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Solitons and periodic solutions for the fifth-order KdV equation

Abdul-Majid Wazwaz∗

Department of Mathematics and Computer Science, Saint Xavier University, Chicago, IL 60655, United States

Received 29 June 2005; accepted 19 July 2005

Abstract

In this work weuse the sine–cosine and the tanh methods for solving the fifth-order nonlinear KdV equation. The two methods
reveal solitons and periodic solutions. The study confirms the power of the two schemes.
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1. Introduction

This work is concerned with the fifth-order KdV equation of the form [1–6]

ut + 30u2ux + 20uxux x + 10uu3x + u5x = 0, (1)

whereu = u(x, t) is a sufficiently often differentiable function. Eq.(1) is a special case of the standard fifth-order
KdV equation (fKdV)

ut + αu2ux + βuxux x + γ uu3x + u5x = 0. (2)

The specific case(1) is called the Lax case, that is characterized byβ = 2γ andα = 3
10γ

2. We shall assume that
the solutionu(x, t), along with its derivatives, tends to zero as|x | → ∞. The fKdV equation(1) describes motions
of long waves in shallow water under gravityand in a one-dimensional nonlinear lattice [1–6]. The nonlinear fKdV
equation(1) is an important mathematical model with wide applications inquantum mechanics and nonlinear optics.
Typical examples are widely used in various fields such as solid state physics, plasma physics, fluid physics and
quantum field theory.

A great deal of research work has been invested during the past decades in the study of the fKdV equation. The
main goal of these studies was its analytical and numericalsolution. Several differentapproaches, such as Backland
transformation, a bilinear form, and a Lax pair, have been used independently, by which soliton and multi-soliton
solutions areobtained. Ablowitz et al. [4] implemented the inverse scattering transform method to handle the nonlinear
equations of physical significance where soliton solutions and rational solutions were developed.

Solitons are nonlinear waves that are characterized by:
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(i) localized waves that propagate without change of identity and whose character resembles particle-like behavior,
and

(ii) stability against mutual collisions and width dependent on amplitude.

The objectives of this work are twofold. Firstly, we seek to establish exact solutions for the fKdV equation.
Secondly, we aim to implement two strategies to achieve our goal, namely, the tanh method [7–10] and the sine–cosine
method [11–14], and to emphasize the applicability of these methods in handling nonlinear problems.

The sine–cosine method [11–14] and the tanh method [7–10] have the advantage of reducing the nonlinear problem
to a system of algebraic equations that can be easily solved by using a symbolic computation system such as
Mathematica or Maple. The power of the two methods that will be used derives from the ease of use for determining
shock or solitary types of solution. In what follows, the sine–cosine ansatz and the tanh method will be reviewed
briefly.

2. The sine–cosine method

The features of this method can be summarized as follows. A PDE

P(u, ut , ux , ux x , ux x x, . . .) = 0, (3)

can be converted to an ODE

Q(u, u′, u′′, u′′′, . . .) = 0, (4)

upon using a wave variableξ = (x − ct). Eq. (4) is then integrated as long as all terms contain derivatives where
integration constants are considered zeros. The solutions of the reduced ODE equation can be expressed in the form

u(x, t) =
{

{λ cosβ(µξ)}, |ξ | ≤ π

2µ
,

0 otherwise
(5)

or in the form

u(x, t) =
{

{λ sinβ(µξ)}, |ξ | ≤ π

µ
,

0 otherwise
(6)

where λ,µ, and β are parameters that will be determined,µ and c are the wavenumber and the wave speed
respectively. These assumptions give

(un)′′ = −n2µ2β2λn cosnβ(µξ) + nµ2λnβ(nβ − 1) cosnβ−2(µξ), (7)

and

u(iv) = µ4β4λ cosβ(µξ) − 2µ4λβ(β − 1)(β2 − 2β + 2) cosβ−2(µξ)

+ µ4λβ(β − 1)(β − 2)(β − 3) cosβ−4(µξ), (8)

where similar equations canbe obtained for the sine assumption. Using the sine–cosine assumptions and its derivatives
in the reduced ODE gives a trigonometric equation in cosR(µξ) or sinR(µξ) terms. The parameters are then
determined by first balancing the exponents of each pair of cosines or sines to determineR. We next collect all
coefficients of the same power in cosk(µξ) or sink(µξ), where these coefficients have to vanish. This gives a system
of algebraic equations in the unknownsβ, λ andµ that will be determined. The solutions proposed in(5) and(6)
follow immediately.

3. The tanh method

The tanh method is developed by Malfliet [7–9] where the tanh is used as a new variable, since all derivatives of a
tanh are represented by a tanh also.

Introducing a new independent variable

Y = tanh(µξ), (9)
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leads to the changeof derivatives

d

dξ
= µ(1 − Y 2)

d

dY
,

d2

dξ2 = −2µ2Y (1 − Y 2)
d

dY
+ µ2(1 − Y 2)2 d2

dY 2 ,

d3

dξ3 = 2µ3(1 − Y 2)(3Y 2 − 1)
d

dY
− 6µ3Y (1 − Y 2)2 d2

dY 2 + µ3(1 − Y 2)3 d3

dY 3 ,

d4

dξ4 = −8µ4 Y (1 − Y 2)(3Y 2 − 2)
d

dY
+ 4µ4 (1 − Y 2)2(9Y 2 − 2)

d2

dY 2

− 12µ4 Y (1 − Y 2)3 d3

dY 3
+ µ4 (1 − Y 2)4 d4

dY 4
.

(10)

We thenapply the following finite series expansion:

u(µξ) = S(Y ) =
M∑

k=0

akY k, (11)

whereM is a positive integer, in most cases, that will be determined. However, ifM is not an integer, a transformation
formula is usually used to overcome this difficulty. Substituting(10) and(11) into the ODE results in an algebraic
equation in powers ofY .

To determine theparameterM, we usually balance the linear terms of highest order in the resulting equation with
the highest order nonlinear terms. WithM determined, we collect all coefficients of powers ofY in the resulting
equation where these coefficients have to vanish. This will give a system of algebraic equations involving the
parametersak(k = 0 · · · M), µ, andc. Having determined these parameters, knowing thatM is a positive integer
in most cases, and using(11), weobtain an analytic solutionu(x, t) in a closed form.

4. The fKdV equation approached by the sine–cosine method

The fifth-order KdV equation

ut + 30u2ux + 20uxux x + 10uu3x + u5x = 0, (12)

can be written as

ut + 10(u3)x + 10(uux x)x + 5((ux)
2)x + u5x = 0, (13)

that can be converted to the ODE

−cu + 10u3 + 10uu′′ + 5(u′)2 + u(iv) = 0, (14)

upon using the wave variableξ = x − ct and integrating once. Using the assumptions(5)–(8)in (14)gives

−cλ cosβ(µξ) + 10λ3 cos3β(µξ)

+ 10λ cosβ(µξ)
[
−λµ2β2 cosβ(µξ) + λµ2β(β − 1) cosβ−2(µξ)

]
+ 5

[
λ2µ2β2 cos2β−2(µξ) − λ2µ2β2 cos2β(µξ)

]
+ λµ4β4 cosβ(µξ) − 2λµ4β(β − 1)(β2 − 2β + 2) cosβ−2(µξ)

+ λµ4β(β − 1)(β − 2)(β − 3) cosβ−4(µξ) = 0. (15)

Balancing cos3β(µξ) with cosβ−4(µξ) gives

3β = β − 4, (16)
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so thatβ = −2. Using this value forβ, Eq.(15)becomes(
−cλ + 16λµ4

)
cos−2(µξ) −

(
15λ2µ2β2 + 2λµ4β(β − 1)(β2 − 2β + 2)

)
cos−4(µξ)(

10λ3 + 10λ2µ2β(β − 1) + 5λ2µ2β2 + λµ4β(β − 1)(β − 2)(β − 3)
)

cos−6(µξ) = 0. (17)

Setting the coefficients of each cosj (µξ) to zero gives the system

(β − 1)(β − 2)(β − 3) �= 0,

16µ4 = c,

−15λ2µ2β2 = 2λµ4β(β − 1)(β2 − 2β + 2),

10λ3 + 10λ2µ2β(β − 1) + 5λ2µ2β2 = −λµ4β(β − 1)(β − 2)(β − 3).

(18)

Solving the system(18) leads to the results

β = −2,

µ = 1

2
4
√

c,

λ = −1

2

√
c.

(19)

This gives the periodic solutions foru(x, t):

u(x, t) = −1

2

√
c sec2

(
1

2
4
√

c (x − ct)

)
, (20)

and

u(x, t) = −1

2

√
c csc2

(
1

2
4
√

c (x − ct)

)
. (21)

This also gives the soliton solutions foru(x, t):

u(x, t) = 1

2

√
c sech2

(
1

2
4
√

c (x − ct)

)
, (22)

and

u(x, t) = −1

2

√
c csch2

(
1

2
4
√

c (x − ct)

)
. (23)

5. The fKdV equation approached by the tanh method

In this section, we will use the tanh method to handle Eq.(14)given by

−cu + 10u3 + 10uu′′ + 5(u′)2 + u(iv) = 0. (24)

Balancingu(iv) with u3 in (24)by using(10)we find

M + 4 = 3M, (25)

so thatM = 2. This means that

u(ξ) = a0 + a1Y + a2Y 2. (26)

Substituting(26) into (24), collecting the coefficients ofY , and solving the resulting system, we find the following
sets of solutions:
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a0 = 1

2

√
c,

a1 = 0,

a2 = −1

2

√
c,

µ = 1

2
4
√

c,

(27)

and

a0 = (
√

10+ √
2)(11+ 5

√
5)

√
c

4(15+ 7
√

5)
,

a1 = 0,

a2 = −
√

3c + 2
√

5

2
,

µ = 1

2

4
√

3c + √
5c,

(28)

Using the results(27)will give the periodic solutions

u(x, t) = −1

2

√
c sec2

(
1

2
4
√

c (x − ct)

)
, (29)

and

u(x, t) = −1

2

√
c csc2

(
1

2
4
√

c (x − ct)

)
, (30)

and the periodic solutions

u(x, t) = 1

2

√
c sech2

(
1

2
4
√

c (x − ct)

)
, (31)

and

u(x, t) = −1

2

√
c csch2

(
1

2
4
√

c (x − ct)

)
. (32)

for thefirst set. However for the second set we find the soliton solutions

u(x, t) = (
√

10+ √
2)(11+ 5

√
5)

√
c

4(15+ 7
√

5)
−

√
3c + c

√
5

2
tanh2

[
1

2
4
√

3c + √
5c (x − ct)

]
, (33)

and

u(x, t) = (
√

10+ √
2)(11+ 5

√
5)

√
c

4(15+ 7
√

5)
−

√
3c + c

√
5

2
coth2

[
1

2
4
√

3c + √
5c (x − ct)

]
, (34)

and the periodic solutions

u(x, t) = (
√

10+ √
2)(11+ 5

√
5)

√
c

4(15+ 7
√

5)
+

√
3c + c

√
5

2
tan2


1

2

√
−

√
3c + √

5c (x − ct)


 , (35)

and

u(x, t) = (
√

10+ √
2)(11+ 5

√
5)

√
c

4(15+ 7
√

5)
+

√
3c + c

√
5

2
cot2


1

2

√
−

√
3c + √

5c (x − ct)


 . (36)
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6. Discussion

In this work the sine–cosine and the tanh methods were used to present an analytic study of the fifth-order KdV
equation. Exact periodic and solitons solutions were obtained. The performances of the two schemes show that the two
methods are powerful and reliable. However, the tanh method provided two sets of solutions, whereas the sine–cosine
method gave only one set of solutions.
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