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Abstract

We obtain rates of strong approximation of the empirical process indexed by functions by a Brownian
bridge under only random entropy conditions. The results of Berthet and Mason [P. Berthet, D.M. Mason,
Revisiting two strong approximation results of Dudley and Philipp, in: High Dimensional Probability, in:
IMS Lecture Notes-Monograph Series, vol. 51, 2006, pp. 155–172] under bracketing entropy are extended
by combining their method to properties of the empirical entropy. Our results show that one can improve the
universal rate vn = o(

√
log log n) from Dudley and Philipp [R.M. Dudley, W. Philipp, Invariance principles

for sums of Banach space valued random elements and empirical processes, Z. Wahrsch. Verw. Gebiete 62
(1983) 509–552] into vn → 0 at a logarithmic rate, under a weak random entropy assumption which is
close to necessary. As an application the results of Koltchinskii [V.I. Kolchinskii, Komlós–Major–Tusnády
approximation for the general empirical process and Haar expansions of classes of functions, J. Theoret.
Probab. 7 (1994) 73–118] are revisited when the conditions coming in addition to random entropy are
relaxed.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Suppose that (X ,A) is a measurable space, (Xn)n>1 is a sequence of independent random
elements defined on a probability space (Ω ,Σ ,P) taking values in (X ,A) and having the
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distribution P = PX . Let M be the set of all measurable functions from (X ,A) to (R,B(R)),
where B(R) stands for the Borel σ -field. First, define the P-empirical process indexed by a class
F ⊂ M to be

αn( f ) =
√

n(Pn( f )− P( f )), f ∈ F ,

where Pn is the empirical measure,

Pn f =
∫

f dPn =
1
n

n∑
k=1

f (X i ), and P f =
∫

X
f dP.

If it is assumed that F ⊂ L2(X , d P) then the finite-dimensional distributions of the sequence
of random functions (αn)n>1 converge weakly as n→∞ to the finite-dimensional distributions
of a mean zero Gaussian random function B with the same matrix of covariance as (αn( f )) f ∈F ,
that is

〈 f, g〉 = cov(B( f ), B(g)) = E( f (X)g(X))− E( f (X))E(g(X)), f, g ∈ F .

In the context of the present article the process B will always admit a version which is almost
surely bounded and continuous with respect to the intrinsic semi-metric

dp( f, g) =
√

E( f (X)− g(X))2, f, g ∈ F .

We call B a P-Brownian bridge indexed by F . A strong Gaussian approximation holds when it
is possible to construct a version of the i.i.d. random variables Xn and versions Bn of B on the
same underlying probability space (Ω ,Σ ,P) in such a way that

‖αn − Bn‖F = sup
f ∈F
|αn( f )− Bn( f )| = O(vn) P-a.s. (1)

where (vn)n>0 is a deterministic sequence. Dudley and Philipp [12], see also p. 306 in
Dudley [11], showed that (1) holds with vn = o(

√
log log n) whenever F is P-Donsker.

Heuristically we can expect that vn is not much better than diverging at a rate
√

log log n for
some classes of functions satisfying only a minimal sufficient condition to be P-Donsker. Now,
in light of the results by Giné and Zinn [14] for classes of sets – see also Talagrand [28] for
classes of functions – weak assumptions on the random entropy of F are close to such a minimal
sufficient assumption. This why the aim of the present article is to investigate the problem of
Gaussian approximation under only random entropy conditions. In Section 2 our assumptions
are discussed and properties of random entropy are recalled.

Most of the known strong approximation results deal with fast rates vn → 0 in (1) and then
require that the P-Donsker class F satisfy stronger assumptions. Let us first recall a few of them.
Let B(I ) denote the Borel σ -algebra of I = [0, 1] and let µ denote the Lebesgue measure on I .
In the classical case X = I,A = B(I ), P = µ and F is the class of indicators of half intervals,
i.e. F = {I[0x), x ∈ I } the so called KMT theorem of Komlós–Major–Tusnády [22] states that
one can construct on the same probability space (Ω ,Σ ,P) the i.i.d. random variables Xn and
versions Bn of the standard Brownian bridge B such that, for all t > 0 and n ≥ 1, we have

P
(

sup
x∈I
|αn(1[0,x[)− Bn(x)| >

t + C log n
√

n

)
6 A exp{−θ t}, (2)

where A > 0, C > 0, θ > 0 are explicit constants. This implies that (1) holds with
vn = log n/

√
n. See Csörgő and Révész [9], Csörgő and Horváth [8], Mason and van Zwet [25]
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and Bretagnolle and Massart [7] for further improvements. Borisov [6], Koltchinskii [19,20] and
[21], Massart [26], Rio [27] and Einmahl and Mason [13] among others essentially extended the
KMT result to the general case of empirical processes defined on classes of measurable sets and
functions. In particular, Koltchinskii [18,20] and [21] obtained some sharp results under random
entropy conditions, especially for classes of indicators of measurable sets F = {1C : C ∈
C}, C ⊂ A. Already Dudley and Philipp [12] proved that one can improve vn = o(

√
log log n)

in (1) into vn = (log n)−θ for some θ > 0 if one assumes mild entropy bounds for F . For
classes of functions, this was refined by Rio [27] and Koltchinskii [21] who showed that for
many Donsker classes satisfying a suitable entropy bound – in particular, VC classes – (1) holds
with vn decreasing to zero at a polynomial rate n−θ for some θ > 0. Next to entropy conditions,
these authors had to impose further regularity conditions on the class F . For example Rio [27] in
Theorem 1.1 obtains vn = n−1/2d in the case of VC-classes of functions of uniformly bounded
variation and probability measures P with a bounded Lebesgue density on I d . Koltchinskii [21]
considered uniformly bounded classes of functions F having a good representation under P on
a Haar expansion of the space X and satisfying a random entropy condition. This allowed him to
take advantage of KMT and establish the following KMT-type approximation of αn( f ), f ∈ F .
One can construct on the same probability space (Ω ,Σ ,P) the i.i.d. random variables Xn and
versions Bn of the standard Brownian bridge B such that, for all t > 0 and n ≥ 1, we have

P(‖αn − Bn‖F > δn(t + C1 log n)) 6 A1 exp{−B1t} (3)

where the constants A1 > 0, B1 > 0 and C1 > 0 depend only on F and δn depends on the random
entropy of F and its Haar representation under P – see Theorems 3.1–3.4 in Koltchinskii [21].
As a corollary if the functions of F are q-times differentiable for q > 1, then Theorem 11.1
of [21] yields (3) with δn = n−(q−1)/(2q+2). Then (1) holds true with vn = δn log n.

It is also of interest to study (1) when most of additional assumptions such as Haar
approximability, bounded variation and bounded density are removed. In this direction an
alternative to the KMT approach was recently developed in Berthet and Mason [2,3] by using
a coupling inequality of Zaitsev [33,34] under either general uniform and bracketing entropy
conditions on F or some more restrictive analytical conditions. They basically obtained the
following kind of Gaussian approximation which is slightly weaker than (1) but strong enough to
be widely applied. For each λ > 0 there exists a σ > 0 such that for each integer n > 1 one can
construct on the same probability space (Ω ,Σ ,P) the i.i.d. random variables Xn and a versions
Bn of B such that

P (‖αn − Bn‖F > σvn) 6 n−λ (4)

where vn depends only on the entropy of F – see Propositions 1 and 2 in Berthet and Mason [2]
– or on some representation of F — see [3]. Note that (4) provides a rate in the weak invariance
principle.

In this paper we combine the coupling technique developed in Berthet and Mason [2] with
properties of the random entropy of Giné and Zinn [14] to derive strong invariance principles
in the form (4). Our results are stated in Section 3 and proved in Sections 4 and 5. They
are somewhat intermediate between the results of Dudley and Philipp [12] and the results of
Koltchinskii [21], and close to those of Berthet and Mason [2] under bracketing entropy. Our
random entropy condition (F.3) on P and F is relatively mild compared to Koltchinskii [21] and
Rio [27] but stronger than Dudley and Philipp [12]. In particular, in Theorem 3.1 we show that
one can improve in (4) the pessimistic rate vn = o(

√
log log n) from Dudley and Philipp [12]
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into vn → 0 at a logarithmic rate, under solely our weakest version of (F.3). On the opposite in
Theorem 3.4 we show that under the strongest version of (F.3) the rate vn in (4) is polynomial. We
further show how mixing several kind of entropy assumptions can improve the rates of Gaussian
approximation. As a further motivation we refer to Berthet and Saumard [4] where Gaussian
approximation in the indexed by functions setting and for fixed n appears to be a key step towards
sharp results in M-estimation.

2. Preliminaries

2.1. Empirical entropy

Assume that (S, d) is a totally bounded metric space, Sε is a finite ε-net of S with respect to
d and ε > 0. Define a map λε : S 7→ Sε such that d(s, λεs) ≤ ε, s ∈ S. Let N (ε), ε > 0 be a
decreasing function such that card(Sε) ≤ N (ε), ε > 0. Then

Nd(S, ε) ≤ N (ε),

where Nd(S, ε) is the smallest number of points in such a ε-net for the space S. Let Hd(S, ε)
denote the ε-entropy of S with respect to d ,

Hd(S, ε) = log Nd(S, ε) ≤ H(ε) = log N (ε). (5)

For an arbitrary probability Q on (X ,A) and p ∈ [1,+∞) let dQ,p denote the metric of the space
L p(X , d Q). Throughout we shall use extensively the projection mapping λε under d = dP,2
together with NdP,2 and HdP,2 . Likewise let Hn,1(F , ε) denote the ε-entropy of F with respect
to d = dPn ,1. This is the random entropy of F under P .

Vapnik and Chervonenkis [31,32], Koltchinskii [18–21], Le Cam [23], Giné and Zinn [14–
16], Talagrand [29] investigated the character and the rates of convergence of the sequence of
empirical measures Pn to the theoretical distribution P in relation with the asymptotic behavior
of the empirical entropy Hn,1(F , ε), when n→∞ and ε→ 0. In particular, assuming that F is
uniformly bounded, if α ∈ ( 1

2 , 1] then the condition

Hn,1(F , εnα−1) = o(nα), n→∞, ε > 0 P-a.s. (6)

is sufficient – and also necessary when α = 1, this is the Glivenko Cantelli property – to have,
see Koltchinskii [21],

‖Pn − P‖F = o(nα−1), n→∞ P-a.s. (7)

One could conclude heuristically that the rate of convergence of the sequence of empirical
distributions to the theoretical one also depends on the value of α in (6). We will strengthen
(6) by requiring that α < 1/2 in which case (7) becomes O(n−1/2) in law – this is the Donsker
property, see Dudley [11] and Van der Vaart And Wellner [30]. This will give us a rate in the
Donsker theorem. Now, the random entropy condition (6) with α = 1/2 in probability has been
shown to be almost necessary to the Donsker property of uniformly bounded pregaussian classes
in Giné and Zinn [14] for classes of sets and Talagrand [28] for classes of functions. We refer to
Giné and Zinn [14] for the precise meaning of “F is P-pregaussian” and “F is P-Donsker”.

Theorem 2.1 (Giné and Zinn [14], Theorems 5.1 and 5.4). Let F be a class of uniformly
bounded measurable functions, then F is a functional P-Donsker class if both:
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(i) F is P-pregaussian
(ii) There exists δ, σ, ε0 > 0 such that for all 0 < ε < ε0,

lim
n→∞

P
(

Hn,1(δεn
−

1
2 ,F) > σεn

1
2

)
= 0.

Moreover, if F is a class of indicators of measurable sets then the condition (ii) is also
necessary.

By Dudley and Philipp [12] conditions (i) and (ii) in turn imply that (1) holds with vn =

o(
√

log log n). Now, in the assumption (F.3) everywhere used in this article we replace ε of
(ii) by ϕn/

√
n → 0 for some ϕn and obtain that vn → 0 in (4). In light of Theorem 2.1 and

Assertion 4, which says that (F.3) implies (i), we deduce that the random entropy assumption
(F.3) is not only sufficient for the Donsker property of uniformly bounded pregaussian classes,
but also close to necessary. In that sense we show that one can have vn → 0 in (1) under solely
a weak condition of the kind (ii).

In Section 2.3 we recall the relationship between Hn,1 and H[],1, which we define now. Given
a class F ⊂ M, ε > 0 and i = 1, 2, let N[],i (F , ε) denote the smallest number N > 1 such that
we can find functions f −j , f +j , j = 1, . . . , N satisfying the conditions

f −j 6 f +j , dP,i ( f +j , f −j ) < ε, j = 1, . . . , N ,

and the fact that for any f ∈ F there exists j , 1 6 j 6 N such that f −j 6 f 6 f +j . Then

H[],i (F , ε) = log N[],i (F , ε), ε > 0

is the ε-entropy with bracketing of the class F .

2.2. Basic assumptions

We shall assume that F satisfies conditions among the following.

(F.1) For some M > 0, for all f ∈ F , ‖ f ‖X = supx∈X | f (x)| 6 M .

(F.2) There exists a countable subclass F∞ of F such that we can find for any function f ∈ F a
sequence of functions ( fm)m>1 in F∞ for which limm→∞ fm(x) = f (x) for all x ∈ X .

(F.3) There exists (ϕn)n>1 and α ∈ (0, 1/2), ϕn = O(nα), and (βn)n>1, lim infn→∞ βn > 1,
such that for all λ > 1, we can find σ0 > 0 such that for all n > 0

P(Hn,1(F , n−1σ0ϕn) > σ0ϕn) 6 β
−λ
n . (8)

(F.4) For some α ∈ (0, 1/2) we have

HdP,2(F , δ) = O(δ−
α

1−α ), δ→ 0.

(F.5) For some α ∈ (0, 1/2) we have

H[],1(F , δ) = O(δ−
α

1−α ), δ→ 0.

(F.6) For some ρ > 0, there exist v > 0 and θ > 0, such that we have

HdP,2(F , δ) ≤ v logρ
(
θ

δ

)
, δ→ 0.
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(F.7) For some ρ > 0, there exist ϑ > 0, such that we have

H[],1(F , δ) ≤ ϑ logρ
(

1
δ

)
, δ→ 0.

Assumption (F.1), which allows to apply some key inequalities, and (F.2) which avoids using
outer probability measures, are classical. Our main conditions are of the type (F.3)–(F.7) and are
discussed in the next paragraph. The constant θ in (F.6) is used only in Assertion 3 and does not
appear in our rates.

2.3. The relationship between the conditions

The aim of this section is to remind that the conditions on empirical entropy of type (F.3)
imply a certain type of asymptotic behavior of the entropy of classes of functions F with respect
to the metric dP,i . Conversely, if one uses the metric entropy with bracketing H[],i instead of the
usual metric entropy then the opposite statements also would hold, see Koltchinskii [20]. The
relationship between the empirical entropy and the metric entropy of a class F with respect to
dP,i is recalled in Lemmas 2.2 and 2.3 and the subsequent assertions.

Let (ϕn)n>1 be an increasing sequence of positive real numbers and α ∈ (0, 1/2) such that

ϕn = O(nα), n→∞.

Assume (F.1) and let M(F , δ), called the capacity of F , denote the maximal size of a finite subset
F ′ ⊂ F such that

min{dP,1( f, g) : f 6= g, f, g ∈ F ′} > 2δ.

For all τ > 0, let [τ ] be the greatest integer smaller than τ > 0. We put

m(δ) = [17δ−1 log M(F , δ)].

The following lemma gives a necessary condition to (F.3) in terms of the capacity of F . Keep in
mind the strong relation between the metric entropy and the capacity,

HdP,1(F , 2δ) ≤ log M(F , δ) ≤ HdP,1(F , δ) (9)

see e.g. Lifshits [24] where conditions are formulated in terms of capacity.

Lemma 2.2. Under (F.3) we have

log M(F , δ) ≤ σ0ϕm(δ) +
δ

17
, δ→ 0.

Proof. This is easily deduced from the proof of Lemma 8.1 in Koltchinskii [21]. �

The following two immediate consequences of Lemma 2.2 will be useful.

Assertion 1. (i) If (F.3) is true with ϕn = O(nα), α ∈ (0, 1/2) then

HdP,1(F , δ) = O(δ−
α

1−α ), δ→ 0. (10)

(ii) If (F.3) is true with ϕn = logρ n, ρ > 0 then

HdP,1(F , δ) ≤ 2σ0 logρ
(

34
δ

)
, δ→ 0. (11)
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Next we state a sufficient condition for (F.3) to hold, in terms of the bracketing entropy in
L1(X , d P).

Lemma 2.3. Let (ϕn)n≥1 and (βn)n≥1 be two sequences such that 0 < k logβn ≤ ϕn , k > 0 and
ϕn ≤ nα , α ∈ (0, 1/2). If there exists κ < 1/4 and σ1 > 0 such that

H[],1(F , σ1n−1ϕn) ≤ κσ1ϕn, (12)

then (F.3) is satisfied with σ0 = max(σ1, (κ − 1/4)kλ).

Proof. It is similar to the proof of Theorem 4.1 in Giné and Zinn [14] and Section 8 in
Koltchinskii [21]. �

The following consequences of Lemma 2.3 provide sufficient conditions to (F.3).

Assertion 2. (i) If (F.5) holds then (F.3) is satisfied with ϕn = nα and βn = n.
(ii) If (F.7) holds then (F.3) is satisfied with ϕn = logρ n and βn = exp(logρ n).

The following statement easily follows from Assertion 1, (F.1) and the fact that

HdP,2(F , (2Mδ)
1
2 ) ≤ HdP,1(F , δ) ≤ H[],1(F , 2δ).

Assertion 3. (i) If (F.3) is true then

HdP,2(F , δ) = O(δ−
2α

1−α ), δ→ 0. (13)

(ii) (F.3) with ϕn = logρ n implies (F.6) with v = 2ρ+1σ0 and θ = 8M1/2.
(iii) (F.5) implies also (13).
(iv) (F.7) implies (F.6) with v = 2ρϑ and θ = M1/2.

In all this paper we suppose that the condition (F.3) holds with ϕn = O(nα), which implies that
(13) is always true, so if α ∈ (0, 1/2) then there exists C > 0 such that∫ 1

0

√
HdP,2(F , δ)dδ < C

∫ 1

0
δ−

α
1−α dδ

= C
1− α

1− 2α
< ∞,

and this implies the existence of a separable, bounded, dP,2-uniformly continuous modification
of the Gaussian random function B, see Dudley [10]. More precisely we have the following
Assertion.

Assertion 4. If (F.1) and (F.3) hold, then F is P-pregaussian.

3. Main results

We now state our Gaussian approximation results under various entropy conditions. First, the
polynomial entropy case. Thereafter, as well as in the remainder of the paper, we assume that
α ∈ (0, 1/2) while σ = σ(λ) denote constants depending on a fixed λ but not necessarily the
same at each occurrence.
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Theorem 3.1. If (F.1), (F.2) and (F.3) hold with ϕn = nα , βn = n, then for each λ > 0 there
exists a σ > 0 such that for each integer n > 1 one can construct on the same probability space
(Ω ,Σ ,P) the i.i.d. random variables X1, . . . , Xn and a version Bn of B such that

P
(
‖αn − Bn‖F > σ(log n)−γ

)
6 n−λ, (14)

where

γ =
1− 2α

2α
. (15)

Moreover, if (F.4) is further assumed then

γ =
2− 3α

2α
. (16)

As a consequence of Theorem 3.1, (4) holds with vn = (log n)−γ which is better than the rate
o(
√

log log n) obtained by Dudley and Philipp [12] under no condition on the P-Donsker class
F . By applying y Assertions 1–3, it is easy to check that Theorem 3.1 leads to the following
corollary which is in accordance with Proposition 2 in Berthet and Mason [2].

Corollary 3.2. Under (F.1), (F.2) then for each λ > 0 there exists a σ > 0 such that for each
integer n > 1 one can construct on the same probability space (Ω ,Σ ,P) the i.i.d. random
variables X1, . . . , Xn and a version Bn of B such that

P
(
‖αn − Bn‖F > σ(log n)−γ

)
6 n−λ,

where

γ =


1− 2α

2α
under (F.5)

2− 3α
2α

under (F.4) and (F.5).

The following corollary interpolates between (15) and (16) when a kind of margin condition is
assumed in addition to (F.3), in the sense that the variance is controlled by the expectation as in
Berthet and Saumard [4].

Corollary 3.3. If (F.1), (F.2) and (F.3) hold with ϕn = nα , α ∈ (0, 1/2), βn = n, and for
γ0 ∈ (1, 2), R > 0,

dP,2( f, g)γ0 ≤ RdP,1( f, g), f, g ∈ F (17)

then for each λ > 0 there exists a σ > 0 such that for each integer n > 1 one can construct on
the same probability space (Ω ,Σ ,P) the i.i.d. random variables X1, . . . , Xn and a version Bn
of B such that

P
(
‖αn − Bn‖F > σ(log n)−γ

)
6 n−λ, (18)

where

γ =
1− α
γ0α

−
1
2
.
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Now let us consider the case of a logarithmic growth of the entropy HdP,i (F , .). In the first
statement of the following theorem we assume that (F.3) is satisfied with ϕn = log n and βn = n.
By Assertion 3 this implies that (F.6) holds with ρ = 1, v = 4σ0 and θ = 8M1/2.

Theorem 3.4. If (F.1), (F.2) and (F.3) are satisfied with ϕn = log n and βn = n then for each
λ > 0 there exists a σ > 0 such that for each integer n > 1 one can construct on the same
probability space (Ω ,Σ ,P) the i.i.d. random variables X1, . . . , Xn and a version Bn of B such
that

P
(
‖αn − Bn‖F > σn−

1
2+5v (log n)

5v
4+10v

)
6 n−λ,

where the constant v > 0 comes from (F.6).
Moreover, if (F.6) is further assumed with ρ < 1, v > 0 and θ > 0 we have

P
(
‖αn − Bn‖F > σn−

1
2 exp

(
5v

2ρ+1 logρ n

)
log n

)
6 n−λ.

If (F.1), (F.2) and (F.3) are assumed with ϕn = (log n)ρ , ρ > 1 and βn = n then for any
c < 1

2ρ5

P
(
‖αn − Bn‖F > σ exp(−(c log n)1/ρ)

)
6 n−λ.

The rate obtained in the previously mentioned results of Koltchinskii and Rio are strictly
better than Theorem 3.4 at the expense of assuming either a good Haar approximation or
the VC-property and uniformly bounded variation of the class F . In particular, Theorem 3.4
of Koltchinskii [21] provides under a stronger version of (F.3) a rate that can be as fast as
n−1/2(log n)ρ in case of a very sharp Haar representation. On the opposite, when relaxing any
additional conditions our Theorem 3.4 still yields a rate which can be polynomial and thus far
better than (14).

Likewise, by applying Assertions 1–3, it is easily checked that Theorem 3.4 leads to the
following corollary which extends Proposition 1 in Berthet and Mason [2]. Recall that (F.7)
implies (F.6) with v = 2ρϑ and θ = M1/2.

Corollary 3.5. Under (F.1), (F.2) and (F.7) then for each λ > 0 there exists a σ > 0 such
that for each integer n > 1 one can construct on the same probability space (Ω ,Σ ,P) the i.i.d.
random variables X1, . . . , Xn and a version Bn of B such that

P(‖αn − Bn‖F > σvn) 6 n−λ,

where

vn =


n−

1
2 exp

(
5v

2ρ+1 logρ n

)
log n, if ρ < 1,

exp(−(c log n)1/ρ), any c <
1

52ρ
if ρ > 1,

n−
1

2+5v (log n)
5v

4+10v , if ρ = 1.
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4. Proof of a more general result

4.1. General case

In what follows there exists a probability space (Ω ,Σ ,P) which is rich enough for all our
needs. We make use of HdP,2(F , .) and λδ as defined in Section 2.1 under d = dP,2. Our
main statement is fairly general and can be stated as follows. Recall that σ may change at each
occurrence.

Proposition 4.1. Suppose that (F.1), (F.2) and (F.3) hold with (ϕn)n>1 and (βn)n>1 satisfying

log log n = O(βn), logβn = O(ϕn), n→∞. (19)

Let (δn)n>1 and (φn)n>1 be such that for each λ > 0 there exists a σ > 0 such that for each
n > 1

P
(
‖αn ◦ λ√ ϕn

n
− αn ◦ λδn‖F ≥ σφn

)
≤ β−λn . (20)

Let (ψn)n>1 is a sequence satisfying that for each λ > 0 there exists σ > 0 such that for each
n > 1,

exp
(

5
2

an

)
(2an + λ logβn) ≤ σψn, where an = HdP,2(F , δn). (21)

Then for each λ > 0 there exists a σ > 0 such that for each integer n > 1 one can construct on
the same probability space (Ω ,Σ ,P) the i.i.d. random variables X1, . . . , Xn and a version Bn
of B such that

P (‖αn − Bn‖F ≥ συn) ≤ β
−λ
n , (22)

where σ depends only on λ, F and P, and

υn = max
(
ϕn
√

n
,
ψn
√

n
, φn, δn max(

√
an,

√
logβn)

)
.

The technical assumption (20) is necessary to derive the results of Section 3 since it is not always
sufficient to apply Proposition 4.1 with δn =

√
ϕn/n and φn = 0. The reason is that for certain

choices of βn and ϕn we cannot find a sequence ψn satisfying (21) such that ψn = O(
√

n) and
thus vn → 0. Let us discuss this point.

On one hand, assuming that vn →∞ as n→∞, condition (21) implies that

exp
(

5
2

an

)
≤ σψn ≤

√
n,

and hence

an = HdP,2(F , δn) = O(log n), (23)

which means that Proposition 4.1 is only applicable when an is logarithmic in n. An example is
given by Theorem 3.4 where the entropy has a logarithmic growth.

On the other hand, if we take δn =
√
ϕn/n = n(α−1)/2 where α < 1/2 and φn = 0 then

according to (13) and (F.1) there exists K > 0 such that HdP,2(F , δ) ≤ K δ−2α/(1−α). Hence
an = HdP,2(n

(α−1)/2) = O(n−α) is not logarithmic and Proposition 4.1 is not applicable without
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changing the projection
√
ϕn/n. Indeed, whenever HdP,2(F ,

√
ϕn/n) is not logarithmic, we shall

turn the ray
√
ϕn/n into δn = r(log n)−β where β > 0 and r > 0 by making use of a chaining

technique. An example is given by Theorem 3.1 where the entropy has a polynomial growth.

4.2. Proof of Proposition 4.1

First case. Let us start with the easiest case δn =
√
ϕn/n, so that (20) trivially holds. Consider a

finite ε-net Fε of F with respect to dP,2

Fε = { fk : 1 ≤ k ≤ NdP,2(F, ε)}

and the projection λε under dP,2 such that dP,2(λε f, f ) < ε, f ∈ F . Given ε > 0 and n ≥ 1, our
aim is to construct a probability space (Ω ,Σ ,P) on which sit X1, . . . , Xn and a version Bn of
the P-Brownian bridge B indexed by F such that for Fε defined as above and for some δ1 > 0,
δ2 > 0 and δ3 > 0 to be chosen such that max(δ1, δ2, δ3) = συn from (22) we have

P (‖αn − Bn‖F ≥ max (δ1, δ2, δ3)) ≤ P (‖αn − αn ◦ λε‖F ≥ δ1)

+P (‖αn ◦ λε − Bn ◦ λε‖F ≥ δ2)+ P (‖Bn ◦ λε − Bn‖F ≥ δ3) (24)

with all these probabilities simultaneously as small as β−λn for a suitably chosen ε > 0.
Our construction is based on some estimates of the approximation of the empirical process by

the Brownian bridge on finite classes of functions. These estimates rely on the following coupling
of Zaitzev [33] as in Berthet and Mason [2,3]. Let |.|N , N ≥ 1, denote the usual Euclidean norm
on RN .

Coupling inequality. Let Y1, . . . , Yn be independent mean zero random variables in RN , N >

0, such that for some B1 > 0,

|Yi |N ≤ B1, i = 1, . . . , n.

If (Ω ,Σ ,P) is rich enough then for each δ > 0, one can define independent normally distributed
mean zero random variables Z1, . . . , Zn with Zi and Yi having the same covariance matrix for
i = 1, . . . , n, such that for universal constants C1 and C2

P

{∣∣∣∣∣ n∑
i=1

(Yi − Zi )

∣∣∣∣∣
N

≥ δ

}
≤ C1 N 2 exp

(
−C2δ

N 2 B1

)
. (25)

Proof. See Zaitzev [33] and Einmahl and Mason [13]. �

Consider the n i.i.d. mean zero random variables in RN , where N = NdP,2(F , ε),

Yi =
1
√

n
( f1(X i )− E( f1(X)), . . . , fN (X i )− E( fN (X))) , 1 ≤ i ≤ n.

Since fk ∈ F and (F.1) holds, we have

|Yi |N ≤ 2M

√
N

n
, 1 ≤ i ≤ n.

Therefore, by the coupling inequality (25) we can construct Y1, . . . , Yn i.i.d. Y := (Y 1, . . . , Y N )

having the previously defined law and Z1, . . . , Zn i.i.d. Z := (Z1, . . . , Z N )mean zero Gaussian
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variables on the same probability space such that for positive constants C1 and C3 we have

P (‖αn ◦ λε − Bn ◦ λε‖F ≥ δ2) ≤ P

{∣∣∣∣∣ n∑
i=1

(Yi − Zi )

∣∣∣∣∣
N

≥ δ2

}

≤ C1 N 2 exp
(
−C3
√

nδ2

N 5/2

)
, (26)

where cov(Z l , Z k) = cov(Y l , Y k) = 〈 fl , fk〉 and

Bn( fk) =
1
√

n

n∑
i=1

Z k
i .

Moreover by Lemma A1 of Berkes and Philipp [1] this space can be extended to include a P-
Brownian bridge Bn indexed by F taking the above values on Fε and we can again extend this
space to support X1, . . . , Xn such that the Yi have the above representation in terms of X i . The
terms in (24) are now using this Bn and this αn . Notice that the probability space on which
Y1, . . . , Yn , Z1, . . . , Zn , Bn and X1, . . . , Xn eventually sit together depends on n ≥ 1 and on the
choice of ε > 0 and δ2 > 0 to be made later.

Next we control the modulus of continuity of αn in the right hand term of (24) by making use
of the following inequality. We can not apply Talagrand inequality as in Berthet and Mason [2]
since we do not assume uniform or bracketing entropy conditions in order to work only under
the weaker (F.3). Let log2(x) denote the inverse of 2x .

Lemma 4.2. Let C be a class satisfying the conditions (F.1) with M = 1/2 and (F.2). If

n sup
g∈C

P(g2) ≤ u, (27)

then

P
(√

n‖αn‖C ≥ u
)
≤ 8(log2 log2(2nu−1)+ 1) exp(−211u)

+P
(

Hn,1(C, 2−4un−1) ≥ 2−11u
)
.

Proof. Similar statements were proved in Lemma 3 in Koltchinskii [17] and in Theorem 3.1 in
Giné and Zinn [14]. �

We shall apply this inequality to the class C = {(4M)−1( f − λε f ), f ∈ F}. Observe that the
class C satisfies (F.1), (F.2) and for any δ > 0,

Hn,1(C, δ) ≤ 2Hn,1

(
F ,

Mδ

2

)
, P-a.s.

which ensures that the condition (F.3) is also fulfilled by C. Moreover we have (27) with
u = nε2/16M2

= σnε2. Here, as well as in the remainder of the proofs, σ denotes a constant, not
necessarily the same at each occurrence. Let (ϕn)n>1 and (βn)n>1 be two sequences satisfying
(19). By taking u = σϕn and ϕn = nε2 in Lemma 4.2 we have, for σ large enough

P
(√

n‖αn − αn ◦ λ√ ϕn
n
‖F ≥ σϕn

)
≤ 8

(
log2 log2(2n(σϕn)

−1)+ 1
)

exp(−211σϕn)

+P
(

Hn,1

(
C, 2−4σϕnn−1

)
≥ 2−11σϕn

)
. (28)
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From (19), (28) and (F.3), we deduce that for each λ > 0 there exists σ > 0 such that for n > 0,

P
(
‖αn − αn ◦ λ√ ϕn

n
‖F ≥ σ

ϕn
√

n

)
≤ β−λn . (29)

Having now determined δ1 = σϕn/
√

n and ε =
√
ϕn/n in (24) let us take δ2 = σψn/

√
n in (26)

where ψn is as in (21), so that

P
(
‖αn ◦ λ√ ϕn

n
− Bn ◦ λ√ ϕn

n
‖F ≥ σ

ψn
√

n

)
≤ C1 exp

{
2HdP,2

(
F ,
√
ϕn

n

)
− C3σψn exp

(
−

5
2

HdP,2

(
F ,
√
ϕn

n

))}
≤ C1 exp

{
2an − C3σψn exp

(
−

5
2

an

)}
.

According to (21), for each λ > 0 there exists σ > 0 such that, for any n > 0,

P
(
‖αn ◦ λ√ ϕn

n
− Bn ◦ λ√ ϕn

n
‖F ≥ σ

ψn
√

n

)
≤ β−λn . (30)

It remains to control the third term in (24) with some well known inequality for the modulus of
continuity of B. Given a class C write σ 2

C = suph∈C E(B2(h)). Recall the following concentration
probability estimate for ‖B‖C due to Borell [5], then the moment bound of Dudley [10].

Borell’s inequality. For all t > 0,

P (‖B‖C − E(‖B‖C) > t) ≤ 2 exp

(
−

t2

2σ 2
C

)
. (31)

Gaussian moment inequality. For some universal constant A0 > 0 and all δ > 0,

E

(
sup

dP,2( f,g)<δ
{|B( f )− B(g)| : f, g ∈ F}

)
≤ A0

∫
[0,δ]

√
HdP,2(F , ε)dε <∞. (32)

Let us now consider C = { f − g, dP,2( f, g) ≤
√
ϕn/n, f, g ∈ F} for which we have

σ 2
C = sup

d2( f,g)≤
√

ϕn
n

E(B( f − g)2) ≤ sup
d2( f,g)≤

√
ϕn
n

d2
P,2( f, g) ≤

ϕn

n
,

and, by (32), for A1 > A0,

E(‖B‖C) ≤ A0

∫
[0,
√

ϕn
n ]

√
HdP,2(F, ε)dε ≤ A1

√
ϕn

n

√
an .

Hence (31) gives, for all t > 0,

P
(
√

n‖B − B ◦ λ√ ϕn
n
‖F ≥ A1

√
ϕn

n

√
an + t

)
≤ 2 exp

(
−

nt2

2ϕn

)
.
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By taking

t = σ

√
ϕn

n
max

(
√

an,
√

logβn

)
we finally get that for each λ > 0 there exists σ > 0 such that for n > 0, the third term in (24)
satisfies

P
(
‖Bn − Bn ◦ λ√ ϕn

n
‖F ≥ σ

√
ϕn

n
max

(
√

an,
√

logβn

))
≤ β−λn , (33)

where σ > 0 depends only on F , ϕn and βn from (19). Combining (24), (29), (30) and (33), it
becomes clear that there exists a σ > 0 such that (22) holds with φn = 0.

Second case. If δn 6=
√
ϕn/n in (20) we use the following decomposition

‖αn − Bn‖F ≤ ‖αn − αn ◦ λ√ ϕn
n
‖F + ‖αn ◦ λ√ ϕn

n
− αn ◦ λδn‖F

+‖αn ◦ λδn − Bn ◦ λδn‖F + ‖Bn − Bn ◦ λδn‖F (34)

where we can immediately bound the first term by using (29) and the second term by using (20).
Condition (21) then allows us to replace

√
ϕn/n by δn in the computation leading to (30), so we

get for each λ > 0 that there exists σ > 0 such that for n > 0,

P
(
‖αn ◦ λδn − Bn ◦ λδn‖F ≥ σ

ψn
√

n

)
≤ β−λn . (35)

As for (33) we have

P
(
‖Bn − Bn ◦ λδn‖F ≥ σδn max(

√
an,

√
logβn)

)
≤ β−λn . (36)

From (20), (29) and (34)–(36) we conclude that for each λ > 0 there exists a σ > 0 such that
(22) holds. �

5. Other proofs

Now we make Proposition 4.1 more explicit in the special cases of Section 3.

5.1. Proof of Theorem 3.1

Proof of the first assertion. According to the explanation given in Section 4.1, the proof is an
application of Proposition 4.1. For this we shall fit δn to the ray of projection

√
ϕn/n by using

a chaining argument. From (21) and (i) of Assertion 1 we conclude that an = HdP,2(F , δn) is
logarithmic in n, and polynomial in δn . Therefore, δn is logarithmic in n. Let us put

δn = r(log n)−β , β > 0, r > 0. (37)

But if βn = n while δn and an are logarithmic in n, the term δn max(
√

an,
√

logβn) in (22) is
logarithmic in n, so there is no restriction to look for a γ > 0 for which we can take

ϕn
√

n
=
ψn
√

n
= φn = (log n)−γ , γ > 0. (38)

Also note that (F.3) being satisfied with ϕn = nα and βn = n it is also satisfied with
ϕn =

√
n(log n)−γ and βn = n since Hn,1(F , ε) is a decreasing function of ε. Now, from
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(13) and (37) we have for each λ > 0

exp
(

5
2

an

)
(2an + λ logβn)

≤ exp
(

5
2

Kr−
2α

1−α (log n)
2αβ
1−α

)(
2Kr−

2α
1−α (log n)

2αβ
1−α + λ log n

)
, (39)

so by choosing

β =
1− α

2α

then r large enough, it is clear that (21) holds with ψn =
√

n(log n)−γ for any desired γ > 0 and
some fixed σ = σ(r, γ ). The remainder of the proof consists in checking condition (20). Thus,
we intend to show that for each λ > 0 there exists σ = σ(λ, α, r) > 0 such that

P1 = P
(
‖αn ◦ λ

n−1/4(log n)−
γ
2
− αn ◦ λr(log n)−β‖F ≥ σ(log n)−γ

)
≤ n−λ. (40)

Let H and N be as in (5) with d = dP,2. From (13) we can take

H(u) = log N (u) = Ru−
2α

1−α . (41)

Here R > 0 again denotes a constant changing at each occurrence. Let

k = [log2(rn
1
4 (log n)−β+

γ
2 )], δk = δn = r(log n)−β ,

δ j = 2 j n−
1
4 (log n)−

γ
2 , j = 0, 1, 2, . . . , k − 1,

then set

β2
j = max

(
H(δ j ), log(k − j + N (r(log n)−β)

)
,

S =
k−1∑
j=0

δ jβ j , a j =
δ jβ j

S
, j = 0, 1, 2, . . . , k − 1.

We have

P1 ≤

k−1∑
j=0

P
(
‖αn ◦ λδ j+1 − αn ◦ λδ j ‖F ≥ σa j (log n)−γ

)
≤

k−1∑
j=0

N (δ j+1)N (δ j ) sup
d( f,g)<3δ j

P
(
|αn( f )− αn(g)| ≥ σa j (log n)−γ

)
. (42)

By using Bernstein’s inequality – see page 102 of van der Vaart and Wellner [30] – there exists
G1 > 0 and G2 > 0 such that the j-th term in (42) is less than

G1 N 2(δ j ) exp

(
−

G2σ
2a2

j

δ2
j

(log n)−2γ

)
≤ G1 exp

(
β2

j (2−
G2σ

2

S2 (log n)−2γ )

)
. (43)

Let us prove that there exists R > 0 such that

S ≤ R(log n)−β
1−2α
1−α . (44)
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On one hand, since δ j = 2−(k− j−1)r(log n)−β , j = 0, 1, 2, . . . , k−1 and log k is log-logarithmic
in n, we have

k−1∑
j=0

δ j
(
log

(
k − j + N (r(log n)−β)

)) 1
2

≤ r(log n)−βH
1
2 (r(log n)−β)

k−1∑
j=0

2−(k− j−1)

(
1+

log(k − j)
1
2

H
1
2 (r(log n)−β)

)

≤ R(log n)−βH
1
2 (r(log n)−β). (45)

On the other hand, since δ j = 2(δ j − δ j−1), j = 0, 1, 2, . . . , k − 1, it holds

k−1∑
j=0

δ j H
1
2 (δ j ) = 2

k−1∑
j=0

(δ j − δ j−1)H
1
2 (δ j ) ≤ 2

∫ r(log n)−β

0
H

1
2 (u)du. (46)

It follows from (45) and (46) that there exists R such that

S ≤ R(log n)−βH
1
2 (r(log n)−β)+ 2

∫ r(log n)−β

0
H

1
2 (u)du

≤ R(log n)−βH
1
2 (r(log n)−β)

which, by (41), implies (44). We get by taking

β =
1− α

2α
, γ =

1− 2α
2α

(47)

from (42)–(44) that

P1 ≤

k−1∑
j=0

2 exp
(
β2

j (2− Rσ 2)
)

≤ 2
k−1∑
j=0

(
k − j + N (r(log n)−β)

)2−Rσ 2

≤ 2
∫
∞

N (r(log n)−β )
u2−Rσ 2

du

≤
2

−3+ Rσ 2 exp
(

R(3− Rσ 2) log n
)
. (48)

We conclude by (48) that for each λ > 0 there exists σ > 0 such that (40) holds with γ and β
are as in (47). Since (39) and (40) correspond to (20) and (21) of Proposition 4.1 it follows that
the rate of approximation in (14) is given by

vn = max
(
(log n)−γ , (log n)−β max((log n)

βα
1−α ,

√
log n)

)
= (log n)−

1−2α
2α .

The first assertion of Theorem 3.1 is then checked. �
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Proof of the second assertion. If (F.4) is further satisfied then in (39), (41) and (48) we can
replace 2α/(1 − α) by α/(1 − α), so we can improve our choice of β and γ by taking in (38),
(39) and (48)

β =
1− α
α

, γ =
2− 3α

2α
.

By the above arguments and Proposition 4.1 we conclude that

vn = max
(
(log n)−γ , (log n)−β max((log n)

βα
2(1−α) ,

√
log n)

)
= (log n)−

2−3α
2α . �

Proof of Corollary 3.3. . If (17) is satisfied then HdP,2(F , ε) ≤ HdP,1 (F , (ε/R)γ0), so from
(13), if (F.3) is satisfied with ϕn = nα we have

HdP,2(F , ε) = O(ε−
αγ0
1−α )

which implies that in (39), (41) and (48) we can replace 2α/(1 − α) by αγ0/(1 − α), and thus
improve (38), (39) and (48) by taking

β =
1− α
2αγ0

, γ =
1− α
αγ0

−
1
2
.

We then obtain, by (22),

vn = max
(
(log n)−γ , (log n)−β max((log n)

βαγ0
2(1−α) ,

√
log n)

)
= (log n)

−
1−α
γ0α
+

1
2 . �

5.2. Proof of Theorem 3.4

Proof of the first assertion. In this case we have ϕn = log n and βn = n. Let us put

δn = n−γ (log n)−β , γ ≥ 0, β ∈ R. (49)

We shall approximate the ray
√
ϕn/n by showing that for each γ < 1/2, β ∈ R and λ > 0, there

exists σ(λ, γ, β) > 0 such that

P2 = P
(
‖αn ◦ λ

n−
1
2 (log n)

1
2
− αn ◦ λn−γ (log n)−β‖F ≥ σn−γ (log n)−β+

1
2

)
≤ n−λ. (50)

Let again

H(u) = v log u, k = [n−γ+
1
2 (log n)−β−

1
2 ],

δk = n−
1
2 (log n)

1
2 , δ j = 2 jδk, j = 0, 1, 2, . . . , k − 1,

β2
j = max

(
H(δ j ), log(k − j + N (n−γ log−β n))

)
,

S =
k−1∑
j=0

δ jβ j , a j =
δ jβ j

S
, j = 0, 1, 2, . . . , k − 1.



1558 A. Settati / Stochastic Processes and their Applications 119 (2009) 1541–1560

As for (44) one can easily show that

S ≤ R
∫ n−γ (log n)−β

0

(
log

1
x

) 1
2

dx

≤ Rn−γ (log n)−β+
1
2

which implies, as in (48), that for a constant G > 0 we have

P2 ≤ 2
∫
∞

N (n−γ log−β n)
u2−Gσ 2

du

≤
2

Gσ 2 − 3
(nγ (log n)β)v(3−Gσ 2).

As a consequence for each γ < 1/2, β ∈ R and λ > 0, there exists σ > 0 such that (50) and
hence (20) hold. Moreover if we take ψn = n−γ+1/2(log n)−β+1/2 and δn as in (49) then (21) is
equivalent to

exp
(

2an − σψn exp
(
−

5
2

an

))
= exp

(
2v log(nγ (log n)β)− σn−γ+

1
2−

5
2 γ v(log n)−β+

1
2−

5
2βv
)

so if we put

γ =
1

2+ 5v
, β =

1
2+ 5v

,

we have

exp
(

2an − σψn exp
(
−

5
2

an

))
≤ exp ((K − σ) log n) , (51)

where K > 0. It follows from (50), (51) and Proposition 4.1 that the rate of convergence in (22)
is explicitly

vn = max
(

log n
√

n
, n−γ (log n)−β+

1
2 , n−γ (log n)−β max

(
(log(n−γ (log n)−β))

1
2 , (log n)

1
2

))
= n−

1
(2+5v) (log n)

5v
(4+10v) . �

Proof of the second assertion. Letting now

δn =

√
ϕn

n
=

√
log n

n

and assuming that (F.6) is satisfied with ρ < 1 it follows that (20) is satisfied with φn = 0 and
(21) with βn = n is implied by

exp {2an − σψn exp(−(5/2)an)}

≤ exp
{

2v(log(
√

n))ρ − σψn exp
(
−

5v
2
(log(
√

n))ρ
)}

≤ n−λ.
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Hence (21) holds true with

ψn = exp
(

5v

21+ρ (log n)ρ
)

log n

and the rate (22) given by Proposition 4.1 is

vn ≤ K max

 log n
√

n
,

1
√

n
exp

(
5v

21+ρ (log n)ρ
)

log n,

√
log n

n

× max

(log

( √
n

(log n)
1
2

)) ρ
2

,
√

log n


≤ K

1
√

n
exp

(
5v

21+ρ (log n)ρ
)

log n. �

Proof of the third assertion. It is very similar to the proof of the first assertion. �
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[14] E. Giné, J. Zinn, Some limit theorems for empirical processes. With discussion, Ann. Probab. 12 (1984) 929–998.
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