangent.

MLP training employed the resilient backpropagation algorithm
(RPROP)33 in batch mode.22 This first-order optimization algorithm
is robust to the occurrence of small-gradient values and adjusts
network synaptic weights only using the signs of the gradient
components. This strategy reduces the dependence of network
training on both the landscape of objective function and the initial
values of the synaptic weights, usually resulting in better training.

In order to mitigate possible class-imbalance effects,34 which
may be generated by the difference in number of negative and
positive cases in the dataset, the following adjusted mean-square
error function was considered for synaptic weight adaptation:

MSEad ¼
1

2nTBþ

XnTBþ

i¼1

½1�yðxijxi 2 STrain
TBþ Þ�

2

þ 1

2nTB�

XnTB�

j¼1

½1 þ yðxjjxj 2 STrain
TB� Þ�

2
(2)

where the variables nTB+and nTB- represent the cardinality of the
subsets STrain

TBþ and STrain
TB� , which correspond to positive and negative

cases in the training set, respectively. This objective function forces
a balanced reduction of the prediction errors related to positive
and negative cases during MLP training. In this work, this
performance index also controlled the number of training
iterations in order to avoid overtraining,22 according to the early
stop procedure,22 but was estimated using the testing set in this
task.

To avoid local minima,22 10 MLP models were produced, each
one considering random synaptic weights following a zero-mean
Gaussian distribution with variance equal to 0.05. The model
showing the highest area under the receiver operating character-
istic curve (AUC)35 for the testing set was selected for this analysis.

The iART network is a competitive clustering algorithm that
automatically produces hyperspherical clusters to enclose data.30

A vector of centre coordinates (ci) and a vigilance radius (r) define
each cluster. Usually, for simplicity, all groups share the same
vigilance radius.

In order to evaluate whether a given input data x belongs to an
arbitrary cluster with a centre ci, the iART model uses the following
pertinence function:

di ¼ jjx�cijj2 (3)

This quantity corresponds to the distance from data to cluster
centre. If this value is lower than r, the data is inside the
hypersphere associated with this group, thus is classified as
belonging to it. If more than one group satisfies this criterion, the
sample is assigned to the group with lowest value of di (the closest
one).

During the iART training phase, dataset cases should be
presented randomly to the network. For each one, the algorithm
verifies whether the current input (x) belongs to any of the already
identified groups. If negative, a new group is created having this
sample as the centre. Otherwise, the centre of the winner group (cj)
is updated according to the following equation:

cjðkÞ ¼ cjðk�1Þ þ hðkÞ½x�cjðk�1Þ� (4)

where the variable h is the learning rate factor. It can be shown that
if the value of h is progressively reduced during training, the vector
(cj) asymptotically converges to its corresponding cluster centre. In
this work, this factor was adjusted as follows:

hðkÞ ¼ ghðk�1Þ (5)

where the constant g is the learning decay factor, here chosen as
0.99.
With the aim of providing a risk assessment, the vigilance
radius of the iART network was tuned to result in three groups,
labelled as low, medium, and high risk, according to the prevalence
of TB observed in each one.30 This model was developed using all
dataset cases. The existence of significant signs and symptoms for
each group was verified using Fisher’s test.36

The development and evaluation of MLP and iART models was
conducted using self-made codes in Octave environment.37 The
resulting models were also implemented in C language, only
considering the operating phase (no learning), and were integrated
into a friendly Web-based user interface in order to make the
system available for clinical use.

Other classification techniques, such as classification and
regression trees (CART),38 MLR, and support vector machines
(SVM)39 were evaluated as alternatives to MLP. The mid-p

McNemar test was used to verify the effectiveness of the MLP
model as compared to this set of algorithms.40 The McNemar test is
recommended for the comparison of two models produced using
hold-out, thus considers only one testing set, and compares the
proportion of classification errors associated with each one.41

Three kernel functions were considered for SVM machines:
polynomial, radius basis functions (RBF), and linear. Optimal SVM
parameters were defined using cross-validation and considered
the AUC as the figure of merit. These methods were produced
and evaluated using the same pair of sets used in the MLP
development.

Model performance was assessed using the following indices:
sensitivity, specificity, accuracy, and AUC. For the first three
indices, the confidence intervals ðw�; wþÞ were estimated using
the Wilson score interval method,27 given by:

w�; wþð Þ � ðp̂�za=2ŝ; p̂ þ za=2 ŝÞ (6)

with:

p̂ ¼ p þ
za=2

2n

� �
= 1 þ

z2
a=2

n

  !
(7)

ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

n
þ

z2
a=2

4n2

s
= 1 þ

z2
a=2

n

  !
(8)

p ¼ m

n
(9)

Here, the variables m and n, which define the proportion p, are
dependent on the performance index taken into consideration.
Such values were also evaluated considering the testing set. The
critical value Za/2 was defined to produce 95% confidence intervals
(CI).

In the case of the receiver operating characteristic curve (ROC),
the CIs (AUC�, AUC+) were produced using the modified Wald
interval with continuity correction,42 as follows:

AUC�; AUCþ
� �

� ðdAUC þ 1=ð2nÞ�za=2 ŝ; dAUC þ 1=ð2nÞ þ za=2ŝÞ (10)

ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidAUCð1�dAUCÞ
0:75n�1

s
(11)

where the number of testing set events is given by n.

2.3. Ethics statement

This study was approved by the Institutional Review Board of
the Hospital Universitário Clementino Fraga Filho/Faculdade de
Medicina (HUCFF/FM) (n. 060/1999). Patients included in this
study gave their written informed consent.



Table 1
Descriptive analysis of the signs and symptoms, as selected by TB experts, in the 136 subjects suspected to have smear-negative pulmonary tuberculosis attending an

outpatient clinic at a teaching hospitala

PTB

Mean (95% CI)

Non-PTB

Mean (95% CI)

t-test p-value ULR

(p-Value)

MLR

(p-Value)

Age 37.39 (33.39–41.39) 47.91 (44.15–51.67) p < 0.001 <0.001 <0.001

PTB Non-PTB OR (95% CI) ULR

(p-Value)

MLR

(p-Value)

n % n %

Cough Yes 57 97.0 65 86.0 4.82 (1.03–22.68) 0.039 0.001

No 2 3.0 11 14.0

Haemoptysis Yes 15 27.3 16 22.2 1.31 (0.58–2.96) 0.510 0.170

No 40 72.7 56 77.7

Night sweats Yes 27 48.0 31 41.0 1.32 (0.66–2.65) 0.424 0.333

No 29 52.0 44 59.0

Fever Yes 34 61.0 32 44.0 1.98 (0.97–4.02) 0.059 0.238

No 22 39.0 41 56.0

>10% weight loss Yes 20 37.0 23 32.0 1.25 (0.59–2.63) 0.527 0.523

No 34 63.0 49 68.0

Dyspnoea Yes 13 24.0 27 37.0 0.54 (0.25–1.18) 0.147 0.223

No 41 76.0 46 63.0

Anorexia Yes 17 32.0 23 32.0 0.99 (0.47–2.13) 0.940 0.794

No 37 68.0 50 68.0

Smoking Yes 13 24.0 10 13.0 2.03 (0.81–5.06) 0.089 0.125

No 41 76.0 64 87.0

Extrapulmonary TB Yes 1 1.9 2 2.7 0.72 (0.06–8.22) 0.188 0.131

No 51 98.1 74 97.3

Past hospitalization Yes 6 11.0 22 30.0 0.30 (0.11–0.81) 0.035 0.028

No 46 89.0 51 70.0

AIDS (Caracas definition) Yes 1 4.3 4 11.8 0.34 (0.03–3.27) 0.847 0.258

No 22 95.7 30 88.2

PTB, pulmonary tuberculosis; CI, confidence interval; ULR, univariate logistic regression; MLR, multivariate logistic regression; OR, odds ratio.
a Some variables data are missing.
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3. Results

Table 1 summarizes the frequencies of the sign and symptoms
(those selected by the TB experts) observed in the dataset and
the p-values obtained by ULR and MLR. Large odds ratio CIs
and high p-values were observed in most cases. According to the
ULR results, anorexia and AIDS did not perform well as isolated
predictors of TB, but when associated with other variables
exhibited significantly lower p-values, thus may contribute to
the diagnosis of PTB.

Due to the high p-values achieved by ULR and MLR, related in
part to the small sample size, no strong level of association
between signs and symptoms and TB outcome was observed. This
fact offers a rationale for the use of a non-linear complex prediction
model such as MLP for this problem, as it explores non-linear
relationships between problem variables.

FSFS identified the following six variables for model construc-
tion: age, presence of cough, absence of dyspnoea, smoking,
association with extrapulmonary TB, and previous hospitalization.
BSFS selected eight variables, including those proposed by the
Table 2
Results of the models evaluated in terms of sensitivity, specificity, accuracy, and AUC 

Sensitivity

(95% CI)

Spe

(95

CART 71% (45–88%) 65%

Multivariate logistic regression 79% (53–93%) 85%

SVM polynomial 86% (60–96%) 60%

SVM RBF 86% (60–96%) 75%

SVM linear 86% (60–96%) 75%

Multilayer perceptron network 100% (78–100%)a 80%

CI, confidence interval; AUC, area under the receiver operating characteristic curve; CART

functions.
a Highest values.
FSFS, plus fever and AIDS. However, MLP models based on these
sets of variables exhibited lower generalization performance. Thus,
all models analysed in this work considered the set of variables
selected by the TB experts.

Table 2 describes the performance achieved by alternative
computational intelligence methods applied as prognostic models
for smear-negative PTB. The MLP model showed higher sensitivity
(100%, 95% CI 78–100%) than the SVM linear model (86%, 95% CI
60–96%). The accuracy of the MLP model (88%, 95% CI 73–95%) was
also higher than MLR (83%, 95% CI 67–92%). According to the mid-p

McNemar test, the MLP and SVM linear models performed
similarly, with some evidence of lower classification errors for
MLP (p = 0.1445).

Figure 1 shows the ROC curves for CART, SVM employing linear
kernel function (SVM linear), MLR, and MLP. The MLP model
(0.918) achieved higher values for AUC than the SVM linear (0.796)
and MLR (0.782) models.

Table 3 summarizes the performance of the iART model. In this
case, the analysis considered all patients. Low, medium, and high
risk clusters retained 56, 36, and 44 patients, with a TB prevalence
and their associated 95% confidence intervals

cificity

% CI)

Accuracy

(95% CI)

AUC

(95% CI)

 (39–84%) 67% (51–81%) 0.702 (0.536–0.898)

 (59–96%)a 83% (67–92%) 0.782 (0.633–0.960)

 (35–81%) 70% (54–83%) 0.782 (0.633–0.960)

 (49–90%) 80% (63–90%) 0.793 (0.647–0.968)

 (49–90%) 80% (63–90%) 0.796 (0.651–0.970)

 (54–93%) 88% (73–95%)a 0.918 (0.824–1.000)a

, classification and regression trees; SVM, support vector machines; RBF, radius basis
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of 33.9%, 41.7%, and 56.2%, respectively. Lower values for age were
identified in the high-risk group (p = 0.035), and no difference in
age was observed between the low-risk and medium-risk groups
(p = 0.523), irrespective of TB outcome. In the low-risk group, a
prevalence higher than 50% among positive PTB patients was
observed only for cough. For the medium-risk group, as well as
cough, this criterion was also satisfied by fever, weight loss, and
anorexia, while for the high-risk group it was satisfied only by fever
and night sweats. Among the three risk groups, Fisher’s test
identified significant differences for the prevalence of the
following signs and symptoms: night sweats, fever, weight loss,
and anorexia (all p < 0.001).36 Except for fever, for which the
medium-risk and high-risk groups shared the same prevalence
according to statistical tests, loss of weight and anorexia
represented significant signs and symptoms in the case of the
medium-risk group. Night sweats showed a similar behaviour in
the case of the high-risk group.

4. Discussion

Using only clinical standardized interviews, the ANN-based
predictive model for smear-negative PTB achieved a high
Table 3
Description of risk-group signs and symptoms according to PTB diagnosis

PTB 

Low Medium High

Age 39.21

(31.60–46.81)

41.87

(33.55–50.18)

33.3

(27.

Signs and symptoms PTB 

Low Medium High

Cough 89.5% (17/19)a 100.0% (15/15)a 100

Haemoptysis 31.6% (6/19)a 33.3% (5/15)a 19.0

Night sweats 0% (0/19) 42.9% (6/14) 91.3

Fever 10.5% (2/19) 73.3% (11/15)a 95.5

Weight loss 10.5% (2/19) 85.7% (12/14) 28.6

Absence of dyspnoea 16.7% (3/18)a 26.7% (4/15)a 28.6

Anorexia 5.6% (1/18) 100.0% (15/15) 4.8%

Smoking 5.6% (1/18)a 28.6% (4/14)a 36.4

Previous hospitalization 5.9% (1/17)a 21.4% (3/14)a 9.5%

HIV 0% (0/6)a 14.3% (1/7)a 0.0%

PTB, pulmonary tuberculosis.
a Groups showing no statistically significant difference in the observed prevalence v
sensitivity (78–100%) and moderate specificity (54–93%). As
compared to other studies involving only suspected smear-
negative PTB cases and models not based on ANNs, the sensitivity
achieved by the present model was higher than those of Soto et al.9

(sensitivity of 29.9% and specificity of 95.4%) and Siddiqi et al.10

(sensitivity of 59% and specificity of 86%). The clinical score
associated with radiological and laboratory tests proposed by
Alavi-Naini et al. achieved a sensitivity of 94% and specificity of
74%.11 Following a similar approach, the scores of Swai et al.7 and
Aguiar et al.16 showed sensitivity values ranging from 38% to 71%
and specificity from 58% to 76%.

The WHO algorithms, which include clinical work-up and chest
CXR analysis, have shown good performance among smear-
negative PTB cases. Reported sensitivity values have ranged from
58.8% to 95%, and specificity from 79.4% to 98%.8,13,43 Thus, only
using signs and symptoms, the present model performs similarly
to other scores that include CXR.

Regarding screening models for PTB based on MLP, the present
clinical score using 12 variables has an accuracy (88%) similar to
those reported by Orhan et al.19 (38 variables and accuracy of
93.3%), El-Solh et al.17 (21 variables and accuracy of 92%), and
Elveren and Yumuş ak18 (38 variables and accuracy of 94.9%). As
expected for a screening approach, the sensitivity in the present
study was higher than that reported for new diagnostic tests such
as Xpert MTB/RIF (67%) in patients with suspected smear-negative
PTB, but the specificity was lower (85% vs. 98%).5

Furthermore, the significant signs and symptoms identified in
the medium- and high-risk groups produced by the iART
architecture coincide with those identified as relevant for the
diagnosis of PTB.4,9,12,14 Risk group assignment may be useful in
clinical practice, as additional approaches such as CXR, culture, and
molecular techniques may be expedited for subjects classified as
belonging to the medium- or high-risk groups.

Currently, CXR, Xpert MTB/RIF, and sputum culture are
recommended for all presumed PTB patients attending hospitals.
CXR has shown high sensitivity in prevalence surveys, but is
restricted to hospitals and reference centres.2,3 Wisnivesky et al.
reported that the use of chronic symptoms, fever, and upper lobe
abnormalities on CXR to diagnose PTB may result in sensitivity
values ranging from 81% to 100%, and specificity from 19% to 84%.14

Swai et al. analysed the accuracy of evaluating those with a chronic
cough and any abnormal CXR and found sensitivity and specificity
values of 38.1% and 74.5%, respectively.7 Sputum culture, however,
confirmed positive TB cases in only 38.1% of patients who had
started anti-TB drugs. Swindells et al. evaluated the standard of
Non-PTB

 Low Medium High

2

23–39.41)

47.27

(42.80–51.74)

52.33

(45.14–59.52)

41.95

(36.85–47.24)

Non-PTB

 Low Medium High

.0% (25/25)a 73.0% (27/37) 100% (21/21) 94.4% (17/18)

% (4/21)a 16.2% (6/37) 15.0% (3/20) 46.7% (7/15)

% (21/23) 5.4% (2/37) 71.4% (15/21) 82.4% (14/17)

% (21/22)a 8.1% (3/37) 75.0% (15/20) 87.5% (14/16)

% (6/21) 10.8% (4/37) 70.0% (14/20) 33.3% (5/15)

% (6/21)a 13.5% (5/37) 47.6% (10/21) 80.0% (12/15)

 (1/21) 2.7% (1/37) 100% (21/21) 6.7% (1/15)

% (8/22)a 10.8% (4/37) 14.3% (3/21) 18.8% (3/16)

 (2/21)a 24.3% (9/37) 33.3% (7/21) 40.0% (6/15)

 (0/21)a 11.1% (2/18) 12.5% (1/8) 12.5% (1/8)

alues at the 5% confidence level.
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care screening in 801 presumed TB subjects infected with HIV.43 In
their conclusion, the authors suggested that a more sensitive
diagnostic approach is required for HIV-infected patients, since the
screening procedure analysed showed a sensitivity of 54% (95%
CI 40–67%) and specificity of 76% (95% CI 72–80%).

Recently, Creswell et al. described barriers to the programmatic
implementation of Xpert MTB/RIF testing in nine countries.6

Moreover, Theron et al. suggested that innovative approaches
for the evaluation of new diagnostic tests should include patient
outcome and strategies to improve access to health systems.44 As
proposed by Van’t Hoog et al., a screening strategy based on a
sensitive, but not necessarily highly specific rapid test, such as
CXR or a prognostic model, could be useful to select patients for
Xpert MTB/RIF and might result in a more affordable diagnosis
framework.45

This study has some limitations. First, a small number of smear-
negative PTB patients were enrolled and there was a high
proportion of active TB among those attending an outpatient
clinic at the hospital. Second, the models should be evaluated in
terms of external generalizability, thus this approach warrants
further clinical validation in other settings with different TB and
HIV prevalences.

This study evaluated the performance of a simple and low-cost
screening approach based on neural network models for further
diagnosing smear-negative PTB. In these cases, the use of new
rapid molecular tests for diagnosis is usually expensive, as multiple
specimens may be required to achieve an adequate sensitivity.
Outpatients attending a teaching hospital in a high TB prevalence
setting formed the study population.

The proposed diagnosis system serves as a TB prognostic and
risk assessment tool. As a prognostic, it may be a useful screening
approach for the use of molecular tests, such as the Xpert MTB/RIF
assay, while as a risk assessment tool it allows the use of
complementary tests to be expedited for higher risk patients.
Furthermore, the TB diagnosis chain can easily incorporate this
DSS through the implementation of its Web-based interface, or
a custom application for smartphones and/or tablets could easily
be developed for this purpose.

The system has been shown to be adequate for screening, since
it achieved high sensitivity and moderate specificity, and also
identified risk factors coherent with clinical practice. However,
a larger patient sample should be used for further validation.
The proposed system also needs to be trialled in addition to new
molecular tests and/or CXR using a standardized protocol in
different regions to evaluate the clinical impact and cost-
effectiveness of its incorporation into the clinical routine.
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