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Interspecific hybridization and allopolyploidization contribute to the improvement of
many important crops. Recently, we successfully developed an amphidiploid from an
interspecific cross between cucumber (Cucumis sativus, 2n = 2x = 14) and its relative
C. hystrix (2n = 2x = 24) followed by chemical induction of chromosome doubling. The
resulting allotetraploid plant was self-pollinated for three generations. The fertility and
seed set of the amphidiploid plants were very low. In this study, we investigated the
meiotic chromosome behavior in pollen mother cells with the aid of fluorescence in situ
hybridization, aiming to identify the reasons for the low fertility and seed set in the
amphidiploid plants. Homologous chromosome pairing appeared normal, but chromosome
laggards were common, owing primarily to asynchronous meiosis of chromosomes from the
two donor genomes.We suggest that asynchronousmeiotic rhythmbetween the two parental
genomes is the main reason for the low fertility and low seed set of the C. hystrix–cucumber
amphidiploid plants.
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS. Production and

hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cucumber (Cucumis sativus L., 2n = 2x = 14, genome CC) is an
economically important crop. However, in the U.S., cucumber
yield has reached a plateau in the last two decades. The lack
of genetic diversity and emerging or persistent pests are some
of the reasons for this yield stagnancy.

Wild relatives of crops often contain valuable traits, such
as disease resistance, for crop improvement [1,2]. Such traits
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can potentially be introgressed into crops by crossing with the
wild species and development of introgression lines [3].

A wild relative of cucumber, C. hystrix Chakr. (2n = 2x = 24,
genome HH), possessing multiple disease resistances, is the
only species that is sexually compatible with cucumber in
genus Cucumis [4]. Cucumber and C. hystrix diverged from a
2n = 24 common ancestor approximately 5 million years ago
[5,6], making it difficult to make direct crosses between the
two species for transferring useful genes into cucumber. The
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synthetic tetraploid of the two species may be a useful
bridge for overcoming the long reproductive isolation. Chen
et al. [4] was the first to make a successful interspecific
cross between cucumber and C. hystrix, obtaining a synthetic
allotetraploid named Cucumis × hytivus (2n = 4x = 38, genomes
HHCC) resulting from spontaneous chromosome doubling of
the F1 plant [7].We recently developed an interspecific F1 hybrid
between the C. hystrix accession TH1 [6] and a North American
pickling cucumber inbred line, Gy14, from which amphidiploid
plants were successfully obtained (Fig. 1) by chemical induction
of chromosome doubling in TH1 (female) × Gy14 (pollen donor)
mating (Pan et al., unpublished data). The amphidiploid plants
were subsequently self-pollinated and were able to set fruits
with viable seeds. However, the fruits contained only a few
viable seeds, suggesting low pollen fertility, as reflected in
pollen stainability. Low seed set restricts the exploitation of the
amphidiploid for cucumber germplasm improvement. It is
accordingly desirable to identify the reasons for lower fertility
and seed set in amphidiploids.

Chromosome behavior during meiosis plays an important
role in plant fertility. Meiotic irregularities are thought to
be related to low fertility in allopolyploids [8–11]. A fertile
allopolyploid requires diploid-like meiotic behavior to estab-
lish disomic inheritance and full fertility. The coexistence of
genetically closely related genomes in an allopolyploid can
Fig. 1 – Fruit images of the pickling cucumber Gy14 (A), the amp
amphidiploid (S2, selfed F2, genome HHCC, E) has lower fertility
acetocarmine dye. Bars are 2 cm in Figs. A–C and 200 μm in Fig
lead to homoeologous chromosomes pairing during meiosis,
preventing the formation of functional gametes and reducing
fertility [12]. In the present study, the meiotic chromosome
behavior in C. hystrix–cucumber amphidiploids was investigat-
ed using squashes and fluorescence in situ hybridization (FISH)
to identify the cytological mechanism of the low fertility and
low seed set in amphidiploids.
2. Material and methods

2.1. Plant materials

Plant materials included self-pollinated S1 to S3 progeny of
amphidiploid plants (2n = 4x = 38, HHCC) generated by chemical
induction of chromosome doubling in the TH1 (female) × Gy14
(pollen donor) cross. The amphidiploid plant from the F1 hybrid
was assigned as S0 andwas self-pollinated for three consecutive
generations resulting in S1, S2, and S3 plants.

2.2. FISH

The FISH procedure was essentially the same as regular FISH
protocols developed for meiotic pachytene chromosomes [13].
The type III repeat, a satellite repeat located in all cucumber
hidiploid (B), and the C. hystrix parental line TH1 (C). The
than Gy14 (D, genome CC) as evaluated by stainability with
s. D–E.
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centromeres [14], was used to identify cucumber chromosomes
in the C. hystrix–cucumber amphidiploids. A type III probe
was labeled with biotin-dUTP via nick translation and detected
with avidin conjugated with FITC (Vector Laboratories). Chromo-
somes were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI) in VectaShield antifade solution (Vector Laboratories,
Burlingame, CA). FISH imageswere processedwithMeta Imaging
Series 7.5 software. The final contrast of the images was
processed using Adobe Photoshop CS3 software.
3. Results

The different meiotic stages of the C. hystrix–cucumber
amphidiploids are shown in Fig. 2. In pollen mother cells
(PMCs), the chromosomes paired mainly as bivalents in cells
from pachytene (Fig. 2-C) to metaphase I (Fig. 2-E). Occasion-
ally univalents and multivalents appeared in some cells, but
the frequency was generally very low (Table 1). For example,
univalents and multivalents were detected in only 2 or 4
metaphase I (MI) PMCs from S1 to S3, respectively.

The most obvious feature of meiosis in the amphidiploid
plants was asynchronous meiotic rhythm, as shown by the
following observations. First, PMCs from the same flower
showed different meiotic stages. As shown in Table 1, in plants
of all three generations (S1, S2, and S3), PMCs from the same
male flower but in different meiotic stages were visible. All
meiotic stages could be observed in PMCs from two S1 male
flowers examined (Fig. 2). Second, two daughter cells from the
same PMC were asynchronous. For example, at metaphase II,
chromosomes from one daughter cell had organized into the
Fig. 2 – Meiosis in an amphidiploid S3 plant. Green FISH signals ar
centromeres. (A) An early zygotene cell. (B) A late zygotene cell. (C)
(green signals) were in diakinesis while the C. hystrix TH1 chromo
chromosomes (bivalents with green signals) reached the metap
(F) An anaphase I cell with lagging chromosomes. (G) A telophas
metaphase II cell showing that two daughter cells were asynchr
lagging chromosomes. Bar, 10 μm.
metaphase plate while chromosomes from the other daughter
cell remained dispersed (Fig. 2-H). Third, both parental
genomes in the same cell did not display the same meiotic
rhythm. For example, when chromosomes from the cucumber
genome (with green signals, indicated by arrows) were in
diakinesis, those from the C. hystrix genome were in diplotene
(Fig. 2-D). In many PMCs at metaphase I, the cucumber
chromosomes (with green signals, indicated by arrows) reached
themetaphase platewell ahead of those ofC. hystrix (Fig. 2-E). In
the subsequent phases, only some chromosomes from the
C. hystrix parent reached the poles in time to be included
in telophase nuclei, resulting in chromosome laggards at
anaphase I (Fig. 2-F) and formation of micronuclei at telophase
I (Fig. 2-G). Chromosome laggards prevailed at later stages
(Fig. 2-H–J). The male gametes from these PMCs will contain
unbalanced chromosome complements. The asynchronous
meiotic rhythm between two parental genomes seemed to
start in the zygotene. For example, most homologous chromo-
somes began to pair at early zygotene (Fig. 2-A). At late zygotene
(Fig. 2-B), a few chromosomes remained unpaired (indicated by
arrow) when most chromosomes were fully paired.

The proportion of PMCs with lagging chromosomes seemed
to decrease with the increase in self-pollination. For example,
chromosome laggardswere found in96% (22/23) and 91% (21/23)
MI cells from two S1 flowers. In two S2 flowers, chromosomal
laggards were found in 69% (11/16) and 35% (16/46) of cells. In
one S3 male flower examined, chromosome laggards were
found in 47% (7/15) of MI PMCs (Table 1). However, the tendency
was not clear, with no significant differences in MI PMCs with
lagging chromosomes between S2 and S3 flowers, and the
proportions were also quite different in the two S2 flowers.
e from the type III repeat associated with cucumber
Pachytene. (D) PMC showing that the cucumber chromosomes
somes were in diplotene. (E) PMC showing that the cucumber
hase plate well ahead of those of C. hystrix chromosomes.
e I cell with laggards and micronucleus (arrow). (H) A
onous. Anaphase II (I) and early telophase II (J) cells with



Table 1 – Numbers of cells at specific meiotic phases from the same male flower at three generations (S1, S2 and S3) of
C. hystrix–cucumber amphidiploid plants.

Phases S1-male flower 1 S1-male flower 2 S2-male flower 1 S2-male flower 2 S3-male flower 1

Leptotene 0 1 0 0 0
Zygotene 11 0 0 0 2
Pachytene 2 0 0 0 1
Diplotene 12 1 0 6 0
Diplotene-Diakinesis 37 5 4 36 6
Diakinesis 10 5 32 19 12
Metaphase I 23a/22b/2c 23/21/2 16/11/4 46/16/4 15/7/2
Anaphase I 1/1 29/29 8/5 6/2 3/2
Telophase I 1/1 18/18 3/0 5/1 1/1
Metaphase II 0 4/4 2/0 0 2/2
Anaphase II 2/2 5/5 0 0 0
Telophase II 0 3/3 1/0 0 4/1

a Number of cells at specific meiotic phases in the same flower.
b Number of cells with lagging chromosomes.
c Number of cells with univalents or multivalents.
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4. Discussion

Distanthybridizationhas beenwidelyused as an important tool
for crop improvement [15]. However, distant hybrids are often
highly sterile, owing to the absence of homologous chromo-
somesand the failure of synapsis [16]. To overcome the sterility,
distant hybrids are usually induced to form amphidiploids
[15,17,18]. However, synthetic or neo-allopolyploids commonly
display genetic instability and low fertility, a major constraint
on polyploid establishment and persistence [19]. Explanations
for the instability and low fertility are complex. Broadly, three
causes have been identified: meiotic aberrations, genic factors,
and incidental phenotypic effects [20,21]. Meiotic aberrations
probably represent the most general factor affecting poly-
ploidy fertility. An allopolyploid has a high risk of homoeologous
chromosomepairingduringmeiosis, owing to the relatively close
relationship of the parental genomes [12,22,23]. Homoeologous
pairing and recombination can result in the formation of
multivalents and univalents at MI that lead to the production of
chromosomally andgenetically unbalanced gametes, prohibiting
the formation of functional gametes and reducing its fertility
[24]. Studies in resynthesized Brassica napus confirmed that
homoeologous recombination could lead to aberrant meiotic
behavior and reduced fertility [9,10,25,26]. A recent study
in Tragopogon provided evidence that deletions and rDNA
changes detected in recent allopolyploids also result from
homoeologous rearrangement [27].

In our previous study, we found that, in the interspecific
F1 hybrid of C. sativus CV Gy14 × C. hystrix TH1, cucumber
chromosome C7 and C. hystrix chromosome H1, which were
highly conserved during evolution [6], showed homoeologous
pairing in 71% of prophase I cells and 25% of metaphase I cells
[28]. In the present study, pairing between homeologous
chromosomes was rare in a C. hystrix–cucumber interspecific
amphidiploid: multivalents were detected in only 2 or 4 MI
cells from S1 to S3, respectively. Instead, the most obvious
feature of meiosis was asynchronous meiotic rhythm. The
C. hystrix–cucumber amphidiploid displayed three asynchro-
nous forms including multiple meiotic stages in PMCs from the
same flower, asynchronous daughter cells in the same PMC,
and different meiotic rhythms of parental genomes in the same
cell. The first asynchronous form has previously been shown to
occur in two mutants of Arabidopsis [29,30], intersubspecific
autotetraploid rice (Oryza sativa) hybrids [21], and a C. hystrix–
cucumber amphidiploid [31]. In general, the asynchrony did not
affect pollen development, with all of meiocytes completing
meiosis sooner or later and eventually forming normal pollen
grains [29,30]. However, pollen fertility was highly affected in the
C. hystrix–cucumber interspecific amphidiploids.Wepropose that
different meiotic rhythms of two parental genomes in the same
cell are themain reason for lower fertility, given that asynchrony
led directly to the production of lagging chromosomes from
meiotic anaphase I to telophase II in these amphidiploids. The
male gametes from these PMCswill contain incomplete chromo-
some complements. Consequently, lower pollen fertility and
lower seed production appeared (Fig. 1). This asynchronous form
has previously been found in a tetraploid accession of Paspalum
subciliatum [32], a triploid interspecific Brachiaria hybrid [33],
two pentaploid accessions of B. decumbens [20], two hexaploid
accessions of P. jesuiticum [34], and a nonaploid accession of B.
humidicola [35]. In previous studies, the second asynchronous
form has not been reported. However, given that the proportions
of PMCs with lagging chromosomes tended to decrease with
increased self-pollination, the fertility of the amphidiploid we
developed could be improved in more advanced inbred lines.
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