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Background: Medical guidelines increasingly use risk stratification and implicitly assume that individuals
classified in the same risk category form a homogeneous group, while individuals with similar, or even identical,
predicted risks can still be very different. We evaluate a strategy to identify homogeneous subgroups typically
comprising predicted risk categories to allow further tailoring of treatment allocation and illustrate this strategy
empirically for cardiac surgery patients with high postoperative mortality risk.
Methods: Using a dataset of cardiac surgery patients (n = 6517) we applied cluster analysis to identify homog-
enous subgroups of patients comprising the high postoperative mortality risk group (EuroSCORE ≥ 15%). Cluster
analyses were performed separately within younger (b75 years) and older (≥75 years) patients. Validity mea-
sures were calculated to evaluate quality and robustness of the identified subgroups.
Results:Within younger patients two distinct and robust subgroups were identified, differing mainly in preoper-
ative state and indication of recent myocardial infarction or unstable angina. In older patients, two distinct and
robust subgroups were identified as well, differing mainly in preoperative state, presence of chronic pulmonary
disease, previous cardiac surgery, neurological dysfunction disease and pulmonary hypertension.
Conclusions: We illustrated a feasible method to identify homogeneous subgroups of individuals typically com-
prising risk categories. This allows a single treatment strategy – optimal only on average, across all individuals
in a risk category – to be replaced by subgroup-specific treatment strategies, bringing us another step closer to
individualized care. Discussions on allocation of cardiac surgery patients to different interventions may benefit
from focusing on such specific subgroups.

© 2015 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Over the past decades the importance of tailoring treatment and in-
terventions has frequently been emphasized to balance benefits and
harms of treatment and improve effectiveness and cost-effectiveness
[1–3]. Ideally, the optimal (preventive) treatment or intervention strat-
egywould be identified and provided for every individual based on their
(unique) risk profile, i.e. their combination of risk factors. Currently, risk
prediction models are increasingly used to stratify individuals based on
their predicted risk and tailor treatment or interventions to categories of
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individuals in which the highest benefit is expected to be achieved
(Fig. 1, middle box). For instance, individuals with high predicted
EuroSCORE risk may be offered transcatheter aortic valve implementa-
tion (TAVI) instead of (surgical) aortic valve replacement (AVR) [4].

Following such risk stratification, guideline simplicitly assume that
individuals classified into the same risk category form a fairly homoge-
neous group, as they are all recommended the same treatment or inter-
vention based on average estimates within these risk categories [3,4].
However, individuals with similar, or even identical, predicted risk
may still be very different. For example, a 61-year old man may have a
predicted 30-day mortality risk of 21% due to presence of extracardiac
arteriopathy, a recentmyocardial infarction (MI),moderate left ventric-
ular ejection fraction (LVEF, 30–50%), an emergency surgery, and critical
preoperative state, or alternatively, due to presence of a neurologic dys-
function, poor LVEF (0–30%), pulmonary hypertension, and requiring
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Fig. 1. Value of acquiring more evidence on subgroups.
Three levels of evidence are shown for the situation inwhich groups of individuals can be provided with treatment. In situation 1 (top box) no risk factor information is available and risk
prediction is not performed. Hence, a single treatment decision for TAVI or (surgical) AVR needs to bemade for all patients, and the (cost-)effectivenesswill be the observed average across
all these individuals. In situation 2 (middle box), a validated prediction model (e.g. EuroSCORE) is available to classify individuals to risk categories. This allows risk-stratified treatment
decisions based on the (cost-)effectiveness of TAVI vs (surgical) AVR in that category, which is the current situation. In situation 3 (bottom box), identification of subgroups within risk
categories allows even more tailored care as treatment decisions can now be made separately for each subgroup of individuals, based on corresponding (cost-)effectiveness estimates.
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surgery other than isolated CABG [5]. Obviously, the optimal interven-
tion for these two individuals with very different combinations of risk
factors may be different even though their estimated mortality risk is
equal and they would both be classified as high-risk [4].

Given the effectiveness and costs associatedwith TAVI, this procedure
may not be feasible in all patients (Fig. 1, top box) [6].While effectiveness
and cost-effectiveness could be improved by risk stratification on postop-
erative mortality risk (Fig. 1, middle box). [7–9], there is an ongoing
discussion on whether this is appropriate and sufficient in allocating pa-
tients to TAVI instead of (surgical) AVR [10–13]. Patients would ideally
be selected for TAVI or SAVR after discussion by a multidisciplinary
heart team [14,15].Measures of frailty that are associated with adverse
outcomes, but not incorporated in current risk prediction models,
can then also be taken into account. However, such an approach is
time consuming, complex, and limited by subjectivity.

It will thus be valuable to discover homogeneous subgroups within
risk categories to potentially further differentiate treatment allocation
beyond risk stratification, but without requiring a time-consuming or
subjective individual assessment [1,2,16]. Identification of such sub-
groups within risk categories is, however, not commonly performed.
Furthermore, current subgroup analyses typically focus on a single
patient characteristic, such as gender or age [17,18], whereas the bal-
ance between harms and benefits, even within risk-categories, may de-
pend on the combination of multiple patient characteristics. Therefore,
we propose to identify relevant, that is common, subgroups of individ-
uals that typically comprise risk categories, using cluster analysis.

We demonstrate the feasibility of our approach through a clinical
illustration for the decision on whether TAVI could be an appropriate
alternative to (surgical) AVR (Fig. 1). We identified homogenous sub-
groups of patients, classified by the logistic EuroSCORE as having a
high postoperative mortality risk (≥15%), using previously collected
data on cardiac surgery patients [5,19]. Such subgroup identification
allows to move from risk-based care (Fig. 1, middle box) to risk
profile-based care (Fig. 1, lower box).

2. Methods

Starting point of our approach is the calculation of the predicted risk for every individ-
ual concerning the outcome under study. Subsequently, individuals are classified into risk
categories, commonly defined by guidelines, as is currently performed. Following risk clas-
sification, cluster analysis can be performed on individuals within a risk category to
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discover more homogeneous subgroups sharing a common risk profile (a combination of
risk factors).

2.1. Identifying subgroups among high-risk cardiac surgery patients

This illustration used data from a cohort of patients (n = 6517) who underwent
cardiac surgery between 2006 and 2010 at Isala, Zwolle, a large tertiary center for cardiac
surgery in The Netherlands. From this dataset we included all patients for whom the indi-
vidual postoperative (i.e. 30-days or in-hospital) mortality risk using the logistic
EuroSCORE could be calculated (n = 6286, 96.5%). First, we calculated these predicted
risks and classified the patients into the low (b15%) and high (≥15%) risk category (Fig.
1, middle box) [19,20]. Next, we performed cluster analysis to identify subgroups among
patients within the high-risk category. As age is oftentimes an important factor in both ef-
fectiveness and occurrence of complications of treatment [13], we identified subgroups
separately among high-risk patients younger than 75 years of age, and patients aged 75
or older.

We applied the TwoStep Cluster method, available in SPSS, using a likelihood similar-
ity measure. As input variables we initially used the predictors of the logistic EuroSCORE
[5]. The (SPSS) TwoStep Cluster method can handle this mix of continuous and discrete
variables, present in the EuroSCORE as well as many other clinical prediction models
[21]. To improve the stability of the identified subgroups, we applied the rule of thumb
of including atmost k variables if data on at least 2k individuals was available [22]. Starting
with all 18 logistic EuroSCORE predictors, we selected these k variables using backward
selection to eliminate those variables with the lowest importance for clustering.

As different clusters may be detected, dependent on features of the data and the type
and settings of the cluster analysis, cluster validation is essential in finding the optimal set
of subgroups that bestfits the underlying data [23]. The quality of the identified subgroups
was assessed using the average silhouette width, a measure of how similar individuals in
the subgroups are, where a good [0.5–1], fair [0.25–0.5] or poor [≤0.25] value indicates
that a strong, weak or no substantial subgroup structure, respectively, is present [24]).
Robustness was assessed by replicating the analysis using 1000 datasets bootstrapped
from the original [25,26]. To compare the original subgroups to the subgroups identified
in the bootstrap samples, the adjusted Rand index was calculated for each sample
using the R software environment and themclust package [27,28]. For randomly cho-
sen subgroups this index would have value 0, whereas it would have value 1 if
perfectly identical subgroups are identified among the bootstrap samples. Additional
information on cluster analysis as well as cluster validation can be found in the
Supplementary Methods I.

We performed several cluster analyses with varying outlier handling settings (0%, 5%,
10%, and 25%) and different subgroup numbers; fixed 2–8 clusters or selected by the
Bayesian Information Criterion (BIC) (see SupplementaryMethods II). We selected outlier
settings such that, over the bootstrap samples, on average less than 20% of the individuals
were classified as outliers. Using the average silhouette score, the number of subgroups
selected by the BIC over the bootstrap samples, and the Rand index, the final number of
subgroups was selected.

3. Results

3.1. Operative mortality risk profiles identified in cardiac surgery data

Calculation of the predicted postoperative mortality risk for each
patient using the logistic EuroSCORE and subsequent risk classifica-
tion identified 1064 (16.9%) patients with a risk ≥15%. There was
substantial variation in values and presence of risk factors in this
group (Table 1). After splitting the high-risk individuals into a youn-
ger (b75) and older (≥75 years) group, heterogeneity in risk factors
was still present.

3.2. Cluster analysis in patients younger than 75 years of age

Based on the size of this group (n= 562), 9 variables were included
(Table 2). The optimal result in this group was obtained when using an
outlier handling setting of 5% and 2 clusters. Averaged over all bootstrap
samples less than 20% of patients were then classified as outliers, had a
fair silhouette score of 0.4, and achieved a Rand index of 0.70. A solution
with two clusters was also selected by the BIC in 88% of the bootstrap
samples. The cluster analysis results for alternative outlier handling set-
tings and numbers of identified subgroups can be found in Supplemen-
tary Results Table 1A.

3.3. Subgroups of patients younger than 75 years of age

Selecting the optimal set of subgroups, 61 (11%) high-risk patients
under 75 years were classified as outliers (Table 2A). The largest
subgroup, (subgroup A, n = 282, 50%) consisted of patients who were
almost all (90%) in a critical preoperative state and had to undergo an
emergency operation (86%). About half of these patients had a recent
MI (48%), whereas in the second subgroup (subgroup B, n = 219,
39%) this was only 4%. Furthermore, subgroup B contained patients
none of whom had unstable angina or an emergency surgery. Also,
only 2% of patients in subgroup B were in a critical preoperative state,
but almost all patients had surgery other than isolated coronary surgery
(92%). Further details on characteristics of these subgroups can be found
in Table 2A.

3.4. Cluster analysis in patients older than 75 years of age

Based on the size of this group (n= 502), 8 variables were included
(Table 2). The optimal result in this group was obtained when using an
outlier handling setting of 5% and 2 clusters. Averaged over all bootstrap
samples less than 20% of patients were then classified as outliers, had a
fair silhouette score of 0.4 and achieved a Rand index of 0.74. A solution
with two clusters was also selected by the BIC in 75% of the bootstrap
samples. The cluster analysis results for alternative outlier handling set-
tings and numbers of identified subgroups can be found in Supplemen-
tary Results Table 1B.

3.5. Subgroups of patients older than 75 years of age

Selecting the optimal set of subgroups, 85 (17%) high-risk patients
aged 75 years and older were classified as outliers (Table 2B). The larg-
est subgroup (subgroup C, n = 287, 57%) consisted of patients none of
whom had had a recent MI, were in critical preoperative state, or
underwent an emergency operation. A large part (88%) of these patients
did have surgery other than isolated cardiac surgery. Conversely, a
fair amount of patients in the second subgroup (subgroup D, n = 130,
26%) had had a recent MI (62%). In this subgroup, however, none of
the patients had chronic pulmonary disease, previous cardiac sur-
gery, neurological dysfunction disease or pulmonary hypertension.
Further details on characteristics of these subgroups can be found
in Table 2B.

4. Discussion

Our study demonstrates how cluster analysis can be used beyond
risk stratification to identify distinct subgroups of individuals who had
been classified within the same risk category, based on their different
risk profiles. The illustrated approach allows identification of relevant
subgroups, i.e. substantial subgroups that make up the majority of the
risk category under investigation, based on distinct combinations of
characteristics of individuals that lead to the same predicted risk cat-
egory. Numerous different combinations of patient characteristics may
lead to classification into the same predicted risk category particularly
when the prediction model includes many predictors, which are
difficult to disentangle without a systematic approach such as illus-
trated here. Identification and characterization of subgroups allows
moving from risk-based uniform (‘one-size’) care (Fig. 1, middle box)
to risk profile-based care (Fig. 1, lower box). This takes us another
step closer to individualized care by providing the possibility to take
into account possible differences in effectiveness and cost-
effectiveness of treatment among the identified subgroups instead of
the entire risk category [1,2].

For instance, for cardiac surgery patients TAVI could be an appro-
priate alternative to (surgical) AVR, but given the risks and costs
associated with TAVI this procedure may not be feasible in all these
patients (Fig. 1, top box) [6]. Effectiveness as well as cost-
effectiveness could be improved by selecting eligible patients based
on risk stratification using the EuroSCORE (Fig. 1, middle box). Never-
theless, there is an ongoing discussion on whether risk stratification is
appropriate and sufficient in allocating patients to TAVI instead of



Table 1
Risk factors of patients within Isala cohort stratified by postoperative mortality risk and age.

Risk factors Definition Total
(n = 6286)

Low-risk
(n = 5022)

High-risk
(n = 1064)

High-risk b 75 years
(n = 562)

High-risk ≥ 75 years
(n = 502)

Patient-related factors
Age (mean, standard
deviation)

66.9 (10.5) 65.9 (10.4) 71.8 (9.6) 65.3 (8.5) 79.2 (3.4)

Sex (%) Female 30% 29% 38% 33% 44%
Chronic pulmonary disease (%) Longterm use of bronchodilators or steroids for lung

disease
14% 12% 3% 24% 31%

Extracardiac arteriopathy (%) Any one or more of the following: claudication, carotid
occlusion or N50% stenosis, previous or planned
intervention on the abdominal aorta, limb arteries or
carotids

11% 7% 28% 29% 27%

Neurological dysfunction (%) Disease severely affecting ambulation or day-to-day
functioning

7% 4% 19% 19% 19%

Previous cardiac surgery (%) Requiring opening of the pericardium 8% 4% 27% 32% 22%
Serum creatinine (%) N200 μmol/l preoperatively 2% 1% 9% 10% 8%
Active endocarditis (%) Patient still under antibiotic treatment for endocarditis

at the time of surgery
2% 1% 7% 10% 4%

Critical preoperative state (%) Any one or more of the following: ventricular
tachycardia or fibrillation or aborted sudden death,
preoperative cardiac massage, preoperative ventilation
before arrival in the anaesthetic room, preoperative
inotropic support, intraaortic balloon counter pulsation
or preoperative acute renal failure (anuria or oliguria,
10 ml/h)

9% 3% 38% 49% 25%

Cardiac-related factors
Unstable angina (%) Rest angina requiring i.v. nitrates until arrival in the

anaesthetic room
7% 5% 17% 19% 15%

LV dysfunction (%) Moderate or LVEF 30–50% 33% 30% 47% 43% 50%
Poor or LVEF b30% 7% 4% 26% 30% 20%

Recent myocardial infarct (%) (b90 days) 13% 11% 28% 31% 24%
Pulmonary hypertension (%) Systolic PA pressure N 60 mmHg 3% 1% 11% 12% 11%

Operation-related factors
Emergency (%) Carried out on referral before the beginning of the

nextworking day
9% 3% 36% 48% 23%

Other than isolated CABG (%) Major cardiac procedure other than or in addition to
CABG

46% 40% 73% 72% 74%

Surgery on thoracic aorta (%) For disorder of ascending, arch or descending aorta 4% 2% 13% 17% 8%
Postinfarct septal rupture (%) 0% 0% 2% 3% 1%
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(surgical) AVR [10–13].The differences in combinations of risk factors
present in high-risk patients (Table 1), as well as subgroup analyses of
TAVI outcomes and sensitivity analyses in economic evaluations of
TAVI age [17,18,29], suggest that benefits and risks, as well as costs,
may vary substantially between subgroups within the high-risk catego-
ry. This indicates that providing either all or none of the high-risk pa-
tients with TAVI is both unlikely to be optimal. Identification of
subgroups within risk categories would thus be valuable. Subsequently,
the identified subgroups, such as a group of individuals of age 75 and
older that have not had a recent MI, were not in critical preoperative
state, and did not undergo an emergency operation, but did have sur-
gery other than isolated cardiac surgery (Table 2), can be the starting
point for further research. A new study focusing on identifying effec-
tiveness and costs of TAVI in subgroups of patients with the character-
istics defined by the subgroups identified by the cluster analysis,
allows more optimal allocation of patients to TAVI or (surgical) AVR
(Fig. 1, lower box), which may improve both health outcomes and
cost-effectiveness [6].

4.1. Limitations and challenges

Performing cluster analysis and cluster validation requires a suffi-
ciently large set of individual patient data [22]. Ensuring a stable set of
subgroups that best fits the data [23], cluster validation should be per-
formed and, similar to prediction modeling, subgroup characterizations
should ultimately be externally validated [30].

In our illustration we identified subgroups using the risk predictors
as cluster variables. This ensures the feasibility of our approach since
evidence on these risk factors, known to be important, are available
after risk classification. However, other characteristics that could
enhance the distinction between subgroups, preferably those character-
istics known or expected to be related to effectiveness and harms of the
treatment under investigation, such as B-type natriuretic peptide and
comorbidities for TAVI selection [29], can easily be included and
may further improve the subgroup identification. Furthermore, we
chose to perform the analysis based on risk stratification using the
logistic EuroSCORE. More recently, EuroSCORE II and STS-PROM were
developed which may improve risk prediction accuracy, although the
extent of this improvement varies in literature [7–9].We selected the
logistic EuroSCORE because both the EuroSCORE II and STS-PROM
require many more variables, some of which were not registered in
our data. These newer models, including even more variables, would
only increase the likelihood of presence of patients with similar risks,
but different risk profiles, enlarging the potential for improvement.
Although the subgroup identification strategy shown here is only illus-
trated based on the logistic EuroSCORE, this generic clustering approach
may just as well be applied using any other risk prediction or classifica-
tion strategy [17].

4.2. Implementation and implications for effectiveness and cost-
effectiveness research

Currently, evidence-based medicine is introducing a growing num-
ber of guidelines with emphasis on risk stratification [3,4]. As these
guidelines regard all individuals within the same risk category to be
similar, treatment decisions are based on average effectiveness and



Table 2
Risk profiles of subgroups of patients with high predicted postoperative mortality risk (≥15%).

[A] High-risk patients younger than 75 years of age.

Subgroup # individuals
(% of total)

Critical
preoperative
state

Emergency Recent
MI

Neurological
dysfunction

Extracardiac
arteriopathy

Unstable
angina

Other
surgery

Previous
cardiac surgery

Thoracic
aortic surgery

Postoperative
mortality risk

Total 562 (100%) 49% 48% 31% 19% 29% 19% 72% 31% 17% 31.6%
A 282 (50%) 90% 86% 48% 4% 10% 27% 61% 22% 11% 35.7%
B 219 (39%) 2% 0% 8% 32% 43% 0% 92% 44% 25% 25.0%
Outliers 61 (11%) 33% 41% 38% 43% 64% 52% 51% 28% 21% 31.6%

[B] High-risk patients 75 years and older.

Subgroup # individuals
(% of total)

Recent
MI

Critical
preoperative
state

Emergency Chronic
pulmonary
disease

Other
surgery

Previous
cardiac surgery

Neurological
dysfunction disease

Pulmonary
hypertension

Postoperative
mortality risk

Total 502 (100%) 22% 25% 23% 31% 74% 22% 19% 11% 32.3%
C 287 (57%) 0% 0% 0% 40% 88% 29% 25% 15% 26.1%
D 130 (26%) 62% 59% 56% 0% 52% 0% 0% 0% 34.4%
Outliers 85 (17%) 47% 58% 47% 46% 59% 35% 28% 14% 49.9%

For each identified subgroup risk profiles are horizontally presented by the percentages of individuals in the subgroup forwhich the corresponding risk factor is present. For instance, read-
ing from left to right; subgroup C consists of 287 individuals (57% of high-risk individuals of age 75 years and older) of whom none have had a recentMI, or are in an emergency of critical
preoperative state. In this subgroup 40% had chronic pulmonary disease, 88% received surgery other than isolated CABG, etc. Reading from top to bottom, risk factors can be differentiated
between subgroups, e.g. all high-risk individuals of 75 years and older with pulmonary hypertension are either in subgroup C or are outliers. Risk factors are ordered according to their
importance in the clustering, where left represents the highest importance. For risk factor definitions, see Table 1 [5,19].
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cost-effectiveness estimates across risk categories. There may be sub-
stantial value in identification of subgroups within high, as well as low
or intermediate, risk categories to further tailor treatment and interven-
tion strategies, but without requiring a time-consuming or subjective
individual assessment. Using similarity or distance measures (see Sup-
plementaryMethods I) [27], new individuals can be classified to a single
specific identified subgroup to ultimately allocate the optimal treatment
to every subgroup.

5. Conclusions

Individuals classified into the same risk category can still be very dif-
ferent, causing risk categories to be very heterogeneous. We applied a
cluster analysis approach following risk prediction and classification,
which allows for identification of relevant, homogeneous subgroups
typically presentwithin risk categories. Identification of such subgroups
within any risk category, is feasible across all medical domains inwhich
risk stratification is used. Characterization of the identified subgroups
allows subsequent subgroup-specific estimation of effectiveness and
cost-effectiveness of treatment and thereby contributes to more opti-
mal, tailored treatment strategies.
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