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Abstract A hybrid calibration approach based on support vector machines (SVM) is proposed to

characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these

unknown nonlinearities and crosstalk just with a single conventional calibration approach. In this

paper, a hybrid model comprising calibration matrix and SVM model for calibrating linearity and

nonlinearity respectively is built up. The calibration matrix is determined by linear artificial neural

network (ANN), and the SVM is used to compensate for the nonlinear cross coupling among each

dimension. A simulation of the calibration of a multi-dimensional sensor is conducted by the SVM

hybrid calibration method, which is then utilized to calibrate a six-component force/torque trans-

ducer of wind tunnel balance. From the calibrating results, it can be indicated that the SVM hybrid

calibration method has improved the calibration accuracy significantly without increasing data

samples, compared with calibration matrix. Moreover, with the calibration matrix, the hybrid

model can provide a basis for the design of transducers.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Six-component force/torque transducer system is a multi-
dimensional sensor which is able to measure all the force and

torque components of an arbitrary six-component force sys-
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tem. Since it can measure the whole force information of a
structure joint, six-component force/torque transducers have
covered a wide range of applications in force measurement

of rocket engine test, vehicle wheels experiments, robot wrist
and some related automatic systems.1–3 Typical wind tunnel
balance is a six-component force/torque transducer, capable
of measuring an aerodynamic normal force, axial force, side

force, yawing moment, pitching moment and rolling moment
by monitoring structural deformation with strain gages.4 De-
spite the fact that lots of novel ideas and careful consider-

ations5–7 were made in designing, manufacturing and using
transducers, the crosstalk is unavoidable and complicated; in
addition, the error of measurement system, the interference

of external environment and the aging of sensor components
SAA & BUAA. Open access under CC BY-NC-ND license.
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are all uncertain actually. These factors cause the relationship
between the actual output signal and the applied loads to be
complicated nonlinearity. In order to improve the measuring

accuracy, it is necessary to calibrate the transducer for a prac-
tical relationship.

Conventional calibration methods involve parametric iden-

tification process through regression analysis on the basis of a

presumed model. As one of the traditional calibration meth-

ods, least-square optimization method has been extensively ap-

plied for calibration of multi-dimensional sensors.8 This

approach is difficult for its requirement of large number of

experimental data, however the calibration experiment is a

demanding task. In order to avoid this pitfall, Refs.5–7 cali-

brated the sensors based on the simulation of finite element

method (FEM) analysis. Gao et al.9 derived a hyper static mul-

ti-component torque sensor’s calibration matrix using the

designing principles and theories of anisotropic elasticity and

piezoelectricity. It can be obtained the coupling level and the

relationship between every single output signal and the respec-

tive input load from the calibration matrix, which can be used

as a basis to improve the design of sensors consequently. Liang

et al.10 designed an decoupling configuration for the force sen-

sor and then calibrated it based on artificial neural network

(ANN). After network training, the weight value of ANN is ta-

ken as the decoupling calibration matrix. These approaches

mentioned above are employed by the following hypothesis

and principle of the sensor: (A) the deformation of elastic body

and Wheatstone bridge circuits are linear; (B) the sensor is self-

decoupled, which means that there is no distinct cross coupling

between components.

Therefore, the actual relationships between output signals

and the applied loads are such complicated nonlinear that can-
not be characterized by calibration matrix no matter how
many testing data are considered.

As a non-parametric method, ANN can approximate any

nonlinear function with arbitrary accuracy, so Schultz11 em-

ployed ANN to calibrate quartz crystal pressure sensors. This

ANN modeling is practically a pure black-box method, that is,

to model the relationship of the sensor only relying on the in-

put and output data regardless of any priori system knowl-

edge. This pure black-box ANN model generally has such

disadvantages as long training cycle, large network scale,

requirement of a large number of training data and poor gen-

eralization performance.12–14 Masri15 proposed the concept of

hybrid ANN modeling, which combines the knowledge-based

model with the ANN model so as to reduce network scale

and training cycle, and improve the accuracy and generaliza-

tion. Cao16 applied the approach to model the dynamics of

friction component in brake system of vehicle transmission,

where ANN was used to describe the nonlinear relationships

among oil pressure, temperature and rotation speed. The re-

sults showed outstanding predicting accuracy and generaliza-

tion performance.

Support vector machines (SVM) is a kind of machine-learn-

ing tool developed by Vapnik.17 It implements the structural
risk minimization (SRM) principle to solve the nonlinear and
high dimension problems with small sample set. Different from

ANN, SVM is based on the SRM principle which makes SVM
achieve optimum networks structure, so that the solution of
SVM is unique and globally optimal. SVM provides an

effective novel non-parametric approach to achieve global
optimum due to these attractive features and empirical perfor-
mance.14,18–21

Consequently, in order to take advantage of hybrid model-

ing concept and SVM, this paper develops an SVM hybrid cal-
ibration method which consists of traditional method and
SVM method for calibrating linearity and nonlinearity of

six-component force/torque transducer respectively. The rest
of the paper is organized in the following manner. Section 2
presents background theory regarding SVM. Section 3 gives

a brief introduction to the procedure of the hybrid calibration.
Section 4 applies this approach to a calibration simulation and
in Section 5 it is applied to a six-component force/torque trans-
ducer calibration experiments. Finally, Section 6 closes with

some concluding remarks.

2. Support vector machines

Support vector machine was developed by Vapnik17 for solv-
ing problem of pattern recognition, and then a generalization
of SVM for regression problem was proposed. With the intro-

duction of e-insensitive loss function, a nonlinear regression
estimation problem is constructed according to the principle
of structural risk minimization. Given a set of training data

points, {(x1,y1), (x2,y2),. . .,(xn,yn)}e R
n · R, such that xi is an

input and yi is a target output. SVM approximates the linear
regression function g(x) given by

gðxÞ ¼ wxþ b ð1Þ

where w is the weighting vector, b the bias of output. The pri-
mal optimization problem is

minf1
2
kwk2 þ C

XN
i¼1
ðni þ n�i Þ

s:t:

ðwTxi þ bÞ � yi 6 eþ ni

yi � ðwTxi þ bÞ 6 eþ n�i
ni; n

�
i P 0; i ¼ 1; 2; � � � ;N

8><
>:

ð2Þ

where ni and n�i are positive slack variables, C is the penalty

coefficient which determines the trades-off between the empiri-
cal risk and the regularization term, e the insensitive parameter.
For nonlinear regression, the input vectors are mapped to a

high-dimensional feature space, where an optimal decision hy-
per plane is constructed. We write the Lagrange function so as
to get its saddle points, and then the value of w can be substi-

tuted and simplify to get the corresponding dual problem of
Eq. (2). As a convex quadratic programming problem, one
can deal with feature space of arbitrary dimensionality without
knowing how to map explicitly. Given that kernels function

K(xi, xj) equals the inner product of two vectors xi and xj in
the feature space, the nonlinear quadratic programming prob-
lem takes the form:

minfe
Xl

i¼1
ðai þ a�i Þ �

Xl

i¼1
yiðai � a�i Þ þ

1

2

Xl

i;j¼1
ðai � a�i Þðaj � a�j ÞKðxi;xjÞg

s:t:

Xl

i¼1
ðai � a�i Þ ¼ 0

ai; a
�
i 2 ½0;C�

8><
>: ð3Þ

where ai and a�i are Lagrange multipliers. Support vectors are

the only elements of the data points that are used in determin-
ing Eq. (3) as the coefficients ðai � a�i Þ of other data points are
all zero.14
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The corresponding decision function model can be repre-
sented as

gðxÞ ¼
Xl

i¼1
ðai � a�i ÞKðxi; xÞ þ b ð4Þ

where b = yj�
P

yiaiK(xi, xj), and the kernel function K(Æ) can
be any symmetric function satisfying Mercer’s condition.22

Typical example is the use of a radial basis function (RBF) ker-

nel K(xi, xj) = exp(�c|xi�xj|2), which is used in this paper.
It can be seen from the theory that SVM transforms the

nonlinear problem to a linear problem in a higher dimensional

feature space, thus the computational complexity of nonlinear
problem is significantly reduced.

The training process is equivalent to solving a linear qua-

dratic programming, which makes the solution of SVM unique
and globally optimal.

SVM implements the SRM principle to minimize the upper

bound of the generalization error rather than minimize the
training error. Accordingly, SVM can achieve an optimal gen-
eralization performance by striking a right balance between
empirical error and confidence interval to solve the nonlinear

and high dimensional problem with small sample set.
The model of SVM is actually a matrix of support vectors

ðai � a�i Þ. The configuration is brief for calibration.

Therefore, SVM is considered to provide an effective ap-
proach to calibrate the nonlinear relationship of multi-dimen-
sional sensor.
Fig. 1 Schemes of SVM hybrid calibration.
3. SVM hybrid calibration method

For a linear system or a nonlinear system just with simple

structure style, it could be accurate enough to calibrate it with
empirical knowledge utilizing first principle computation and
conventional parameter identification method. It is referred
to as knowledge-based model. For a complex nonlinear sys-

tem, this approach may cost lots of time while its accuracy is
still unsatisfied. Even though the knowledge-based model
may be coarse, it can reflect the primary characteristics of sys-

tem. The non-parametric modeling methods, for instance
ANN and SVM can approximate an arbitrary nonlinear sys-
tem, but they model the overall behavior of system only relying

on the input and output data, regardless of any priori knowl-
edge. In this study, a non-parametric modeling method, such
as SVM is employed to complement the knowledge-based

model so as to reduce the calibration errors.
The objective of calibration is to model the relationship be-

tween the input loads and the output signals, which can be ex-
pressed as

z ¼ fðuÞ ð5Þ

where zeRm denotes the applied loads of m dimensions, and
ueRn denotes the sensor output signal of n dimensions, f(Æ) rep-
resents the functional relationship of multi-dimensional sensor

which is generally complex nonlinear as mentioned previously.
In order to model f(Æ) exactly, Eq. (5) is rewritten as

z� ¼ f1ðuÞ þ f2ðuÞ ð6Þ

where z*eRm denotes the predicted value of z, f(Æ) is expressed
as the summation of two parts: f1(Æ) and f2(Æ), f1(Æ) represents
the knowledge-based model which describes the linear primary
input–output characteristics of sensor. It is easy to identify f1(Æ)
according to priori knowledge using aforementioned methods.
f2(Æ) reflects the residual between the knowledge-based model

f1(Æ) and the actual loads to be measured. It represents nonlin-
ear properties of sensors which is hard to determine with tra-
ditional approach. Thus, SVM is used to identify f2(Æ). Input
to SVM is the output signals u of n dimensions, and the output
to SVM is an approximation of the unknown residual f2(Æ). The
SVM hybrid calibration method is utilized to determine f1(Æ)
and f2(Æ) respectively, and the scheme of procedure is illustrated

as Fig. 1. There are two parameters while using SVM: C and c,
which are the key to the accuracy of forecasting. In the training
process, the SVM parameters c and C should be determined

firstly in the following steps:

(1) For multivariate d-dimensional problems, the RBF

kernel parameter v is set as vde (0.1,0.5),23 where
1/(2v2) = c. Cherkassky and Ma24 validated that such
values can yield SVM performance good enough within
a range of various regression data sets.

(2) Cherkassky and Ma24 also clarified the penalty coeffi-
cient C obtained from the training data then becomes
C =max(|y* + 3ry|,| � y* � 3ry|), where y* and ry are

the mean and the standard deviation of the training data
output values respectively. The training data will be pre-
normalized to be zero mean and unit deviation, there-

fore the C maintains 3.

4. Sensor calibration simulation

For calibrating a multi-dimensional sensor, the traditional
method is to fit a large number of sample data to determine

the calibration matrix based on the assumption of linear cross
coupling between each components, nevertheless the nonlinear
coupling form is unknown commonly, therefore, calibration of
this nonlinearity with non-parametric modeling approach is

necessary.
This section simulates an SVM hybrid calibration of a sim-

ple dummy multi-dimensional sensor, describes the calibration

process and compares the results with other methods to evalu-
ate its comprehensive performance. For instance, given a 2-D
input, 2-D output sensor, and the relationship between input

and output signal is as follows:

P ¼ CUþ eðuÞ ð7Þ

where the applied loads P = [p1 p2]
T, the output signals

U= [u1 u2]
T, C is the calibration matrix, and e(u) the nonlin-

ear coupling term. It is assumed that this sensor’s actual rela-
tionship takes the form of



Fig. 2 Results of two channels predicted with calibration matrix

compared with true values.

Fig. 3 Results of two channels predicted with SVM hybrid

method compared with true values.
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C ¼
c11 c12

c21 c22

� �
¼

120 1

8 140

� �

eðuÞ ¼
e1ðuÞ
e2ðuÞ

� �
¼

0:8u1u
2
2

0:5u21u2

� � ð8Þ

The output signals u1e [0, 5] V, u2e [0, 5] V. Given 20 groups
of random distribution data (u1, u2), and the sample data set is
obtained according to Eqs. (7) and (8). Ignoring nonlinear cou-

pling, the relationship between input and output can be de-
scribed as

P� ¼ C�U ð9Þ

where P* is the predicted value of P, C* the predicted value of
C. According to Eq. (9), utilize least square fitting of sample

set to obtain the map matrix25 as

C� ¼
120:74 8:5

10:71 142:15

� �
ð10Þ

With the known C* and output signal u1,u2e [0, 5] V, the

output-input relation surface according to Eq. (7) can be ob-
tained, and then it was compared with the actual curve
achieved through Eq. (11) as shown in Fig. 2. It can be seen

from the result that there are obvious errors especially in high
amplitude areas. The root-mean-square errors (RMSE) of two
channels’ calibration result with map matrix are 15.530 and
9.931. From the simulation process, we found that increasing

samples could not reduce the RMSE efficiently.
The fitting result C*U is knowledge-based model, as f1(u),

then model the residual with SVM:

(1) Choose the output voltage signal U as input of training
sample and the residual between actual value and cali-

bration matrix predicted value as output of training
sample. Training sample set is composed of 20 groups
of random-distribution applied loads and their respec-

tive output signals.
(2) Determine the coefficient c and C then train the sample

data to acquire the SVM model.
(3) Combine the knowledge-based model and SVM model

together to get hybrid model for multi-input multi-out-
put (MIMO) sensor.

With output signal u1,u2e [0,5]V, the output-input relation
curve can be obtained according to the hybrid model as shown
in Fig. 3 and the corresponding RMSEs are 1.255 and 1.073,

respectively. Compared with Fig. 2, the curves predicted by hy-
brid model are more consistent with actual curves than the
ones determined by calibration matrix, and the accuracy is im-
proved significantly.

In addition, the authors use pure SVM to calibrate this sen-
sor: choose the output voltage signal U as input of training
sample and measured loads P as output of training sample,
then train these sample data to acquire the SVM-based black
box model, then calibrate the sensor to obtain its output-input
relation surface as shown in Fig. 4 and the RMSEs are 11.890
and 15.620 respectively. The performance of pure SVM-based
black box model deteriorates for larger measured loads. It can
be seen from the result that with a small number of sample
data, calibrating a sensor only with neither least square fitting
nor SVM-based black box can reach satisfactory accuracy,
while SVM hybrid method can improve the accuracy
significantly.



Fig. 5 Sketch of cross-beamed transducer.

Fig. 6 Strain gauges position and bridge diagram.
Fig. 4 Results of two channels predicted with pure black-box

SVM compared with true values.
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5. Calibration experiments

With the method described in Section 3, this section is con-
cerned with the calibration of a cross-beamed six-component

force/torque transducer system for wind tunnel balance.
In this six-component force measurement system, the force-

sensing elements are strain gauges. The measurement system is

a cross-beamed structure shown as Fig. 5. The frame center is
connected to specimen. The force or torque is transmitted
through the four beams to exterior circle which is cut into

straight beams. The force level can be obtained by measuring
the elastic deformation of the main beams. The material of
frame is stainless steel (2Cr13), and the specification is shown

in Table 1. The carrying capacity is Fx = Fy = Fz = 800 N,
Mz = 450 NÆm, Mx = My = 465 NÆm. Fx, Fy and Fz denote
the component forces in x, y and z directions, Mx, My and
Mz denote the component torques in x, y and z directions.

There are eight Wheatstone bridges composed of 32 strain
gauges, whose locations are shown as Fig. 6. The ‘‘S’’ in
Fig. 6 points the position of the strain gauges on the cross-

beamed structure, e1-e4 denote the pattern of Wheatstone
Table 1 Specification of cross-beamed frame.

Dimension Length Width

Internal beam 30 10

External beam 38 2

Note: unit: mm.
bridges, Eo and Ei denote the output voltage and the input
voltage of bridge respectively.

5.1. Calibration experiments

The equipment for static calibration experiments is a 500 kN

universal testing machine CMT5000 whose force control accu-
racy is 1%. The force/torque vector to be measured is F= [Fx

Fy Fz Mx My Mz]
T, and the output voltage signal is U= [u1 u2

. . . u8]
T. According to calibration principle, this paper designed

six groups of linearly independent single load: each force Fx, Fy

and Fz are loaded up to 800 kN and then unloaded in chrono-
logical sequence with fixed step (100 N); the torque Mx andMy

are loaded up to 465 NÆm and then unloaded respectively with
fixed step (93 NÆm); the torqueMz is loaded up to 450 NÆm and
then unloaded with fixed step (90 NÆm). Each force/torque

component is loaded and unloaded individually. The loading
fixtures of the Fx, Fz Mx and Mz are shown as Fig. 7.

At each step, the load values and the eight output voltage

values are recorded, and accordingly 78 groups of calibration
data are obtained. The linear part of the sensor’s output-input
relationship can be expressed as F1 = CU, where F1 is the lin-

ear part of F, and
Height Center diameter Circle diameter

10 50 140

10 50 140



Fig. 7 Loading fixtures in six-axis force/torque sensor calibra-

tion test.

Fig. 8 ANN model for calibration matrix.
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Fx

Fy

Fz

Mx

My

Mz

2
666666664

3
777777775
¼

c11 c12 � � � c18

c21 c22 � � � c28

..

. ..
. ..

. ..
.

c61 c62 � � � c68

2
66664

3
77775

u1

u2

..

.

u8

2
66664

3
77775 ð11Þ
According to the SVM hybrid calibration approach described
previously, first, acquire the elements of the map matrix C, then
predict the residual by SVM, and finally combine them together

to accomplish the hybrid calibration model.

5.2. Identification of calibration matrix

The calibration matrix can be obtained by linear ANN10 as
shown in Fig. 8, V1–V8 are the input channels of the linear
ANN. The input vector U = [u1 u2 . . . u8]

T is the output volt-

ages of the sensitive bridge circuits, and the output vector
F= [Fx Fy Fz Mx My Mz]

T is the forces/torques applied on
the sensor. The learning samples are the 78 groups of calibra-

tion data. After network training, the weight value W= [wij]
(i= 1,2,. . .,6; j= 1,2,. . .,8) is taken as the calibration matrix
of Eq. (11). The matrix is shown as

C ¼

�132:78 327:26 �96:68 �42:81 �54:64 63:24 �44:74 25:13

�413:51 574:37 �736:58 530:468 133:07 �138:92 100:01 �128:41
155:18 �140:09 129:89 �126:36 �255:72 31:86 �254:66 26:64

426:63 �378:75 340:67 �335:86 �457:22 402:23 �436:05 500:45

�748:68 710:62 �671:65 685:98 388:99 �324:86 245:04 �326:02
233:94 �75:55 210:38 �55:64 �94:38 104:37 �100:96 90:12

2
666666664

3
777777775

ð12Þ

With the known C and output voltage, the measured load
components at every load step in each programmed loading–

unloading mode can be obtained from Eq. (11). To evaluate
the accuracy of the model, the computed load components
are illustrated in Fig. 9 with respect to load step number for
six loading–unloading modes. Note that in Fig. 9, the applied

load component in each mode is plotted in the upper part, and
the crosstalk load components in each mode are plotted in the
lower part. It can be seen from Fig. 9 that when each single

force/torque component is applied, the other load components
predicted by calibration matrix differ significantly from the ac-
tual value which should be zero. It means that between each

channels, there are nonlinear coupling which cannot be pre-
dicted by linear calibration matrix, no matter how much sam-
ple data there is. Because of coupling nonlinearity, the other
channels also have output signals. The coupling level can be

obtained from the calibration matrix, and the signals of these
channels are generally complicated nonlinearity.

5.3. SVM hybrid calibration method

SVM hybrid calibration method is applied to calibrating the
six-component force/torque sensor. According to the approach



Fig. 9 Predicted results of single load with calibration matrix.
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described previously, the calibration matrix C acquired in Sec-

tion 5.2 is chosen as knowledge-based model, and the nonlin-
ear cross coupling part is predicted by SVM. Choose the
output voltage signal U as input of training set and the residual

between actual value and predicted value through calibration
matrix as output of training set which is composed of 78
groups of measured data. Train the sample set to obtain its

SVM model. Combine the knowledge-based model and SVM
model together to obtain the hybrid model of this six-compo-
nent force/torque sensor. The sequence of six component
forces is predicted with the SVM hybrid calibration method

as shown in Fig. 10.
It can be seen from Fig. 10 that when only one single com-

ponent force, namely Fx is applied, the curve predicted by hy-
brid model almost corresponds with the actual curve where Fx

follows the load process curve, and the other component forces

maintain almost zero. At all the other steps, errors are always
at a low level as well.

There are two types of indexes we defined to evaluate the

calibration precision of multi-component force/torque sensors,
which characterize the measuring error and the interference er-
ror respectively. Type I = max (|Load value � measured va-
lue|)/full-scale value; Type II = max (|measured value of the

other dimension|)/the full-scale value of one dimension. Table 2



Fig. 10 Predicted results of single load with SVM hybrid method.

Table 2 Comparison of calibration errors between conventional approach and SVM hybrid method in two types.

Component force Error of Type I (%) Error of Type II (%)

Calibration matrix SVM hybrid Calibration matrix SVM hybrid

Fx 0.6 0.04 2.7 0.03

Fy 1.4 0.08 5.1 0.09

Fz 0.6 0.09 1.3 0.09

Mx 3.6 0.05 8.5 0.08

My 0.7 0.08 4.3 0.10

Mz 1.1 0.09 1.2 0.08

Hybrid calibration method for six-component force/torque transducers of wind tunnel 561
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gives the comparison of calibration precision between the tra-
ditional method (calibration matrix model) and hybrid SVM
calibration method in terms of Type I and Type II errors of

six load components.
FromFig. 10 andTable 2, all of the errors are less than 0.1%.

Comparedwith the approach proposed byXie et al.,26 this SVM

hybrid calibration method can compensate for nonlinear cou-
pling between each dimension more exactly and efficiently.
Therefore, it can be said the calibration accuracy was improved

significantly with the same amount of sample data. Moreover,
unlike ANN, the SVM training process did not contain any iter-
ation procedure, thus it is a time-saving method relatively.

6. Conclusions and outlook

(1) Compared with traditional calibration approach, SVM
hybrid calibration method can efficiently compensate

for nonlinear cross coupling among each dimension
without increasing sample data, and may improve the
calibration accuracy significantly with all of the errors
less than 0.1%.

(2) SVM hybrid model consists of knowledge-based model;
therefore, compared with pure black box model of SVM,
SVM hybrid model not only performances higher preci-

sion and better generalization, but also reflects the level
of linear cross coupling. Accordingly, SVM hybrid
model can provide a basis for the design of sensors. With

the advantages over the other machine learning method,
this hybrid approach based on SVM is also a more time-
saving method relatively.

(3) In conclusion, the SVM hybrid approach provides an
effective way for MIMO sensor calibration. This method
can also be used to calibrate dynamic characteristics of
MIMO sensors, which will be studied in the future work.
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