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INTRODUCTION 

Let A c Z” be a finite set. In [GGZ, GZK 1, GZK 21 we have associated 
to A a holonomic system of linear differential equations on a function @(a), 
UECA. We call it the A-hypergeometric system, and its solutions the 
A-hypergeometric functions. Their main properties will be reviewed in the 
next section. In [GGZ, GZK 1, GZK 21 we have constructed a basis in the 
space of A-hypergeometric functions consisting of series of hypergeometric 
type. Here we study integral representations of these functions. The corre- 
sponding integrals are of the form 

1 n Pibl, . . . . x,Jxf” .-xp dxl . ..dxk 

for some Laurent polynomials P,; the integrals are considered as functions 
of the coefficients of Pi. Here (T is some k-cycle; the precise meaning of the 
integral will be explained in Section 2. It is natural to call the integrals of 
type (1) generalized Euler integrals. They generalize the classical Euler 
integral 

I 
t”( 1 - t)B (1 - zt)? dt 

representing the Gauss hypergeometric function. More generally, these 
integrals include as special cases the integrals of products of powers of 
linear functions studied in [A, VGZ]. 

We shall prove that any integral of type (1) satisfies a certain A-hyper- 
geometric system. Conversely, we show that for any A the integrals of 
type (1) form the complete system of solutions of the A-hypergeometric 
equations (see Theorem 2.10 below). This is a generalization of the corre- 
sponding results in [VGZ] concerned with hypergeometric functions on 
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Grassmannians. As in [VGZ] the completeness is proved under certain 
non-resonance conditions on the exponents ai, 8,. 

Our proof of Theorem 2.10 is based on the theory of $&modules. In fact 
a large part of the theory of hypergeometric functions of several variables 
can be placed into the context of microlocal study of holonomic regular 
C&modules on a toric variety which are smooth with respect to stratifica- 
tion by torus orbits. 

The microlocal approach to %modules [MV, Gi] associates to such a 
module a collection of local systems of “vanishing cycles” on some open 
parts of conormal bundles to the strata. The local system formed by hyper- 
geometric functions is a special case of a vanishing cycles local system 
corresponding to a one-point stratum in the toric variety. 

In contrast with [VGZ] we do not construct explicitly the cycles c 
giving the required number of Euler integrals. It is a very interesting 
problem to give such a construction. As in [VGZ] our proof is based on 
irreducibility of the monodromy representation. To prove it we use the 
classification of irreducible perverse sheaves by means of Deligne-Goresky- 
MacPherson extensions of local systems [BBD]. 

The paper is organized as follows. In Section 1 we review the main 
properties of A-hypergeometric systems. In Section 2 we define Euler 
integrals and state our main results: Theorems 2.7, 2.10, 2.11. Section 3 is 
devoted to topological considerations. Here we study the sheaf on CA 
whose stalk at a given point consists of Euler cycles. Finally, in Section 4 
we study the hypergeometric g-module and complete the proof of the main 
results of Section 2. 

1. THE A-HYPERGEOMETRIC SYSTEM 

1.1. Notation and Assumptions. Let A be a finite subset of an integral 
lattice Z”. We shall assume that A satisfies the following two conditions: 

(a) A generates Z” as an Abelian group. 

(b) There is a group homomorphism h: Z” -+ E such that h(w) = 1 
for any 0 E A. 

Let CA be the space of vectors (u,), WE A, where u,E@. Denote by 
L = L(A) t ZA the lattice of relations among elements of A, i.e., the set of 
integer vectors (a,), o E A, such that C,, A a,o = 0. For any a E L we 
define the differential operator 0, on CA by 

Note that (b) implies C, E A a, = 0 for any a E L, so q (1 is homogeneous. 
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Define also differential operators 

zi= 1 wu,twu,), i = 1, . ..) n 
OJEA 

on CA, where oi is the ith coordinate of w  E A c h”. 

1.2. DEFINITION. Let y = (y i , . . . . yn) be a complex vector. The A-hyper- 
geometric system with parameters y is the following system of linear 
differential equations on a function G(u), u E CA: 

El,@=0 (aELI> zi@=yi@ (i = 1, . . . . n). (2) 

This system was introduced and studied in [GGZ, GZK 1, GZK 21. It 
is holonomic, and so the number of linearly independent solutions at a 
generic point is finite. 

We shall denote by Hyp(y) or simply Hyp the sheaf on CA whose 
sections are hypergeometric functions, i.e., holomorphic solutions of (2). By 
the general theory of holonomic systems, Hyp(y) is a constructible sheaf. 
By Hyp(y), we denote the space of local holomorphic solutions near u, i.e., 
the stalk of Hyp(y) at u. 

1.3. Generic Stratum and the Number of Solutions. Let Q c R” be the 
convex hull of A. It is a convex polytope of dimension n - 1 lying in 
the hyperplane h(u) = 1. We introduce the volume form Vol on this hyper- 
plane by setting the volume of an elementary simplex on the lattice 
{uEZ”: h(u)= I} to be equal to 1. 

In [GZK 33 we have associated to each face TC Q an irreducible 
polynomial A A n r on CA called A n r-discriminant; it depends only on 
the variables v, for w E A n I’. Define the generic stratum C&, c CA by 
conditions A, n r # 0 for all r (for a geometric interpretation see proposi- 
tion 1.6(b) below). 

1.4. THEOREM [GZK 1,2]. The number of linearly independent 
holomorphic solutions of the hypergeometric system (2) at each point of @&, 
is equal to Vol(Q). 

In other words, the restriction of the (constructible) sheaf Hyp to @& is 
a local system of rank Vol(Q). 

More generally, we have described the whole characteristic cycle of (2) 
(i.e., the characteristic cycle of the corresponding $&module, see [K, Bj]). 
The answer is given in terms of volumes of certain polytopes similar to Q. 
According to the general theory of holonomic systems the multiplicities 
arising in the characteristic cycle coincide with the numbers of some 
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“microlocal solutions” of (2) which are (multivalued) microfunctions; see 
[K, Gil. These “hypergeometric microfunctions” deserve further study. 

1.5. Interpretation via Fourier Transform. Put V = CA. Let V* be the 
dual vector space to V, and (t,), w  E A be the coordinates dual to (v,). 
For each a E L consider a polynomial 0 .( CJ) = n,: a,, 0 42 - n,: a, < 0 [;“w 
which is the symbol of the differential operator 0,. Let S be the subvariety 
in V* defined by equations 8 Jr) = 0 for all a E L. As shown in [GZK 21 
S is a toric variety (not necessarily normal). More precisely, consider the 
action of the torus (C*)” on V* given by (J,<),=I-w5,, we A, where 
1 = (A,, . ..) A,), 1” = n J.7. For any face I’c Q, including Q and @ (where 
Q is the convex hull of A) consider the subvariety S(T)c S defined by 
equations 5, = 0 for w  $ IY 

1.6. PROPOSITION [GZK 1,2]. (a) S is the closure of the orbit of the 
point (1, . . . . 1). There is a l-l correspondence r + S,(T) between faces of Q 
and orbits of (C*)” on S such that the closure of S,(T) is S(T). 

(b) The generic stratum @&, c V is the complement of the union of the 
subvarieties in V projectively dual to all S(T). 

Consider the Fourier transform of the system (2), 

I3 .8=0 (aEL), 2J=y,E (i= 1, . . . . n), (2’) 

where gi = -C o,(<,(a/a[,) + 1). Since the first equations are not dif- 
ferential but algebraic, this system has no analytic solutions. So we can 
consider solutions of (2’) in the sheaf of hyperfunctions [K]. Then the first 
group of equations means that G - is supported on S and the second that E 
is homogeneous with respect to the action of the torus. 

1.7. Functoriality. Let g: Z” + Z” be an automorphism, i.e., an integral 
unimodular matrix, and let A’ = g(A). Then g gives a natural identification 
CA z CA’. It is straightforward to prove 

1.8. PROPOSITION. The identifi:cation CA z CA’ given by g takes the 
solutions of the A-hypergeometric system with parameters y to solutions of 
the A’-hypergeometric system with parameters g(y). 

2. MAIN RESULTS 

2.1. Notation. Let A,, . . . . A,,, c Ek be arbitrary finite subsets. To each 
element 0 = (ol, . . . . ok) E Zk we associate the Laurent monomial 
xw = x01 . . . x;” 1 in k variables x1, . . . . xk. We shall regard the vector space 
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CA’ as the space of Laurent polynomials of the form P,(x) = C u,x”‘, 
iDEAi. 

Let CI = (a,, . . . . CI,)EF, j?= (/?,, . . . . Pk)~ Ck be complex vectors. We 
shall study the integral 

F,(a,p;P)=j nPi(x, ,...,. Y,)“x~ -.xf%q . ..dx., 
0 

where P = (P, , . . . . P,) E n CA,, as a multivalued function in P. Since the 
integrand is also multivalued, we have to explain the meaning of this 
integral and the domain of integration. 

2.2. PRECISE DEFINITION OF THE INTEGRAL. Denote the region (C*)k- 
U {Pi=O} by U(P)= U(P,, . . . . P,). Consider the one-dimensional local 
system (i.e., locally constant sheaf of @-vector spaces) 9(x, a, P) on U(P) 
defined by monodromy exponents GI, around {Pi= 0} and pi around 
{x,=0}. W e s a h Il. sometimes abbreviate .Z(a, j?, P) as Y(P) or simply 9. 
A section of 2’ over a simply connected region U c U(P) can be viewed as 
a function f: U + @ such that f is a scalar multiple of some branch of 
P”xP = n Pj(Xl, . ..) XJl xf’ . . . xp. A (singular) p-chain with coeffkients in 
58 is a finite formal sum 1 (6, fa), where each 6: A p -+ V(P) is a singular 
p-simplex in U(P), and f6 is a section of 6*( 9) over A p. For each k-chain 
g we define the integral (1) as Ca fdk fa dx, ... dxk, where the xys are 
viewed as functions x,(s(t)) on Ak. 

Denote by C,( U(P), 9) the space of p-chains defined above. The bound- 
ary operator d: C,( U( P), 2’) -+ C,- r( U(P), 2’) is defined in a standard 
way (see, e.g., [S] ). Let H,( U(P), 2’) be the homology of this chain 
complex. 

We shall consider the integrals F,(a, fi; P) only when u is a k-cycle, i.e., 
da = 0. Then F,(a, /?; P) depends only on the homology class of 0. We fix 
a, /I and consider F, as a multivalued analytic function of the coefficients 
of all the Pi, i.e., on the space n CA1. More precisely, choose some initial 
P = (P, ) . ..) P,) and a k-cycle g = C (6, fs) in U(P). Then for P’ sufficiently 
close to P all simplices 6 occuring in 0 will lie in U(P’). There is a unique 
k-cycle G’ = x(6, f6) with coefficients in Y(a, /?, P’) such that the f 2 are 
obtained from f6 by analytic continuation. 

We define the germ of our multivalued function by 

2.3. Remark. The correspondence cr + 6’ defines a mapping 
G P, P ‘: Hk(u(P), g(P)) + Hk(U(P’), p(P’)) for P’ sufficiently close to P. 
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Intuitively, P can be “more singular” than P’. Then G, p’ is not an 
isomorphism. When P and P’ are generic, GP,P is the isomorphism of 
parallel transport with respect to the Gauss-Manin connection. 

2.4. LEMMA. For any cpl, . . . . qrn E Zk we have the equality 

F,(cr, /3; x~‘P,, . . . . xVmP,,,) = F0 
( 
CI, B + c cr,rp;; P,, . . . . P, 

> 
. 

This follows at once from the definitions. 

According to this lemma we can and will assume that each Ai contains 
0. We shall assume also that the union of Aj generates the Abelian group 
Zk (otherwise the integral either can be reduced to this case or is equal to 
0). 

2.5. From (A,, . . . . A,,,) to One Set of Monomials (The Cayley Trick). 
We shall construct an A-hypergeometric system having F, as its solution. 
Consider the lattice Z” with the basis e,, . . . . e, and let A = U ({e,} x Ai) c 
pxp=p+k. Clearly this set lies in the hyperplane h(u) = 1, where 
h: Z m + k + E is the sum of the first m coordinates. On the level of Laurent 
polynomials this amounts to associating to a collection (P, , . . . . P,) of poly- 
nomials in x = (xi, . . . . xk) a new polynomial P( y, x) = C yiPi( where 
y = (Yl 3 . ..> y,). This substitution was used by Cayley in elimination theory. 

The proof of the next lemma is straightforward. 

2.6. LEMMA. Zf the union of Aj generates Zk as an Abelian group, and 
each Ai contains 0 then A generates Z” + k. 

We shall use the natural identification CA = n CA’ and denote a 
sequence (P, , . . . . P,) and the corresponding polynomial P( y, x) by the 
same letter P. Under this identification @& corresponds to the set of 
(P ,, . . . . P,) such that all hypersurfaces {Pi= 0} c (C*)” are smooth, inter- 
sect each other transversely, and the same conditions hold “at infinity,” i.e., 
on a suitable compactilication. 

2.7. THEOREM. For any P = (P, , . . . . P,) E CA and any 0 E Hk( U(P), 
LE’(a, /?, P)) the function P’ + F,(u, p; P’) in a neighborhood of P satisfies 
the A-hypergeometric system (2) with parameters y, where (rl, . . . . yn) = 
(a I, ..., u m, -pl - 1, . ..) -pk - 1). 

Proof First we verify the equations 0 o I;, = 0. For brevity denote the 
integrand in (1) by PaxB dx. It suffices to show that q i,( P”xs) = 0 for any 
aE L(A). Since A = IJ ( {ei} x Ai) we can regard each a E ZA as a collection 
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(a(i)), where a(i)~Z~l. It is clear that EEL if and only if u(~)EL(A~) 

and I&d, a(i), = 0 for all i. 
Let d(i)=Ca(i),, q(i)=Ca(i),rp, both sums over {cp~A~:u(i)~>O}. 

Obviously, summing up the same expressions over { cp E A ;: u(i), < 0} we 
obtain --d(i) and -q(i), respectively. Now it is immediate that 

so 0 .( P”xs) = 0, as required. 

It remains to verify that ZiF, = aiF,, i = 1, . . . . m, Z,, jFo = - (/Ii+ 1) F,, 
j = 1, . . . . k. All these equations are certain quasi-homogeneity conditions. In 
the integrated form they appear as 

F,(a, B; 4 P,, . . . . LP,) = ( > n AT F,(a, B; P,, . . . . P,), 

F,(a, fi; Py), . . . . P$))=(~p;p~pl) F,(a, /?; P,, . . . . P,), 

where p = (p,, . . . . Pi) E (C*)” and PicO(x,, . . . . xk) = Pi(plx,, . . . . pkxk). Both 
these conditions for li, pj sufficiently close to 1 follow immediately from 
definitions. Theorem is proven. i 

2.8. Remarks. (a) In [GZK 1, GZK 21 we have constructed for any 
regular triangulation T of the polytope Q a certain domain U(T) in CA and 
a basis in the vector space of A-hypergeometric functions on U(T) consist- 
ing of so-called r-series (essentially the hypergeometric series in the sense 
of Horn [BE]. By Theorem 2.6, F, can be expressed in U(T) as a linear 
combination of these r-series with constant coefficients. 

(b) The integrals we are considering are proper, i.e., taken over 
compact cycles. Therefore we do not have problems of convergence. It is 
more common in the theory of special functions to integrate over some 
non-compact regions naturally connected with the integrand. For example, 
if all Pi have real coefficients one can consider the integral of type (1) over 
some connected component of Rk n U(P). If such an integral has good 
properties of convergence Theorem 2.6 is also true for it since it is proved 
in a purely formal way. 



262 GELFAND, KAPRANOV, AND ZELEVINSKY 

2.9. The Non-resonance Condition. Let A = U( (ei) x Ai) c Z”’ x Ek = 
m+k be as above. It is clear that any set A c Z” satisfying the conditions 

Z) and (b) from 1.1 can be transformed to such a form by an 
automorphism of Z”, at least for m = 1, k = n - 1. Denote by Kc Iw” the 
convex cone generated by A c Z”. Clearly, each face of K is a cone over 
some face of Q, the convex hull of A. For each face Tc K of codimension 
1 let Lin(T) c C” be the C-linear span of r. 

We say that a vector of parameters y = (yi, . . . . 7,)~ C’ is non-resonant 
(for A) if for each face Tc K of codimension 1 we have y # H” + Lin(T). 

Now we can formulate the converse statement to Theorem 2.7, namely 
that generalized Euler integrals form a complete set of solutions for any 
A-hypergeometric system. Denote by 

E = -&a, /t p) : Hk( u(f% T(p)) + HYP(Y )p 

the mapping u + r;,(cc, /I; P). 

2.10. THEOREM. Suppose that c( and j3 in Theorem 2.6 are such that y is 
non-resonant for A. Then for each P = (PI, . . . . P,) E n CA’ the mapping 
E(cq /I, P) is an isomorphism. 

Note that the non-resonance of y in Theorem 2.10 implies that all cli # 0. 
Our proof of Theorem 2.10 is based on the following 

2.11. THEOREM. If PE @p”e,, (see 1.3) and y is non-resonant then the 
monodromy representation of xI(UZ&, P) on Hyp(y), is irreducible. 

Theorems 2.10 and 2.11 will be proved in the next sections. 

2.12. Remark. Let z i , . . . . z, be the coordinates on the open orbit S, of 
the torus in S (see 1.6). The non-resonance condition means that the multi- 
valued function zy on S, has non-trivial monodromy along each orbit S(T) 
of codimension 1. It seems probable that a weaker condition suffices for 
Theorem 2.10 (but not for Theorem 2.1 l), viz., that zy has a singularity 
along each S(T) for codim r= 1. (Thus it can either ramify, or have a 
pole). This means that y does not lie in (H” n K) + Lin(T). Among these 
“semi-non-resonant” y there are some integer points, namely y E Z” such 
that ( - y) lies strictly within K. The study of Euler integrals and hyper- 
geometric functions for such y is very important since they are connected 
with polylogarithms. 

2.13. The Sheaf #(a, /I). Now we give sheaf-theoretic versions of 
Theorems 2.10 and 2.11. Let us introduce a constructible sheaf #(u, /I) on 
n CA1 whose stalk at any point P is Hk( u(P), P(Q, & P)). Let 
u= {(P, X)E (n @“I) x (a,*)“: x E U(P)} be the disjoint union of all U(P). 
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There is the local system Y(cq /I) on U whose restriction on each U(P) is 
Y(Lx, /I, P). Its sections are branches of functions of the form 
(P, X) + (const.) PaxB. Let n: U + l-J CA1 be the projection. Define 
Y?(M, fi) = R%! Y(u, /I). Here Rkz! is the kth direct image with proper sup- 
ports; see [Bo]. By definition, the stalk %(a, /?)p is Ht(U(P), Z(tl, /?, P)), 
the cohomology with compact supports. By Poincare duality, one has 
isomorphisms 

fmw), wa, A P)) = ff2k-k(u(p), aa, B, p)*)* 

= Hk( utp), y(cr, ,t p)). 

It is clear that the mapping E(a, p, P) from Theorem 2.10 is induced by 
a morphism of sheaves E(a, /I) : X(&, /I) + Hyp(y) by taking stalks. Note 
that the mapping G,,, (see remark 2.3) is a special case of the “transport” 
map defined for any constructible sheaf. 

2.14. THEOREM. In the conditions of Theorem 2.10 the morphism E(cr, /?) 
is an isomorphism of sheaves. 

Consider also the complex RTC* U(cr, /?), the full direct image. 

2.15. THEOREM. Rz* LZ(cq /I) is an irreducible perverse sheaf and the 
canonical morphism Rx! Y(cr, /?) -+ Rx, Y(a, fl) is an isomorphism. 

The definition and properties of perverse sheaves will be recalled in 
Section 3. Theorem 2.15 will be proved in Section 3, and Theorem 2.14 in 
Section 4. 

2.16. Remark. We have a natural restriction morphism res: 
Rkz,Z(~, B)p + Hk( U(P), Y(cr, /I, P)). In general, this morphism is not an 
isomorphism (in contrast with the case of Rkz! and Hf). Its image consists 
of cohomology classes of cocycles which can be extended to Hk(U(P’), 
9’(a, /I, P’)) for all P’ close to P. By Poincare duality, Hk( U(P), 
Y(a, fi, P)) is isomorphic to Hf( U(P), 9(c(, /3, P)), the homology defined 
by means of locally finite chains; see [VGZ]. For an “extendable” cycle 
(T E H[( U(P), Y(cq fl, P)) we could define the Euler integral as in [VGZ]. 
But Theorem 2.15 means that the space of extendable cycles is just the 
image of the canonical map Hk( U(P), LZ(u, 8, P)) --f Hz( U(P), ?&‘(a, /I, P)), 
and various “extensions” of a cycle CJ correspond to various compact cycles 
homologous to 0. 

2.17. EXAMPLE: HYPERGEOMETRIC FUNCTIONS ON THE GRASSMANNIAN 
Grk+l(~m+k+l ). These functions were originally defined in [G] in terms 
of generalized Euler integrals of type (1 ), where all Pi are (inhomogeneous) 
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linear functions. In this case all Ai are equal to (0, e,, . . . . ek} c Zk, where 
the eJ are standard basis vectors. The construction in 2.5 leads to the 
realization of CA as the space of polynomials P(y, x) = Cy!, u,y,+ 
CT=, CT= 1 viiyixi. The polytope Q is the product Ak x A”-’ of two sim- 
plices. It has k + m + 1 faces of codimension 1. The corresponding non- 
resonance conditions have the form cci+! Z, i = 1, . . . . m; /Ii+ Z, j= 1, . . . . k; 
(C ai) + CC Dj) $ C Cf. CVGZI. 

The set A can be transformed to a form lJ( (ei} x Al), i= 1, . . . . m’, 
A; c Zk’, in three different ways. The first was just described. The second 
has m’ = k + 1, k’ = m - 1, and the transformation is given by transposition 
of the matrix (vii). The third has m’ = 1, k’ = m + k - 1. So we obtain three 
kinds of Euler integrals for the same hypergeometric system which are 
taken over cycles of different dimension. The relation between integrals of 
first two kinds is closely connected with the duality studied in [GG]. Both 
these integrals can be obtained from integrals of the third kind by an 
appropriate iterated integration. 

3. PROOF OF THEOREM 2.15 

3.1. Complexes of Sheaves Related to A. Let V=CA, SC V* be as in 
Section 1. We denote the dual coordinate systems in V and V* by (0,) and 
(t,), w  E A. Let So c S be the open orbit of the torus. We identify S, with 
(C*)” by means of coordinates z = (z,, . . . . z,) such that the corresponding 
point of S, is (z~)~ E A. For a complex vector y = (yl, . . . . y”) E C” let 9 my be 
the one-dimensional local system on S, which has monodromy exponents 
( - yi) around { zi = O}. Sections of 6p_? are branches of functions of the 
form AZ-?, AC@*. 

Let j: So -+ V* be the inclusion. On V* we have the sheaf j!Y-, 
(extension by zero) and the complex of sheaves Rj.&, (direct image in 
the derived category). They are connected by the canonical morphism 
c: j!T-, + Rj,9-,. 

3.2. PROPOSITION. The vector y is non-resonant for A if and only if 
c: j! ~5 y + Rj, LL y is an isomorphism (in the derived category). 

Proof. The fact that c is an isomorphism means that for any point 
s E S - S, and a small neighborhood U of s we have H’( U n So, 9~,) = 0 
for all i. 

Let s lie in the orbit S,(T) c S, where r is some face of our polytope Q 
(see Proposition 1.6(a)). The structure of S near s was studied in [GZK 2, 
GZK 43. Let us summarize necessary facts. 
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3.3. LEMMA. (a) U n SO is homotopy equivalent to the disjoint union of 
several copies of the complex torus H(r) = (C *)dim I-+ ‘. 

(b) The restriction of X, to each copy of H(T) has the same vector 
of monodromy exponents y ’ E (H(T) ” ) @ C, where H(f) ” is the character 
lattice of H(T). There is a natural identification H(T)” = Z”/Lin(T) n Z”, 
such that y’ corresponds to the image of -y under the projection C” --, C”/ 
Lin( r). 

Proof: Part (a) follows from Proposition 2A.5 in [GZK 41. (Note that 
the corresponding Lemma 1 in [GZK 2, Sect. 2.31 is stated incorrectly). 
Proof of (b) is straightforward. 1 

By (b), y is non-resonant if and only if the restriction of E, to each 
H(T) is non-trivial. But it is well-known that a one-dimensional local 
system on a complex torus has no cohomology if and only if it is non- 
trivial. This completes the proof of Proposition 3.2. m 

3.4. Perversity. Recall [BBD] that a perverse sheaf on V* is a 
constructible complex 9’ of sheaves on V* such that: 

(Perv): The cohomology sheaf ZJ’(9”‘) for i > 0 has support on a 
subvariety of codimension 2 i. 

(Perv + ): If Xc V* is a smooth locally closed subvariety of codimen- 
sion d then the sheaves H’,(.F?‘) of hypercohomology with supports on X 
are zero for i < d. 

Denote N=Card(A)=dim V*. Then it follows from [BBD] (and is 
easy to see) that j,Y-, [n - N] and Rj,LC, [n - N] are perverse sheaves. 
Here numbers in square brackets mean the shift of grading of complexes: 
the pth term of the complex C[i] is the (p + i)th term of c’. 

3.5. THEOREM. Zf y is non-resonant then j! 9-, [n - N] is an irreducible 
perverse sheaJ 

Proof Since X, is l-dimensional it is an irreducible local system on 
So. The intersection cohomology extension of X, to V*, denoted 
j!,(X,) is, by definition, the image (in the Abelian category of perverse 
sheaves) of the canonical morphism c: j! 55, [n - N] + Rj, Ypy [n - N]; 
see [BBD]. By the general theory of [BBD], j!,(E,) is an irreducible 
perverse sheaf on V*. Since c is an isomorphism by Proposition 3.2, we 
obtain the desired statement. 1 

3.6. The Geometric Fourier Transform [Br, KS]. Denote by 
G c V* x V the closed set {(t, v): Re(& v) > 0} and by p,, pz the projec- 
tions of V* x V to I’* and I’, respectively. Define a functor 5 from the 
derived category of sheaves on I’* to the similar category on V by F(Y) = 
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Rp,, (&T,(p: (9))). Here RT, is the derived functor of the functor 
“subsheaf of sections with support in G.” The functor 9 is called the 
geometric Fourier transform. 

A sheaf 9’ on V* is called conic if it is locally constant on all orbits of 
rW*, . A complex 9’ of sheaves on V* is called conic if all its cohomology 
sheaves H’(Y) are conic. Denote by Dfionic( V*) the bounded derived 
category formed by such complexes. Let us summarize the main properties 
of 9. 

3.7. THEOREM [B]. (a) 9 takes D&,iC(V*) to D&,ic( V) and is an 
equivalence of these categories. 

(b) F takes constructible conic complexes on V* to constructible 
conic complexes on V and dejmes an equivalence of corresponding derived 
categories. 

(c) The functor F[N] takes conic perverse sheaves on V* to conic 
perverse sheaves on V and defines an equivalence of corresponding categories. 

3.8. From now on we suppose that A cE” has the form 
A = U ( {ei> x A i), where n = m + k, and A,, . . . . A, c Zk are finite subsets 
such that n A i contains 0 and U Ai generates Hk as an Abelian group (see 
2.4). We shall use the notation from Sect. 2. 

3.9. THEOREM. Let c(EC”‘, /DECO be such that y= (a,, . . . . a,,,, 
-1 -fl,, . ..) - 1 - fik) is non-resonant for A. Then there is an isomorphism 
Rx* S?(a, /?)[k] + S(j! Z,)[n] in the derived category of sheaves on V. In 
particular, Rx, Z(a, B)[k] is a perverse sheaf on V, and Rkx, L?(a, /?) = 
H”F(j! Lz-,). 

Proof. By definition, F(j!Y-,) = Rp2,(RI’,(p:j!LLy). Since j!Z-,, = 
j,g-,, we have s(j!~-,)=Rq,,(Rro,,,.,,(q:~-,)), where ql, q2 
are the projections of So x V on the factors. We write a point of V = CA 
in the form P(y, x)=1 yiPi( where Pi~CAi, i= 1, . . . . m. The orbit 
So is identified with (C* )” by means of coordinates z = (z, , . . . . z,) = 
(Y , , . . . . y,, xi, . . . . xk), and G n (S, x V) = ((y, x, P) : Re P( y, x) > O}. Let 
s: S, x V + (C*)k x V be the projection forgetting the y-coordinates. In 2.13 
we introduced the set UC (C*)k x V which is the union of all U(P). Let 
E: U + (@*)k x V be the embedding. 

3.10. LEMMA. We have an isomorphism R.Y,(&~,,,,~ .,(q:2-,))[n] 
= R&*A?(a, B)[k] in the derived category of sheaves on (C*)” x V. 

Proof: Let XE (C*)k, P=C yip,(x) E V. Let us verify the required 
isomorphism at the level of stalks at (x, P). We distinguish two cases: 
x E V(P) and x .$ U(P). 
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Case 1. XE U(P). The stalk at (x, P) of R’s,(RT,,,,,,,(q:~-,)) 
is just the ith cohomology of SKi(x, P) with coefficients in 
(&Tcncsox V,(qT Z,)) I S-l(x,p) which in our case coincides with 
R~G,(Sox tqns-1(x p)kc~-~ls-‘(r.PJ~ 

Consider on s-“(x, P) = ((IZ*)~ the local system .5& and its direct image 
Rz,S$, where r: (C*)m + Cm is the embedding. Denote by vi the coor- 
dinates in (Cm)* dual to yi. 

3.11. LEMMA. &r Gn(Sox Y)ns-l(X.P)(ql*~-yls-l(.~,p)) coincides with the 
stalk of the Fourier transform of Rz,9= at the point of (cm)* with 
coordinates vi = P,(x). 

Proof. It suffices to note that S-l(x, P) is identified with (a=*)“’ with 
coordinates (yi, . . . . y,,), and Gn (S, x V) n S -‘(x, P) = {(y,, . . . . y,): 
Re P(y,x)=ReC yiPi(x)>O}. 1 

Now Lemma 3.10 in case 1 follows from the next well-known fact 

3.12. LEMMA [Br]. Suppose that all cr;$B. Then 9(Rz,S$)[m] = 
Rz’,E_,, where T’ is the embedding of (@*)m into (a=“‘)*. 

Case 2: x$ U(P). Denote the complex Rs,(RT,,,,..,(~:~-~)) by 
9. We have to prove that .s? z RE* E*.Y. 

3.13. LEMMA. Let X be a topological space, Yc X a closed subset, 
U = X - Y, E: U + X the embedding, and 9 a complex of sheaves on X. Then 
the canonical morphism 9 + RE* E*P is an isomorphism if and only if for 
each y E Y we have RTiJI(P) = 0. 

Proof. Let i: Y --+ X be the embedding. The statement follows from the 
exact triangle i,i!?? -+ 9 + RE* E*P (see [BBD]) and the fact that the 
stalk of i!B at y is Rr(,V)(9)=0. 1 

To prove that RT,,,,.,,($?) vanishes note that it coincides with the stalk 
at the point (PI(x), . . . . P,(x)) of the Fourier transform of ym. If all cq$ H 
and at least one P,(x) =0 then this stalk is zero by Lemma 3.12. 
Lemma 3.10 is proved. 1 

To finish the proof of Theorem 3.9 denote by r: (@*)” x V+ V 
the projection. Then q2 = rs, I T  = TE, so F(j$-,)[n] = 
Rq2,WGn,s,,x v,(qT~-,))Cnl = R~,R~,(R~G,~~,, vI(q?~-,)) [InI = 
Rr,RE,gP(a, BKkl =Rn,Na, BKkl. I 

Now we can complete the proof of Theorem 2.15. The first statement 
follows from Theorem 3.7~. To establish the second one note that 

607/84/2-IO 
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&!$P(cL, /I) is Verdier dual to Rrr,(P(a, /?)*) and hence also irreducible. 
Since perverse sheaves form an Abelian category and the morphism in 
question is non-zero, it must be an isomorphism. 1 

4. STUDY OF THE HYPERGEOMETRIC ~-MODULE 

4.1. The ~~~e$ge~~efr~~ ~-module. Let V = CR, and denote $&, the 
sheaf of rings of linear di~erential operators with holomorphic coefficients 
on I? The operators Zi and 0, from Section 1 are global sections of 9”. 
We associate to the system (2) a sheaf of left &,-modules (or simply a &,- 
module) ~=~~=~“/(C~~(Zi-~i)tt:~)V El,), see [Bj, KJ. Consider 
the Fourier transform J1’ = N, of the $&module J%!?. It is the G&*-module 
defined by 

where Zi= -C ~~(~~(~/~~~) + 1). The support of &” is the subvariety 
SC V* defined in Section 2. 

4.2. Solution Complexes. If W is any $&module on a complex manifold 
Y then the solution sheaf of 9I! is the sheaf Hom,(& O,), see [K]. For the 
hypergeometric g-module we have h,(J?, 8,) = Hyp(y), the sheaf of 
hypergeometric functions. 

The Solution complex of .%? is defined as Sol(W) = R Horn&.% By). If W 
is holonomic then Sol(a) is a perverse sheaf, see [Bo, BBD]. 

4.3. $&Module J 9$. We retain the notation of Section 3. Let 9? be the 
9sO-modde defined by 99? = 9J(I: 9so(Zi - 7,)). Then Sol{@,,) is 
isomorphic to the local system 9-, defined in section 3. Let fj Se, = f g), 
denote the s-module direct image of 9?? under the inclusion j: S, -+ V* 
[Bo]. By definition, J” +, is obtained from the sheaf-theoretic meromorphic 
direct image jyg7 (defined for quasi-coherent sheaves of O-modules) by 
adding formal derivatives of its sections in directions transversal to S. 
Therefore, jy9& is a subsheaf of J Se,. For the solution complex we have 
Sol(pq:)=j!~-,. 

4.4. PROPOSITION. If y is non-resonant then the g-module 1 By is 
irreducible. 

Prooj: By Riemann-Hilbert correspondence [Bo] it s&ices to verify 
that Sol(f .@,,) = j! E, is an irreducible perverse sheaf on V*. But this is 
Theorem 3.5. a 
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4.5. Morphism 6: A$ + J 3$. Let u E H’(S,, Ye,) be the canonical gener- 
ator of 9$, (i.e., the image of 1 E $8,). It defines a section u’ of/y9$ c j &J, 
which satisfies the system (2’). Let U” be the canonical generator of MY. We 
define d by the formula &(a”) = u’. 

4.6. THEOREM. Zf y is non-resonant for A then 8: My + s g.? is an 
isomorphism. 

ProoJ Since J 93? is irreducible for non-resonant y, it follows that & is 
surjective. Let A!’ = Ker 8. It is also a holonomic regular g-module. 

For any holonomic $&module $8 on V* let us denote by SS(.%‘) its 
characteristic variety [K]. It is a Lagrangian subvariety in T* V*. Denote 
also by s(W) the characteristic cycle of % (see [K]). It is a formal sum 
of irreducible components of SS(.%?) with certain nonnegative multiplicities. 
We have s(Jv;) =SJX) +a(! s). Therefore to show that X = 0 it 
suffices to prove that sS(X?) = S,S(j 9?). 

In [GZK 21 it was proved that any irreducible component of SS(Ap) is 
the closure of conormal bundle to an orbit S,(T) for some face Tc Q. We 
shall denote this variety Con(r). The multiplicity of Con(r) in =(A?) was 
also calculated in [GZK2, Theorem 51. 

On the other hand, the calculation of sS(j BY) can be deduced from the 
results of Kouchnirenko [Kou]. First we note that SS(Ju;) > sS(f $,), and 
so each irreducible component of SS(s Se,) is some Con(r). Let c(T) be the 
multiplicity of Con(r) in sS(j $,). Following [Gil, it can be calculated by 
means of the vanishing cycles functor @. Namely, let (5, w) be a generic 
point of Con(r), where t E S,(T) c V*, w  E TF V*. Let g be a function on 
V* vanishing along S,(T) and satisfying d, g = w. Let @J* be the vanishing 
cycles functor acting from constructible complexes of sheaves on V* to 
constructible complexes on the hypersurface g = 0. Then we have c(T) = 
~(@~(j!$p~)~), the Euler characteristic of the stalk at 5 of the complex Qg. 

Take for g a linear function g(q) = CosA u,y~,. Clearly, g vanishes along 
S,(T) if and only if u, = 0 for w  E r. In coordinates xi, . . . . x, on So the 
linear function g becomes a Laurent polynomial f(x) = C u,x”. The 
number x( @jg (j! YY)<) is then identified with the Euler characteristic of the 
Milnor fiber off with coefficients in YY. This number has been calculated 
in [Kou] in terms of volumes of certain Newton polytopes. It turns out 
that the answer is the same as that of [GZK 21 for At. This proves that 
X = Ker d = 0 and hence 8 is an isomorphism. 1 

4.7. Proof of Theorem 2.11. By Theorem 4.6 and Proposition 4.4, MY is 
an irreducible 9,,-module. Therefore, A$, being the Fourier transform of 
NY, is itself irreducible. So it must be the intersection cohomology 
extension of a g-module corresponding to some irreducible local system on 
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the open part UC V consisting of smooth points for AY; see [Bo]. This 
open part is precisely the generic stratum, whence the theorem. 1 

4.8. Proofof Theorems 2.10 and 2.14. The sheaves X(m, /I) and Hyp(y) 
are 0th cohomology sheaves of perverse sheaves &!~?(a /?)[k] and 
Sol(J&) respectively: see 3.7. By Theorems 2.15 and 3.9, Rn,Y(a, p)[k -n] 
is the geometric Fourier transform %(j!&). Since j,K,[n -N] is 
isomorphic to the solution complex of 4, we can apply a theorem of 
Brylinsky [Br] to obtain that SoI is isomorphic to F(j!E,)[n]. 
Hence Sol(MY) and Rn,LZ’(a, /I)[k] are irreducible perverse sheaves 
isomorphic to each other. Therefore, they are the intersection cohomology 
extensions r!* (where r: CgAen + C=A is the embedding) of their restrictions to 

@&I. Our map E(cr, p): X(a, /I) + Hyp(y) considered over C& yields, by 
functoriality of r! * , a morphism r,,(E(a, /I) 1 C&J of irreducible perverse 
sheaves. This must be an isomorphism since it is non-zero. But one has 
the isomorphism &?‘(r! * 9) = R”r ,9 for any local system L’? on C&.“. 
It follows that %(a, p) and Hyp(y) coincide with the 0th direct images 
of their restrictions to @&, i.e., X(a, D) = R”z, ~*-@(a, B), HYP(Y I= 
R’z,z* Hyp(y). Also we have the equality E(cr, B) = R’r,z*E(a, /?). Hence 
E(cr, B) must be an isomorphism on the whole CA. Theorem 2.14 and hence 
Theorem 2.10 are proven. 1 

4.9. Remark. Our proof of Theorem 2.14 is rather roundabout. This is 
due to the fact that we do not have an explicit description of the 
isomorphism 4: Y(Sol(%?))[N] -+ Sol(&) which is the translation of 
Brylinsky’s isomorphism [Br] given originally for de Rham complexes to 
the language of solution complexes. It would be natural to expect that 4 
can be given by explicit integrals of type f E(l) exp(i( c, v)) dt applied to 
suitable generalized solutions Z of the g-module 9. 
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