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Abstract

This paper discusses portfolio selection problem in fuzzy environment. In the paper, semivariance is originally presented for fuzzy
variable, and three properties of the semivariance are proven. Based on the concept of semivariance of fuzzy variable, two fuzzy
mean-semivariance models are proposed. To solve the new models in general cases, a fuzzy simulation based genetic algorithm is
presented in the paper. In addition, two numerical examples are also presented to illustrate the modelling idea and the effectiveness
of the designed algorithm.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the hottest points in applied finance is portfolio selection which is to select a combination of securities that
can best meet the investors’ objective. Since the introduction of mean-variance models in [37,38], variance has been
widely accepted as a risk measure. Numerous models have been developed based on variance such as models proposed
in [10,19,31,35]. Though variance has been a rather popular measure of risk in portfolio selection, it has limitations
[16,38]. One distinguished limitation is that analysis based on variance considers high returns as equally undesirable as
low returns because high returns will also contribute to the extreme of variance. Then, when probability distributions of
security returns are asymmetric, variance becomes a deficient measure of investment risk because the selected portfolio
based on variance may have a potential danger to sacrifice too much expected return in eliminating both low and high
return extremes. In fact, in reality, there do exist empirical evidences [1,9,11,44] indicating that many security returns
are not symmetrically distributed.

To overcome the limitation of the mean-variance models, people began to take asymmetry of return distributions
into account. Some scholars employed skewness, i.e., the third central moment, to measure the asymmetry degree of
return distributions [9,27,29,31,35], others directly used downside risk measure, i.e., the measure which only gauges
the negative deviations from a reference return level, to replace variance. Downside risk measure separates undesirable
downside fluctuations of security returns from the desirable upside fluctuations and only pays attention to returns
falling below some predetermined level. Therefore, it matches investors’ notion about risk and gains popularity among
investors. Experimental study [47] showed that people were strongly in favor of downside risk measure as the measure
of investment risk. Rom and Ferguson [42] also reported that the downside risk concept enjoys an increasing popularity.
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There are many forms of downside risk measure, such as the famous one introduced in [43] in the safety first criterion
and those proposed in [3,8,12,17,21,30,41,42]. Semivariance is one of the best-known downside risk measures. It was
introduced in [38]. Because it is direct, clear and comparatively simple in reflecting investors’ intuition about risk, it
receives much attention. Many scholars such as Mao [36], Choobineh and Branting [7], Markowitz [39], Kaplan and
Alldredge [26], Grootveld and Hallerbach [16], and Huang [24] researched the properties and computation problem of
semivariance. Their researches show that semivariance has merits in measuring risk.

These researches discussed portfolio selection in stochastic environment. As discussed in [22,23,25], in some sit-
uations in which it is difficult to use probability theory, investors can make use of fuzzy set to reflect the vagueness
and ambiguity of security returns. In fact, many scholars have made achievements in extending Markowitz’s stochastic
mean-variance idea to fuzzy environment in different ways. For example, Tanaka and Guo [45,46] quantified mean and
variance of a portfolio through fuzzy probability and possibility distributions. Zhang and Nie [49] adopted Tanaka’s [46]
definition of possibility grade and assumed admissible errors on the expected return and risk of the asset. Arenas-Parra
et al. [2] proposed a fuzzy goal programming model based on expected intervals defined in [18]. Carlsson et al. [6]
used their own definitions of mean and variance of fuzzy numbers [5], and found the optimum portfolio by maximizing
utility. Bilbao-Terol et al. formulated a fuzzy compromise programming problem [4]. In particular, Huang [25] quan-
tified portfolio return and risk by the expected value and variance based on credibility measure, and proposed two new
fuzzy mean-variance models for portfolio selection with fuzzy returns. In addition, Huang [22] presented two types
of fuzzy chance-constrained models to find optimal portfolio. However, so far, there is no research on fuzzy portfolio
selection taking semivariance as risk measure. For the similar reasons discussed in stochastic portfolio selection, when
the membership functions of fuzzy returns are asymmetric, the fuzzy variance may also become a deficient risk measure
because it also eliminates both low and high return extremes. Since semivariance is a direct, clear, comparatively simple
and very popular measure to gauge downside risk, in this paper, we will extend stochastic mean-semivariance idea
to fuzzy environment. We will first define semivariance of fuzzy variable and discuss three properties of it, and then
discuss fuzzy portfolio selection problem using the fuzzy semivariance as the risk measure.

The paper is organized as follows. For the better understanding of the paper, we review some preliminary knowledge
about fuzzy variable in Section 2. In Section 3, we define semivariance for fuzzy variable and discuss three properties
of the semivariance. Then, we propose two fuzzy mean-semivariance models for portfolio selection in Section 4 and
summarize a hybrid intelligent algorithm for solving the proposed problems in Section 5. After that, we present two
numerical examples to illustrate the potential applications of the new models and the effectiveness of the proposed
algorithm in Section 6. Finally, we conclude the paper in Section 7.

2. Preliminaries

Fuzzy set theory was introduced in [48] in 1965 and was well developed. In the fuzzy world, there is a well-known
measure, i.e., possibility measure. However, possibility measure is not self-dual, yet the self-dual property is very
important both in theory and in practice. As an alternative measure of a fuzzy event, Liu and Liu [34] defined a self-
dual credibility measure in 2002. From then on, credibility theory has been well developed based on an axiomatic
foundation presented in [33]. In this paper, we define semivariance measure of a fuzzy event based on credibility. For
the better understanding of the paper, let us briefly review the necessary knowledge about fuzzy variable.

Let � be a fuzzy variable with membership function �, and r a real number. The credibility of a fuzzy event,
characterized by ��r , is defined by [34]

Cr{��r} = 1

2

(
sup
u� r

�(u) + 1 − sup
u>r

�(u)

)
. (1)

The value of credibility takes values in [0, 1] [33]. It is easy to verify that the credibility is self-dual, i.e., Cr{��r}+
Cr{� > r} = 1.

The expected value of a fuzzy variable � is defined as [34]

E[�] =
∫ ∞

0
Cr{��r} dr −

∫ 0

−∞
Cr{��r} dr , (2)

provided that at least one of the two integrals is finite.
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Let � be a fuzzy variable with finite expected value e. The variance of � is defined by [34]

V [�] = E[(� − e)2]. (3)

The properties of variance of fuzzy variable are recorded in [33]. We only mention one property which will be used
in the next section. For more expositions on the expected value and variance of fuzzy variable, the interested readers
may refer to [33].

Theorem 1 (Liu and Liu [34]). Let � be a fuzzy variable with expected value e. Then V [�]=0 if and only if Cr{�=e}=1.

3. Semivariance and its properties

Definition 1. Let � be a fuzzy variable with finite expected value e. Then the semivariance of � is defined by S[�] =
E[[(� − e)−]2], where

(� − e)− =
{

� − e if ��e,

0 if � > e.
(4)

For example, semivariance value of the triangular fuzzy variable �= (−2, 1, 3) is S[�] ≈ 1.15, while variance value
of the triangular fuzzy variable � = (−2, 1, 3) is V [�] ≈ 1.20.

Theorem 2. Let � be a fuzzy variable, S[�] and V [�] the semivariance and variance of �, respectively. Then 0�S[�]�
V [�].

Proof. Let e be the expected value of fuzzy variable �. The non-negativity of variance and semivariance is clear. For
any real number r, we have

{�|(�(�) − e)2 �r} ⊃ {�|[(�(�) − e)−]2 �r},
which implies that

Cr{(� − e)2 �r}�Cr{[(� − e)−]2 �r}, ∀r

because credibility is an increasing measure [33].
It follows from the definition of variance and semivariance that

V [�] =
∫ +∞

0
Cr{(� − e)2 �r} dr �

∫ +∞

0
Cr{[(� − e)−]2 �r} dr = S[�]. �

Theorem 3. Let � be a fuzzy variable with expected value e. Then S[�] = 0 if and only if Cr{� = e} = 1, i.e., V [�] = 0.

Proof. If V [�] = 0, then it follows from Theorem 2 that S[�] = 0.

If S[�] = 0, then E[[(� − e)−]2] = 0. Note that

E[[(� − e)−]2] =
∫ +∞

0
Cr{[(� − e)−]2 �r} dr ,

which implies that Cr{[(� − e)−]2 �r} = 0 for any r > 0 since the value of credibility takes values in [0, 1]. Because
credibility measure is self-dual, we have Cr{[(� − e)−]2 = 0} = 1. Therefore,

Cr{(� − e)− = 0} = 1, (5)

which implies that � − e = (� − e)+ + (� − e)− = (� − e)+ almost everywhere. Therefore, we have

E[(� − e)] = E[(� − e)+] =
∫ +∞

0
Cr{(� − e)+ �r} dr = 0,



4 X. Huang / Journal of Computational and Applied Mathematics 217 (2008) 1–8

which implies that Cr{(� − e)+ �r} = 0 for any r > 0. Since credibility is self-dual, we have

Cr{(� − e)+ = 0} = 1. (6)

It follows from Eqs. (5) and (6) that Cr{(� − e) = 0} = 1, which means

Cr{� = e} = 1, i.e., V [�] = 0. �

Theorem 4. Let � be a fuzzy variable with symmetric membership function. Then S[�] = V [�].

Proof. Let � be a fuzzy variable with symmetric membership function about its expected value e. From the definition
of variance, we have

V [�] = E[(� − e)2] =
∫ +∞

0
Cr{(� − e)2 �r} dr .

Since the membership function of � is symmetric about e, we have

Cr{(� − e)2 �r} = Cr{[(� − e)−]2 �r}, ∀r .

Therefore,

V [�] =
∫ +∞

0
Cr{(� − e)2 �r} dr =

∫ +∞

0
Cr{[(� − e)−]2 �r} dr = S[�]. �

4. Fuzzy mean-semivariance models

We can see from Theorem 4 that when membership functions of security returns are symmetrical, optimal portfolio
can be obtained no matter whether we take the variance or the semivariance as the measurement of risk. However,
when membership functions of security returns are asymmetrical, we can see from Theorem 2 that taking semivariance
or variance as the measurement of risk will yield different results. Since low part deviation from the expected value
implies the possible loss of the investment while high part deviation from the expected value implies the potential return
of the investment, we adopt semivariance of fuzzy variable as the measurement of risk to select the optimal portfolio
in fuzzy environment.

Let xi denote the investment proportions in securities i, and �i the fuzzy returns of the ith securities defined as
�i = (p′

i + di − pi)/pi, i = 1, 2, . . . , n, respectively, where p′
i is the estimated closing prices of the securities i in the

next year, pi the closing prices of the securities i at present, and di the estimated dividends of the securities i during
the coming year. Then, in case when the investors can give a tolerable level of risk, and want to maximize the expected
return at the given level of risk, we have the fuzzy mean-semivariance model as follows:⎧⎪⎨

⎪⎩
max E[x1�1 + x2�2 + · · · + xn�n],
subject to: S[x1�1 + x2�2 + · · · + xn�n]��,

x1 + x2 + · · · + xn = 1,

xi �0, i = 1, 2, . . . , n,

(7)

where � denotes the maximum risk level the investors can tolerate, E the expected value operator, and S the semivariance
of the fuzzy variables.

When the investors preset an expected return level that they feel satisfactory, and want to minimize the risk for this
given level of return, the optimization model becomes⎧⎪⎨

⎪⎩
min S[x1�1 + x2�2 + · · · + xn�n],
subject to: E[x1�1 + x2�2 + · · · + xn�n]� �,

x1 + x2 + · · · + xn = 1,

xi �0, i = 1, 2, . . . , n,

(8)

where � denotes the minimum expected investment return that the investors can accept.
Please note that in fuzzy environment, generally speaking, E[x1�1 + x2�2 + · · · + xn�n] �= x1E[�1] + x2E[�2] +

· · · + xnE[�n].
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5. Fuzzy simulation based genetic algorithm

Here we provide a fuzzy simulation based genetic algorithm (GA) to solve the proposed optimization problems
in general cases, i.e., membership functions of fuzzy returns can take any forms of function. The technique of fuzzy
simulation was proposed in [34], and has been recorded in [32]. The interested readers can refer to them. GA was
proposed in [20] in 1975, and has been well developed since then. GA is a stochastic search method for optimization
problems based on the mechanics of “survival of the fittest”. It does not require the specific mathematical analysis
of optimization problems. By group searching and group information exchanging, GA avoids getting stuck at a local
optimal solution and can find the global optimal solution to the complex optimization problems fairly. For the last three
decades, by using GA [13,14,15,28,40] researchers have successfully solved many complex optimization problems
which are hard to solve by analytic methods. In particular, Liu [32] designed a spectrum of fuzzy simulation based GA
for solving general fuzzy programming models. In this paper, we first use the method of fuzzy simulation to compute
the expected value and the semivariance value of the fuzzy return. Then we integrate fuzzy simulation into GA to find
the optimal solutions. For the detailed introduction of the fuzzy simulation based GA, the interested readers can refer
to the paper [22]. The difference mainly lies in initialization operation and the feasibility checking. Here, we introduce
in detail the initialization operation and the feasibility checking, and summarize the fuzzy simulation based GA.

Initialization: In the GA, a solution x=(x1, x2, . . . , xn) is represented by the chromosome C=(c1, c2, . . . , cn), where
the genes c1, c2, . . . , cn are restricted in the interval [0, 1]. The matching between the solution and the chromosome is
through

xi = ci

c1 + c2 + · · · + cn

, i = 1, 2, . . . , n, (9)

which ensures that x1 + x2 + · · · + xn = 1 always holds.
For Model (7), randomly generate a point C = (c1, c2, . . . , cn) from the hypercube [0, 1]n. Use fuzzy simulation to

calculate the semivariance value S[x1�1+x2�2+· · ·+xn�n]. Then the feasibility of chromosome C=(c1, c2, . . . , cn) is

checked as follows: If S[x1�1 + x2�2 + · · · + xn�n] > � return 0;
return 1;

in which 1 means feasible, and 0 non-feasible.
For Model (8), randomly generate a point C=(c1, c2, . . . , cn) from the hypercube [0, 1]n. Use fuzzy simulation to cal-

culate the expected valueE[x1�1+x2�2+· · ·+xn�n].Then the feasibility of chromosome C=(c1, c2, . . . , cn) is checked

as follows: If E[x1�1 + x2�2 + · · · + xn�n] < � return 0;
return 1;

in which 1 means feasible, and 0 non-feasible.
If C is checked to be feasible, it is taken as an initial chromosome. Otherwise, randomly generate another point C

from the hypercube [0, 1]n until the point is proven to be feasible and taken as an initial chromosome. Repeat this
process pop_size times, then initial feasible pop_size chromosomes C1, C2, . . . , Cpop_size are produced.

Fuzzy simulation based GA: After initialization, the chromosomes will go through the operations of selection,
crossover and mutation. In the crossover and mutation operations, when checking the feasibility of the chromo-
somes, we check in the similar way described in initialization operation. After finishing the whole round, the new
population will be ready for its next round of selection, crossover and mutation. The fuzzy simulation based GA will
continue until a given number of cyclic repetitions of the whole round is met. Summarization of the algorithm is as
follows:

Step 1. Initialize feasible pop_size chromosomes in which fuzzy simulation is used to calculate the semivariance
value or the expected value, and to check the feasibility of the chromosomes.

Step 2. Compute the fitness of each chromosome by following steps: Calculate the objective values for all chromo-
somes by fuzzy simulation first, then give the rank order of the chromosomes according to the objective values. After
that, compute the values of the rank-based-evaluation function of the chromosomes, then calculate the fitness of each
chromosome according to the rank-based-evaluation function.

Step 3. Select the chromosomes by spinning the roulette wheel. The selection is fitness-proportional.
Step 4. Update the chromosomes by crossover and mutation operations in which fuzzy simulation is used to calculate

the semivariance value or the expected value, and to check the feasibility of the chromosomes.
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Step 5. Repeat the second to the fourth operations for a given number of cycles.
Step 6. Take the best chromosome as the solution of portfolio selection.

6. Numerical examples

Assume that there are 10 securities. Among them, returns of seven ones are triangular fuzzy variables �i =(ai, bi, ci),

i = 1, 2, . . . , 7, respectively. The fuzzy returns of the other three ones take the membership functions �i , i = 8, 9, 10,
where ri are real numbers. The data set is given in Table 1.

When we solve the following two examples, the parameters in the GA are both set as follows: the population size is 30,
the probability of crossover Pc = 0.3, the probability of mutation Pm = 0.2, the parameter in the rank-based-evaluation
function � = 0.05.

Example 1. Suppose that the risk is not allowed to exceed 0.6, then the fuzzy mean-semivariance portfolio selection
model is as follows:

⎧⎪⎨
⎪⎩

max E[x1�1 + x2�2 + · · · + x10�10],
subject to: S[x1�1 + x2�2 + · · · + x10�10]�0.6,

x1 + x2 + · · · + x10 = 1,

xi �0, i = 1, 2, . . . , 10.

(10)

A run of the hybrid intelligent algorithm with 2000 generations shows that among 10 securities, in order to gain
the maximum expected return with the risk not greater than 0.6, the investor should assign his money according to
Table 2. The corresponding maximum expected return is 1.60.

To further test the effectiveness of the proposed algorithm, we change the values of parameters in the GA and repeat
the solution process. The parameters and the results are shown in Table 3. To compare the results, we give an index
called relative error, i.e., (optimal expected return − actual expected return)/optimal expected return×100%, where
the optimal expected return is the maximum one of all the six maximum expected returns obtained. It can be seen
from Table 3 that the relative errors do not exceed 2%, which shows that the proposed algorithm is robust to the set
parameters and effective for solving the fuzzy portfolio selection model.

Table 1
Fuzzy returns of 10 securities

Security i Fuzzy return Security i Fuzzy return

1 (−0.3, 1.8, 2.3) 6 (−0.8, 2.5, 3.0)

2 (−0.4, 2.0, 2.2) 7 (−0.6, 1.8, 3.0)

3 (−0.5, 1.9, 2.7) 8
1

1 + (r − 1.6)4

4 (−0.6, 2.2, 2.8) 9
1

1 + (5r − 7.4)2

5 (−0.7, 2.4, 2.7) 10 e−(r−1.6)2

Table 2
Allocation of money to 10 securities

Security i 1 2 3 4 5 6 7 8 9 10

Allocation of money 20.85 11.11 19.11 6.92 9.64 32.38 0.00 0.00 0.00 0.00
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Table 3
Comparison solutions of Example 1

pop_size Pc Pm Generation Expected return value Percent error

30 0.3 0.5 2000 1.6002 1.00
30 0.3 0.2 2000 1.6039 0.77
50 0.3 0.5 2000 1.6112 0.32
50 0.3 0.2 2000 1.6124 0.25

300 0.5 0.4 2000 1.6164 0.00
500 0.4 0.5 2000 1.6136 0.17

Table 4
Allocation of money to 10 securities (%)

Security i 1 2 3 4 5 6 7 8 9 10
Allocation of money 11.28 9.96 9.97 12.10 20.62 20.87 6.39 3.58 5.23 0.00

Example 2. In case when the minimum expected return the investor can accept is 1.5, the fuzzy mean-semivariance
portfolio selection model is set as follows:⎧⎪⎨

⎪⎩
min S[x1�1 + x2�2 + · · · + x20�10],
subject to: E[x1�1 + x2�2 + · · · + x10�10]�1.5,

x1 + x2 + · · · + x10 = 1,

xi �0, i = 1, 2, . . . , 10.

(11)

A run of the fuzzy simulation based GA with 2000 generations shows that among 10 securities, in order to minimize
the investment risk with the expected return not less than 1.5, the investor should assign his money according to
Table 4. The corresponding minimum semivariance is 0.32.

7. Conclusions

In this paper, concept of semivariance for fuzzy variable is originally presented, and three properties of the semi-
variance are proven. Taking semivariance of fuzzy returns as risk measure, two fuzzy mean-semivariance models are
proposed in the paper. In addition, a fuzzy simulation based GA is presented to provide a general solution to the new
model problems. Results of numerical experiments show that the proposed algorithm is effective for solving the fuzzy
mean-semivariance models.
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