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Abstract

Let Sn be a centered random walk with a finite variance, and consider the sequence An :=
∑n

i=1 Si ,
which we call an integrated random walk. We are interested in the asymptotics of

pN := P
{

min
1≤k≤N

Ak ≥ 0
}

as N → ∞. Sinai (1992) [15] proved that pN � N−1/4 if Sn is a simple random walk. We show that
pN � N−1/4 for some other kinds of random walks that include double-sided exponential and double-
sided geometric walks, both not necessarily symmetric. We also prove that pN ≤ cN−1/4 for integer-
valued walks and upper exponential walks, which are the walks such that Law(S1|S1 > 0) is an exponential
distribution.
c© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Let Sn be a centered random walk with a finite variance, and consider the sequence of r.v.’s
An :=

∑n
i=1 Si , which we call an integrated random walk. We are interested in the asymptotical
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behavior of the probabilities

pN := P
{

min
1≤k≤N

Ak ≥ 0
}

as N → ∞. We came to this problem while studying properties of so-called sticky particle
systems; see [19]. One may consider this question as a particular case of the general problem on
finding one-sided small deviation probabilities of a random sequence.

The only known sharp result on pN is due to Sinai [15], who showed that pN � N−1/4 for
a simple random walk. Sinai studied this problem in connection with solutions of the Burgers
equation with random initial data. Caravenna and Deuschel [2] considered such probabilities in
relation to random polymers, and they obtained a rough non-polynomial upper bound for pN for
general random walks. A rough lower bound is given by the trivial pN ≥ P{min1≤k≤N Sk ≥

0} ∼ cN−1/2.
For the continuous version of the problem,

P
{

min
0≤s≤N

∫ s

0
W (u)du ≥ −1

}
∼ cN−1/4, (1)

where W (u) is a Wiener process and c is a positive constant that could be found explicitly.
This result of Isozaki and Watanabe [9] refines a weaker version of (1) obtained by Sinai [15],
who had � instead of ∼ in the right-hand side. Isozaki and Watanabe actually conclude (1)
from the results of McKean [12].

These asymptotical results of [9,15] prompted the author to conjecture in [19] that pN �

N−1/4 for any centered random walk with a finite variance. In this paper we obtain several
results that partially prove the conjecture. Note that it seems impossible to get the relation
pN � N−1/4 directly from (1) because even if Sn = W (n) is a standard Gaussian random
walk,

∫ n
0 W (u)du −

∑n
i=1 W (i) has order n1/2.

Let us first state a result on the upper bound for pN . We say that a r.v. X is upper exponential
if Law(X |X > 0) is an exponential distribution. A typical example is an exponential r.v. centered
by its expectation. An integer-valued r.v. X is called upper geometric if Law(X |X > 0) is
a geometric distribution. In what follows, we refer to random walks by the type of common
distribution of their increments.

Theorem 1. Let Sn be a centered random walk with a finite variance that is either integer-valued
or upper exponential. Then pN ≤ cN−1/4 for some constant c > 0.

Our proof is based on the fact that any integer-valued random walk Sn with ES1 = 0 and
Var(S1) < ∞ returns to zero almost surely. This of course does not hold for the “continuous”
case, and we need to impose the condition of upper exponentiality. It is unclear whether it is
possible to remove this additional assumption using discretization and the result for integer-
valued walks: the discretized centered walk should be also centered. On the other hand, it worth
citing the comment from the book of Feller [8, p. 404]: “At first sight the distribution F [an upper
exponential distribution] . . . appears artificial, but the type turns up frequently in connection with
Poisson processes, queuing theory, ruin problems, etc.”. Moreover, Theorem 1 is important for
the results of [19], where the primary interest was in exponential walks centered by expectation.

We prove lower bounds for pN under more restrictive conditions, which are imposed on
Law(S1|S1 < 0). A r.v. X is called two-sided exponential if both X and −X are upper
exponential. A typical example is the Laplace distribution but two-sided exponential distributions
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are not necessarily symmetric. Further, we follow Spitzer [16] and say that a r.v. X is right-
continuous if P {X ∈ {. . . ,−1, 0, 1}} = 1. Finally, define a slackened simple random walk as a
nondegenerate symmetric right-continuous walk. Informally speaking, these are simple random
walks allowed to stay immobile.

Note that upper exponential, upper geometric, and right-continuous random walks have the
same common property, which plays the key role in our proofs: the overshoot over any fixed level
is independent of the moment when its occurs and also of the trajectory of the walk up to this
moment.

Theorem 2. 1. Let Sn be a centered random walk such that both Sn and−Sn are either upper ge-
ometric or right-continuous. Then N−1/4l(N ) ≤ pN for some function l(n) that is slowly varying
at infinity.
2. Let Sn be a centered random walk that is either double-sided exponential or satisfies conditions
of Part 1 and is symmetric. Then cN−1/4

≤ pN for some constant c > 0.

Note that Part 1 covers walks that are lower geometric and right-continuous or vice versa, and
both Parts 1 and 2 cover walks with P{S1 = 0} > 0. From Theorems 1 and 2, we conclude the
following.

Corollary. Let Sn be a centered random walk that is two-sided exponential, slackened simple,
or symmetric two-sided geometric. Then pN � N−1/4.

We prove the upper bound following the main idea of the proof of Sinai [15], although we
make significant simplifications. For the lower bound, only a sketch of the proof was given in [15]
but all interesting details were omitted. We failed to conclude these missing arguments, and
therefore we prove the lower bounds in an entirely different way. In fact, [15] implicitly uses
a local limit theorem for bivariate walks whose first component is conditioned to stay positive
and, as the main difficulty, has increments from the domain of attraction of an α-stable law (with
α = 1/3). It was only recently that Vatutin and Wachtel [17] proved a weaker result, a local limit
theorem for such heavy-tailed (univariate) walks conditioned to stay positive. Thus, the other
contribution of our paper is the first complete proof of the lower bound for pN .

The paper is organized as follows. In Section 2 we give a heuristic explanation of why
pN � N−1/4 for a simple random walk, and then develop and generalize the basic idea of this
heuristic approach making it applicable to the random walks considered here. In Section 3 we
prove preparatory results on durations and areas of “cycles” of random walks; a cycle is a positive
excursion together with the consecutive negative excursion. In particular, in Proposition 1 we
find the asymptotics of the “tail” of the joint distribution of these variables. This simplifies and
generalizes the analogous result of Sinai [15] obtained by sophisticated but tedious arguments
which work only for simple random walks. In Sections 4 and 5 we prove upper and lower bounds
for pN , respectively. Finally, in Section 6 we make concluding remarks and discuss possible ways
to prove the lower bound under less restrictive conditions.

2. From heuristics to proofs

2.1. Heuristics for the asymptotics of pN

Let us give a heuristic explanation of why pN � N−1/4 for a simple random walk. We took the
following arguments from the survey paper [18], which provides a simple informal explanation



V. Vysotsky / Stochastic Processes and their Applications 120 (2010) 1178–1193 1181

of the complicated proofs of Sinai [15]. The approach itself was introduced in [15] although pN
was estimated there in a different way.

The main idea of Sinai’s method is to decompose the trajectory of the random walk Sk into
independent excursions. Define the moments of hitting zero as τ 0

0 := 0 and τ 0
n+1 := min{k >

τ 0
n : Sk = 0} for n ≥ 0. Let θ0

n := τ
0
n − τ

0
n−1 be durations of excursions, let ξ0

n :=
∑τ 0

n

i=τ 0
n−1+1

Si

be their areas, and let η0(N ) be the number of complete excursions by the time N , namely,
η0(N ) := max{k ≥ 0 : τ 0

k ≤ N } = max{k ≥ 0 :
∑k

i=1 θ
0
i ≤ N }. Since for each n it holds that{

min
1≤k≤τ 0

n

k∑
i=1

Si ≥ 0

}
=

{
min

1≤k≤n

k∑
i=1

ξ0
i ≥ 0

}
,

as τ 0
η0(N )

≤ N < τ 0
η0(N )+1

, we have

P

{
min

1≤k≤η0(N )+1

k∑
i=1

ξ0
i ≥ 0

}
≤ P

{
min

1≤k≤N

k∑
i=1

Si ≥ 0

}
≤ P

{
min

1≤k≤η0(N )

k∑
i=1

ξ0
i ≥ 0

}
. (2)

Note that the r.v.’s ξ0
n are i.i.d. and symmetric; hence

∑k
i=1 ξ

0
i is a symmetric random walk. It

is well-known that for such random walks

P

{
min

1≤k≤n

k∑
i=1

ξ0
i ≥ 0

}
∼

c
√

n

as n → ∞ for a certain constant c > 0. On the other hand, η0(N ) � N 1/2 in probability as
N →∞ because of another well-known fact that θ0

1 belongs to the domain of normal attraction
of an α-stable law with exponent 1/2. Were η0(N ) independent with the walk

∑k
i=1 ξ

0
i , these

asymptotical estimates and (2) would immediately imply pN � N−1/4.
Unfortunately, η0(N ) = max{k ≥ 0 :

∑k
i=1 θ

0
i ≤ N } and

∑k
i=1 ξ

0
i are dependent, and a

careful study of the joint distributions of (ξ0
1 , θ

0
1 ) is required. Sinai [15] gives a tedious analysis

of the generating function of (ξ0
1 , θ

0
1 ) using the theory of continuous fractions. However, these

arguments cannot be generalized since the crucial recursive relation for the generating function
of (ξ0

1 , θ
0
1 ) was obtained in [15] using binary structure of increments of simple random walks.

2.2. Preparatory definitions

In our proofs, we use a generalization of the described approach of decomposing the trajectory
of the walk into independent excursions. In this section we introduce appropriate definitions.

Suppose, at first, that Sn is an integer-valued random walk. We keep the previous notation
but define τ 0

n as the moments of returning to zero: τ 0
0 := 0 and τ 0

n+1 := min{k > τ 0
n + 1 :

Sk = 0, Sk−1 6= 0} for n ≥ 0, which coincide with the moments of hitting zero if Sn is a simple
random walk. The variables τ 0

n+1 are finite with probability 1 because the walk is integer-valued,
centered, and has a finite variance. Only the upper bound in (2) remains valid because the walk
can jump over the zero level without hitting it.

Clearly, the described approach does not work for general walks. We shall consider different
stopping times.
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Fig. 1. Decomposition of the trajectory of S̃n into “cycles”.

Define conditional probability P̃{·} := P{·|S1 > 0} and define p̃N as pN but with P replaced
by P̃. Note that it suffices to prove Theorems 1 and 2 for p̃N instead of pN . Indeed,

pN = P

{
min

1≤k≤N

k∑
i=1

Si ≥ 0

}
= a+

N∑
n=0

an
0 P

{
min

1≤k≤N−n

k∑
i=1

Si ≥ 0|S1 > 0

}

= a+
N∑

n=0

an
0 p̃N−n,

where

a+ := P{S1 > 0}, a0 := P{S1 = 0}, a− := P{S1 < 0}.

Hence

pN � p̃N (3)

if p̃N decays polynomially.
Now, let X+1 be a r.v. with the distribution Law(S1|S1 > 0) and independent with the walk Sn ,

and put S̃n := X+1 + Sn − S1 for n ≥ 1. Clearly,

Law(S̃1, S̃2, . . .) = Law(S1, S2, . . . |S1 > 0).

For the convenience of the reader, the following definitions are represented in comprehensive
Fig. 1. Define the moments τn when S̃k overshoots the zero level from below: τ0 := 0 and
τn+1 := max

{
k > τn : S̃k ≤ 0

}
for n ≥ 0. It is readily seen that τn + 1 are stopping times.

Define θn := τn − τn−1 and ξn :=
∑τn

i=τn−1+1 S̃i , and let η(N ) be the number of overshoots of
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the zero level from below by the time N , namely,

η(N ) := max {k : τk ≤ N } = max

{
k :

k∑
i=1

θi ≤ N

}
.

Now, by analogy with (2), we write

P

{
min

1≤k≤η(N )+1

k∑
i=1

ξi ≥ 0

}
≤ P̃

{
min

1≤k≤N

k∑
i=1

Si ≥ 0

}
≤ P

{
min

1≤k≤η(N )

k∑
i=1

ξi ≥ 0

}
. (4)

It is clear that the moments of overshoots τn partition the trajectory of S̃k into “cycles”
that consist of one weak positive and the consequent weak negative excursion (that is,
nonnegative and nonpositive, respectively, but we will omit “weak” in what follows). Let
θ+n := max

{
k > 0 : S̃τn−1+k ≥ 0

}
and θ−n := max{k > 0 : S̃τn−1+θ

+
n +k ≤ 0} be the lengths

and let ξ+n :=
∑τn−1+θ

+
n

i=τn−1+1 S̃i and ξ−n :=
∑τn

i=τn−1+θ
+
n +1

S̃i be the areas of these excursions,

respectively; obviously, ξn = ξ
+
n + ξ

−
n and θn = θ

+
n + θ

−
n . The following observation plays the

key role in our paper.

Lemma 1. Let Sn be a centered random walk with a finite variance.
(a) If Sn is integer-valued, then random vectors (ξ0

n , θ
0
n )n≥1 are i.i.d.

(b) If Sn is upper exponential, upper geometric, or right-continuous, then the random vectors
(ξn, θn)n≥1 are i.i.d., (ξ+n , θ

+
n )n≥1 are i.i.d., and (ξ−n , θ

−
n )n≥1 are i.i.d. If, in addition, Sn satisfies

the assumptions of Theorem 2, then (ξ+n , θ
+
n )n≥1 and (ξ−n , θ

−
n )n≥1 are mutually independent.

Note: from this point on, Sn satisfies the assumptions of Theorem 2 means that it satisfies
the assumptions of Part 1 or Part 2 of the theorem. The lemma, basically, shows that under the
assumptions made, the cycles of the walk are i.i.d.

Proof. Part (a) is trivial. For Part (b), note that the overshoots over the zero level X+n := S̃τn−1+1
are i.i.d. and their common distribution is Law(S1|S1 > 0), which is exponential, geometric, or
δ1. This naturally follows from the memoryless property of these distributions; a proof can be
found in Example XII.4(a) from [8]. In the same way, we show that X+n are independent from
the “past” S̃1, . . . , S̃τn−1 . Now from ξn =

∑τn
i=τn−1+1 S̃i =

∑τn
i=τn−1+1(X

+
n + S̃i − S̃τn−1+1) and

θn = max
{
k > 0 : X+n + S̃τn−1+k − S̃τn−1+1 ≤ 0

}
we see that (ξn, θn) are i.i.d. as τn + 1 are

stopping times. The proof of the other statements is analogous. �

3. Areas and durations of excursions and cycles

We already explained in Section 2.1 why it is important to study properties of the joint
distribution of ξ1 and θ1. Here we prove several crucial results on (ξ1, θ1), (ξ

+

1 , θ
+

1 ), (ξ
−

1 , θ
−

1 ),
and (ξ0

1 , θ
0
1 ), which are used in the proofs of Theorems 1 and 2.

We start with a surprising lemma which allows us, in certain cases, to reduce a complicated
study of the joint distribution of (ξ1, θ1) to a much simpler consideration of its marginal
distributions.

Lemma 2. Let Sn be a centered random walk with a finite variance. If Sn is upper ex-

ponential, then the distribution of ξ1 is symmetric, and moreover, (ξ1, θ1)
D
= (−ξ1, θ1) and
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(ξ+1 , θ
+

1 , ξ
−

1 , θ
−

1 )
D
= (−ξ−1 , θ

−

1 ,−ξ
+

1 , θ
+

1 ). If Sn is integer-valued, then the distribution of ξ0
1

is symmetric, and moreover, (ξ0
1 , θ

0
1 )

D
= (−ξ0

1 , θ
0
1 ).

Proof. Let us start with the upper exponential case assuming, without loss of generality,
that Law(X |X > 0) is a standard exponential distribution. Since ξ1 = S̃1 + · · · + S̃θ1 , it
suffices to show that for each i, j ≥ 1, the measures P

{
(S̃1, . . . , S̃θ1) ∈ ·, θ

+

1 = i, θ−1 = j
}

and
P
{
(−S̃θ1 , . . . ,−S̃1) ∈ ·, θ

+

1 = j, θ−1 = i
}

coincide. This statement follows from the observation
that for any x1, . . . , xi > 0 and xi+1, . . . , xi+ j < 0,

P
{

S̃1 ∈ dx1, . . . , S̃i+ j ∈ dxi+ j , θ
+

1 = i, θ−1 = j
}

= a+exi+ j−x1E
{

S2 ∈ dx2, . . . , Si+ j−1 ∈ dxi+ j−1|S1 = x1, Si+ j = xi+ j
}

dx1dxi+ j

and

P
{

S̃i+ j ∈ −dx1, S̃i+ j−1 ∈ −dx2, . . . , S̃1 ∈ −dxi+ j , θ
+

1 = j, θ−1 = i
}

= a+exi+ j−x1E
{

S2 ∈ −dxi+ j−1, . . . , Sk−1 ∈ −dx2|S1 = −xi+ j , Si+ j = −x1
}

× dx1dxi+ j .

Indeed, the conditional expectations in the right-hand sides coincide for any random walk: this
is, essentially, the well-known property of duality of random walks.

The proof for the lattice case is analogous: since ξ0
1 = S1 + · · · + Sθ0

1
, use that for any

i ≥ 0, j ≥ 1, and any integer xi+1, . . . , xi+ j 6= 0, it holds that

P
{

S1 = · · · = Si = 0, Si+1 = xi+1, . . . , Si+ j = xi+ j , Si+ j+1 = 0
}

= P
{

S1 = · · · = Si = 0, Si+1 = −xi+ j , . . . , Si+ j = −xi+1, Si+ j+1 = 0
}

for any random walk. �

Note that the distribution of ξ1 is not symmetric even for two-sided geometric random walks
unless a− = a+. The proof presented above for the upper exponential case does not work here
because two-sided geometric walks can return to zero.

In order to state the next result, recall that r.v.’s Y1, . . . , Yk are associated if

cov ( f (Y1, . . . , Yk), g(Y1, . . . , Yk)) ≥ 0

for any coordinatewise nondecreasing functions f, g : Rk
→ R such that the covariance is well-

defined. An infinite set of r.v.’s is associated if any finite subset of its variables is associated. The
following sufficient conditions of association are well-known; see [7]:

(a) A set consisting of a single r.v. is associated.
(b) Independent r.v.’s are associated.
(c) Coordinatewise nondecreasing functions (of a finite number of variables) of associated r.v.’s

are associated.

(d) If Y1,u, . . . , Yk,u are associated for every u and (Y1,u, . . . , Yk,u)
D
−→ (Y1, . . . , Yk) as

u →∞, then Y1, . . . , Yk are associated.
(e) If two sets of associated variables are independent, then the union of these sets is also

associated.

We now state the other result that allows us, in some cases, to proceed from study of the joint
distribution of (ξ1, θ1) to a consideration of the distributions of ξ1 and θ1.
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Lemma 3. Under the assumptions of Theorem 2, the random variables {ξn, θ
+
n }n≥1 are

associated.

Proof. We first show that ξ+1 and θ+1 are associated. Indeed, by (b) and (c), the r.v.’s
∑min{k,θ+1 }

i=1 S̃i

and min{k, θ+1 } are associated for each k as coordinatewise nondecreasing functions of the first

k independent increments of the walk. Since (
∑min{k,θ+1 }

i=1 S̃i ,min{k, θ+1 }) → (ξ+1 , θ
+

1 ) with
probability 1 as k →∞, ξ+1 and θ+1 are associated by (d).

Now ξ+1 , ξ
−

1 , θ
+

1 are associated by (a) and (e) because ξ−1 is independent of ξ+1 and θ+1 , and
then ξ1 = ξ+1 + ξ

−

1 and θ+1 are also associated by (c). This concludes the proof of the lemma
since (ξn, θn)n≥1 are i.i.d. �

The following Proposition 1 describes the “tails” of ξ1 and θ1. The proposition consists of two
sections, Parts (a) and (b). We stress that only Part (a), whose proof is straightforward, is used
to prove Theorem 1 and Part 2 of Theorem 2. The proof of Part 1 of Theorem 2 requires more
complicated Corollary 1 of Part (b). Although Part (b) itself is not used directly in the proofs of
our main results, it is interesting because of its Corollary 2 and because it generalizes the crucial
Theorem 1 of Sinai [15].

Let ξex :=
∫ 1

0 Wex (u)du be the area of a standard Brownian excursion. The latter is defined
as Wex (u) := (ν − ν)−1/2

∣∣W (ν + u(ν − ν))
∣∣, where W (u) is a standard Brownian motion, ν is

the last zero of W (u) before 1 and ν is the first zero after 1. For x ≥ 0, put

F(x) := E min
{

x−1/3ξ
1/3
ex , 1

}
.

Clearly, F(x) is decreasing, F(0) = 1, and F(∞) = 0. By Janson [10], ξex is continuous and has

finite moments of any order, so F(x) is continuous and, by F(x) = x−1/3E min
{
ξ

1/3
ex , x1/3

}
, we

have limx→∞ x1/3 F(x) = Eξ1/3
ex <∞.

Proposition 1. Let Sn be a centered random walk with a finite variance.
(a) θ+1 belongs to the domain of normal attraction of a spectrally positive α-stable law with
exponent 1/2, and the same holds for θ0

1 if Sn is integer-valued.
(b) If Sn satisfies the assumptions of Theorem 2 or Sn is upper exponential, then for any s, t ≥ 0
such that s + t > 0 it holds that

lim
n→∞

n1/2P
{
ξ+1 > sn3/2, θ+1 > tn

}
= lim

n→∞
n1/2P

{
ξ−1 < −sn3/2, θ−1 > tn

}
= lim

n→∞
n1/2P

{
ξ1 > sn3/2, θ1 > tn

}
= lim

n→∞
n1/2P

{
ξ1 < −sn3/2, θ1 > tn

}
= CLaw(S1) t−1/2 F(σ st−3/2), (5)

where CLaw(S1) =
(1−a0)E|S1|√

2πa+a−σ
or CLaw(S1) =

√
2
π

σ
E|S1|

, respectively. The right-hand side of (5) at

t = 0 is defined by continuity. If Sn is integer-valued and the lattice span of S1 is 1, then

lim
n→∞

n1/2P
{
ξ0

1 > sn3/2, θ0
1 > tn

}
= lim

n→∞
n1/2P

{
ξ0

1 < −sn3/2, θ0
1 > tn

}
=

σ
√

2π t
F(σ st−3/2). (6)
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Corollary 1. Suppose Sn satisfies the assumptions of Theorem 2. Then ξ1 belongs to the domain
of normal attraction of a symmetric α-stable law with exponent 1/3.

As an immediate consequence of de Haan et al. [3], we have the following.

Corollary 2. Under conditions of Part (b) of Proposition 1,(
ξ1 + · · · + ξn

n3 ,
θ1 + · · · + θn

n2

)
D
−→ (ξ, θ),

where Law(θ) is spectrally positive α-stable with exponent 1/2 and Law(ξ) is symmetric
α-stable with exponent 1/3. The same holds for sums of ξ0

i and θ0
i .

Before we get to the proofs, recall some important facts on ladder variables of random walks
from Feller [8]. For any random walk Un , define the first descending and ascending ladder epochs
as τ+ := min{k > 0 : Uk < 0} and τ− := min{k > 0 : Uk > 0}, respectively, where by
definition min∅ := ∞. We introduce such notation considering τ+ as the duration of the first
positive excursion of Uk (increased by 1 of course) rather than the first moment when Uk becomes
negative. It is readily seen that

P {τ+ > n} = P
{

min
1≤i≤n

Ui ≥ 0
}
. (7)

Define

c+ :=
∞∑

n=1

1
n
(P{Un > 0} − 1/2) , c0 :=

∞∑
n=1

1
n

P{Un = 0},

c− :=
∞∑

n=1

1
n
(P{Un < 0} − 1/2)

if the sums are well-defined. If c+ and c− are finite, then

lim
n→∞

n1/2P {τ+ > n} =
ec++c0

√
π
, lim

n→∞
n1/2P {τ− > n} =

ec−+c0

√
π
. (8)

It is known that c0 is always finite while c+ and c− are finite if EU1 = 0 and 0 < DU1 =: σ
2 <

∞. Under the latter conditions, we also have

EUτ+ = −
σ
√

2
ec++c0 , EUτ− =

σ
√

2
ec−+c0 (9)

for the ladder heights Uτ+ and Uτ− . Finally, if P{Un > 0} → 1/2, then

P {τ+ > n} ∼ n−1/2L(n), (10)

for some function L(n) that is slowly varying at infinity; see [13].

Proof of Proposition 1. I. The statements on ξ+1 and θ+1 .

Case 1: s = 0 and t > 0. Without loss of generality, put t = 1. We have

P{θ+1 > n} = P̃{τ+ > n + 1} = a−1
+ P{τ+ > n + 1, S1 > 0}

= a−1
+ (P{τ+ > n + 1} − a0P{τ+ > n}) , (11)
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and by (8), since Sk is centered and has a finite variance,

lim
n→∞

n1/2P{θ+1 > n} =
1− a0

a+
·

ec++c0

π1/2 . (12)

This relation proves Part (a) of the proposition.
To simplify the right-hand side of (12), write E|S1| = 2a+E(S1|S1 > 0), which follows

from ES1 = 0. Under the assumptions of Part (b), Sk is upper exponential, right-continuous,
or upper geometric, so Law(S1|S1 > 0) = Law(Sτ−), and recalling (9), E|S1| = 2a+ESτ− =
√

2a+σec−+c0 . Then ec−+c0 =
E|S1|√
2a+σ

, and by ec++c0+c− = 1, we get ec+ =

√
2a+σ
E|S1|

. If Sk is

upper exponential, then clearly P{Sk = 0} = ak
0 ; hence ec0 =

1
1−a0

, and from (12) we have

CLaw(S1) =

√
2
π

σ
E|S1|

for the constant in (5). If Sk satisfies the assumptions of Theorem 2, by the

same arguments as above, ec− =

√
2a−σ
E|S1|

. Now ec++c0+c− = 1 implies ec0 =
(E|S1|)

2

2a+a−σ 2 , and from

(12), CLaw(S1) =
(1−a0)E|S1|√

2πa+a−σ
.

Case 2: s ≥ 0 and t > 0. We state one important particular case of the result of Shimura [14]
on convergence of discrete excursions. Let W (t) be a standard Brownian motion, and let
W̄ (t) := W (t) − inf0≤s≤t W (s) be a reflecting Brownian motion. Then for any random walk
Un such that EU1 = 0 and 0 < DU1 =: σ

2 <∞, for any ε > 0,

Law
((

τ+

n
,

Umin{τ+,[n·]}

σn1/2

)∣∣∣∣ τ+ > εn

)
D
−→ Law

((
ν′′ε − ν

′
ε, W̄ (ν′ε +min{·, ν′′ε − ν

′
ε})
))
(13)

in R×D[0,∞) as n→∞, where D stands for Skorokhod space and (ν′ε, ν
′′
ε ) is the first pair of

successive zeros of W̄ such that ν′′ε − ν
′
ε > ε.

Since the r.v.’s ν′′ε − ν
′
ε and

∫ ν′′ε
ν′ε

W̄ (u)du are continuous, from (8) and (13) we find that for any
s ≥ 0 and t ≥ ε,

P
{
ξ+ > sn3/2, τ+ > tn

}
∼ P{τ+ > εn}P

{
ν′′ε − ν

′
ε > t,

∫ ν′′ε

ν′ε

W̄ (u)du > σ s

}

∼
ec++c0

(πεn)1/2
P

{
ν′′ε − ν

′
ε > t, (ν′′ε − ν

′
ε)

∫ 1

0
W̄ (ν′ε + u(ν′′ε − ν

′
ε))du > σ s

}
(14)

as n→∞, where ξ+ :=
∑τ+−1

k=1 Sk and by definition, Σ∅ := 0.

We claim that, first, the process W (ε)
ex (·) := (ν′′ε − ν

′
ε)
−1/2W̄ (ν′ε + ·(ν

′′
ε − ν

′
ε)) is a standard

Brownian excursion Wex (·) on [0, 1] and, second, W (ε)
ex (·) is independent of ν′′ε − ν

′
ε. Recall the

definition Wex (·) := (ν
′′
− ν′)−1/2W̄ (ν′ + ·(ν′′ − ν′)), where ν′ is the last zero of W̄ (·) before

1 and ν′′ is the first zero after 1. Wex (·) is usually defined in terms of |W (·)| but we used that

W̄ (·)
D
= |W (·)|.

Indeed, it is known (for instance, see [4]) that if Un is a simple random walk, then

Law

(
U[τ+·]

στ
1/2
+

∣∣∣∣∣ τ+ = n

)
= Law

(
U[n·]
σn1/2

∣∣∣∣ τ+ = n

)
D
−→ Law (Wex (·))
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in D[0, 1]. Hence for any a > 0 and any cylindrical set A ⊂ D[0, 1] that is generated by the
product of intervals (the latter ensures P {Wex (·) ∈ ∂A} = P{W (ε)

ex (·) ∈ ∂A} = 0),

P

{
U[τ+·]

στ
1/2
+

∈ A, τ+ > an

}
= P{τ+ > an} (P {Wex (·) ∈ A} + o(1)) . (15)

On the other hand, (13) yields

Law

((
τ+

n
,

U[τ+·]

στ
1/2
+

) ∣∣∣∣τ+ > εn

)
D
−→ Law

((
ν′′ε − ν

′
ε,W (ε)

ex (·)
))

in R×D[0, 1]. Hence if a ≥ ε, then

P

{
U[τ+·]

στ
1/2
+

∈ A, τ+ > an

}
= P{τ+ > εn}

(
P
{
ν′′ε − ν

′
ε > a,W (ε)

ex (·) ∈ A
}
+ o(1)

)
. (16)

Finally, comparing (15) and (16) and using (8), we obtain( ε
a

)1/2
P {Wex (·) ∈ A} = P

{
ν′′ε − ν

′
ε > a,W (ε)

ex (·) ∈ A
}
,

which implies W (ε)
ex (·)

D
= Wex (·) and independence of ν′′ε − ν

′
ε and W (ε)

ex (·).
Now, since P

{
ν′′ε − ν

′
ε > t

}
= ( εt )

1/2 for t ≥ ε, we rewrite (14) as

lim
n→∞

n1/2P
{
ξ+ > sn3/2, τ+ > tn

}
=

ec++ c0

2π1/2

∫
∞

t
z−3/2P

{∫ 1

0
Wex (u)du > σ sz−3/2

}
dz

=
ec++ c0

3(σ s)1/3π1/2

∫ σ st−3/2

0
v−2/3P {ξex > v} dv,

where we changed variables and put ξex :=
∫ 1

0 Wex (u)du. For any x > 0, write

1

3x1/3

∫ x

0
v−2/3P {ξex > v} dv = P {ξex > x} −

1

x1/3

∫ x

0
v1/3dP {ξex ≤ v}

= x−1/3E min
{
ξ

1/3
ex , x1/3

}
= E min

{
x−1/3ξ

1/3
ex , 1

}
=: F(x).

Then

lim
n→∞

n1/2P
{
ξ+ > sn3/2, τ+ > tn

}
=

ec++ c0

(π t)1/2
F(σ st−3/2),

and arguing as in (11),

lim
n→∞

n1/2P
{
ξ+1 > sn3/2, θ+1 > tn

}
=

1− a0

a+
·

ec++ c0

(π t)1/2
F(σ st−3/2).

We already explained above why the constant in the right-hand side has the required form.
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Case 3: s > 0 and t = 0. Since the right-hand side of (5) at t = 0 is defined by continuity and
(5) is already proved for s, t > 0, we should check that

lim
n→∞

n1/2P{ξ+1 > sn3/2
} = lim

t→0
lim

n→∞
n1/2P{ξ+1 > sn3/2, θ+1 > tn}.

By the law of total probability, it suffices to show

lim
t→0

lim sup
n→∞

n1/2P{ξ+1 > sn3/2, θ+1 ≤ tn} = 0.

But

P{ξ+1 > sn3/2, θ+1 < tn} ≤ P̃
{

max
1≤k≤τ+−1

Sk > t−1sn1/2, τ+ < tn

}
≤ a−1
+ P

{
max

1≤k≤τ+−1
Sk > t−1sn1/2

}
,

where the second estimate was obtained as in (11), and by definition, max∅ := −∞. Now the
required estimate follows from Theorem 2 of Simura [14].

II. The statements on ξ−1 and θ−1 .

If Sn is upper exponential, simply use (ξ−1 , θ
−

1 )
D
= (−ξ+1 , θ

+

1 ) from Lemma 2 and the part of
(5) on ξ+1 and θ+1 proven above. If Sn satisfies the assumptions of Theorem 2, (θ−1 , ξ

−

1 ) has the
same distribution as (θ̄+1 ,−ξ̄

+

1 ), where the bar means that the walk S̄n := −Sn is considered.
Since S̄n satisfies the assumptions of Theorem 2 if Sn does, we use the part of (5) on ξ+1 and θ+1
proven above and CLaw(S1) = CLaw(−S1).

III. The statements on ξ1 and θ1.
We only consider the case s = 0 letting, without loss of generality, t = 1. The proof of the

other cases is absolutely similar. Let us check that for θ1 = θ
+

1 + θ
−

1 ,

lim
n→∞

n1/2P{θ1 > n} = lim
n→∞

n1/2P{θ+1 > n} + lim
n→∞

n1/2P{θ−1 > n}.

By standard arguments, it suffices to show that

lim
n→∞

n1/2P
{
θ+1 > n, θ−1 > n

}
= 0. (17)

Under the assumptions of Theorem 2, θ+1 and θ−1 are independent, and the statement is trivial.
Otherwise, consider an independent copy S′n of the walk Sn . For any x ≥ 0, put τ ′−(x) :=

min{k ≥ 1 : S′k > x}. Since θ−1 = max{k ≥ 1 : S̃θ+1 +k − S̃θ+1 +1 ≤ −S̃θ+1 +1}, we have θ−1
D
=

τ ′−

(
−S̃θ+1 +1

)
, and for any M > 0,

P
{
θ+1 > n, θ−1 > n

}
≤ P

{
θ+1 > n, S̃θ+1 +1 < −M

}
+ P

{
θ+1 > n

}
P {τ−(M) > n} .

Arguing as in (11), we get (17) from (8) and

lim
M→∞

lim sup
n→∞

n1/2P
{
τ+ > n, Sτ+ < −M

}
= 0,

which follows from Lemma 4 in [6].
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IV. The statements on ξ0
1 and θ0

1 .
It is well-known [16, Section 32] that

lim
n→∞

n1/2P{θ0
1 > n} =

√
2
π
σ (18)

for any integer-valued random walk with a finite variance. Then we find the asymptotics of the
“tail” of (θ0

1 , ξ
0
1 ) exactly as that of (θ+1 , ξ

+

1 ), up to the following differences. First, we use (18)

instead of (8). Second, instead of referring to (13), we use the result of Kaigh [11] that U[n·]
σn1/2

conditioned on {θ0
1 = n} weakly converges to a signed Brownian excursion %Wex (·), where

P{% = 1} = P{% = −1} = 1/2 and % is independent of Wex (·). The additional assumption that
S1 has span 1 is required for using the result of Kaigh [11]. �

4. The upper bound

Case 1. Sn is an upper exponential random walk.
Define ν := min {k > 0 : ξ1 + · · · + ξk < 0}. Then

ξ1 + · · · + ξν =

τ1∑
i=1

S̃i + · · · +

τν∑
i=τν−1+1

S̃i =

τν∑
i=1

S̃i < 0

implying P{τν ≤ N } ≤ P{min1≤k≤N
∑k

i=1 S̃i < 0} = 1− p̃N , and hence

p̃N ≤ P{τν > N }. (19)

We stress that (19) is true for every random walk, but the r.v.’s ξi are i.i.d. if Sn is upper
exponential (or, of course, if Sn is integer-valued and either upper geometric or right-continuous).

By a Tauberian theorem (see [8, Ch. XIII]), the asymptotics of P{τν > N } as N →∞ can be
found if we know the behavior of the generating function χ(t) of τν as t ↗ 1: for any p ∈ (0, 1)
and c > 0,

P{τν > N } ∼
c

0(p)N 1−p
⇐⇒ 1− χ(t) ∼ c(1− t)1−p. (20)

Let us first find the generating function of the joint distribution of ν and τν . For any positive
integer k and l,

P {ν = k, τν = l} = P {ξ1 ≥ 0, . . . , ξ1 + · · · + ξk−1 ≥ 0,

ξ1 + · · · + ξk < 0, θ1 + · · · + θk = l} .

The r.v. ν is the first descending ladder epoch of the walk ξ1+· · ·+ξn , and its generating function
is described by the Sparre–Andersen theorem; see [8, Ch. XII]. Sinai [15, Lemma 3] gives the
following straightening of this result: the generating function

χ(s, t) :=
∑

k,l≥1

P{ν = k, τν = l}sk t l

of the random vector (ν, τν) satisfies

ln
1

1− χ(s, t)
=

∑
k,l≥1

sk t l

k
P {ξ1 + · · · + ξk < 0, θ1 + · · · + θk = l} .
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By Lemma 2, for the generating function χ(t) := χ(1, t) of τν it holds that

ln
1

1− χ(t)
=

∑
k,l≥1

t l

k
P {ξ1 + · · · + ξk < 0, θ1 + · · · + θk = l}

=
1
2

∑
k,l≥1

t l

k
P {θ1 + · · · + θk = l} . (21)

Since θk are i.i.d.,∑
k,l≥1

t l

k
P {θ1 + · · · + θk = l} =

∞∑
k=1

1
k

∞∑
l=1

t lP {θ1 + · · · + θk = l}

=

∞∑
k=1

1
k
ζ k(t) = ln

1
1− ζ(t)

,

where ζ(t) is the generating function of θ1. Then

1− χ(t) =
√

1− ζ(t), (22)

and using Part (a) of Proposition 1 and the Tauberian theorem (20) twice, we get P{τν > N } ∼
cN−1/4. By (3) and (19), the upper bound follows.

Case 2. Sn is an integer-valued random walk.
We argue exactly as in the proof of the first part. Replacing everywhere ξn and θn by ξ0

n and
θ0

n , respectively, we get pN ≤ P{τ 0
ν0 > N } instead of (19) and

1− χ0(t) =
√

1− ζ 0(t)eH(t)

instead of (22), where

H(t) :=
1
2

∑
k,l≥1

t l

k
P
{
ξ0

1 + · · · + ξ
0
k = 0, θ0

1 + · · · + θ
0
k = l

}
emerges in the analogue of (21). The limit limt→1 H(t) exists and is finite because H(t) is
increasing and the series

H(1) =
∑

k,l≥1

1
k

P
{
ξ0

1 + · · · + ξ
0
k = 0, θ0

1 + · · · + θ
0
k = l

}
=

∞∑
k=1

1
k

P
{
ξ0

1 + · · · + ξ
0
k = 0

}
= c0

is convergent for any random walk. Hence the upper bound follows from Part (a) of Proposition 1
and the Tauberian theorem (20) as above.

5. The lower bound

By (4), we estimate

P̃

{
min

1≤k≤N

k∑
i=1

Si ≥ 0

}
≥ P

{
min

1≤k≤
√

N

k∑
i=1

ξi ≥ 0, η(N )+ 1 ≤
√

N

}
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= P

{
min

1≤k≤
√

N

k∑
i=1

ξi ≥ 0, θ1 + · · · + θ
√

N > N

}

≥ P

{
min

1≤k≤
√

N

k∑
i=1

ξi ≥ 0, θ+1 + · · · + θ
+
√

N
> N

}
.

By Lemma 3 and the sufficient condition of association (c),

P̃

{
min

1≤k≤N

k∑
i=1

Si ≥ 0

}
≥ P

{
min

1≤k≤
√

N

k∑
i=1

ξi ≥ 0

}
· P
{
θ+1 + · · · + θ

+
√

N
> N

}
≥ cP

{
min

1≤k≤
√

N

k∑
i=1

ξi ≥ 0

}
for some c > 0 and all N , where we used Part (a) of Proposition 1 for the last line.

Under the assumptions of Part 2 of Theorem 2, the distribution of ξ1 is symmetric; see
Lemma 2 for the case of two-sided exponential walks. Hence for the random walk

∑k
i=1 ξi we

have c+ = −c0/2, which is always finite, and Part 2 of Theorem 2 follows from (3), (7) and (8).
The proof of Part 1 of Theorem 2, actually, takes much more effort because it requires the

use of Corollary 1 of Proposition 1. The latter implies that P{ξ1 + · · · + ξn > 0} → 1/2.
Unfortunately, we cannot verify that the series

∞∑
n=1

1
n
(P{ξ1 + · · · + ξn > 0} − 1/2) (23)

converges, and we should use (10) instead of (8).
Convergence of series of the type (23) was studied by Egorov [5], who considered rates of

convergence in stable limit theorems and stated his results exactly in the form of (23). It is,
however, unclear how to check his conditions for our case. A proof of the convergence would
eliminate the slowly varying factor l(N ) in Theorem 2.

6. Open questions and concluding remarks

1. Obtaining the lower bound under less restrictive conditions.
The most restrictive assumptions of Theorem 2 are the ones imposed on Law(S1|S1 < 0). We

used these assumptions only in the proof of association of ξ1 and θ+1 . It seems that these variables
are associated under much less restrictive conditions and, possibly, under no assumptions at all.
Simulations show that association holds in many cases. Note that the direct use of the sufficient
condition of association (c) is impossible because ξ1 is not a coordinatewise increasing function
of associated r.v.’s S̃1, S̃2, . . . .
2. Elimination of the slowly varying term in Theorem 2.

As we explained above, the slowly varying factor could be eliminated if we show that the
series (23) is convergent. The rate of convergence in stable limit theorems is usually estimated
under the existence of so-called pseudomoments of ξ1. The pseudomoment of ξ1 of order 1/3
exists if the functions x1/3P{ξ1 > x} and x1/3P{ξ1 < −x} have a regular behavior as x →∞. It
seems that the “tails” of ξ1 could be controlled if we had an appropriate rate of convergence
of discrete excursions to a Brownian excursion. We know only one result on this question:
Drmota and Marckert [4] gives the rate of convergence of positive excursions of left-continuous
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random walks. Since we need rates for both positive and negative excursions, the only slackened
random walks would be covered, giving no refinement to Theorem 2.
3. When the first draft of this paper was already written, the author became aware that Frank
Aurzada and Steffen Dereich were also working on one-sided small deviation probabilities of
integrated random processes, and they considered pN as a particular case. The methods of their
paper [1] are entirely different from the ones presented here.
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