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A b s t r a c t - - F o r m  variations are described in an appropriately constructed form space ]F (typically 
an ~ n ) ,  where every point  of ]F represents a different form. Regarding the symmetries of the forms, 
]F can be divided into disjunct isosymmetric manifolds, i.e., points, lines, surfaces, and  volumes whose 
points correspond to forms with equal symmetries. These manifolds are derived from a symmetry 
analysis of possible deformations of the forms. This analysis is comparable to the construction of 
symmetry coordinates in a normal coordinate analysis of molecules and  results in normal  modes 
of deformation ("normal  deformations") of these forms. From the symmetry species of a normal  
defornmtion, the symmetry of the resulting form can be inferred. Transformation of the form space 
coordinates into normal coordinates (the differentials of which are the normal deformations) facilitates 
the description of the high-dimensionai form spaces and can be made the basis of an easy symmetry 
diagnosis of forms. Furthermore,  the problem of an ascent in symmetry by deformation is discussed. 

1. INTRODUCTION 

For a biologist, the idea of a variation or evolution of forms of living beings is common. During 
such a change of form, there will normally also be a change of symmetry of the form. In general, 
there is a great wealth of possibilities for continuous deformations of a given form, which will 
either preserve the symmetry (symmetry group) of the original form or lower it to a subgroup 
of this symmetry (in the extreme case to total asymmetry), or in some rare instances, enhance 
it to a supergroup of the original symmetry. There is a need for a systematic treatment of the 
interdependence of the deformation of a form and the corresponding change in its symmetry. This 
will be done here for two-dimensional polygonal forms by applying to them a method analogous 
to the construction of symmetry coordinates within the normal coordinate analysis of vibrating 
molecules and performing a symmetry analysis and classification Of the possible deformations of 
a form. 

The variation of a given form by a set of allowed continuous deformations will be treated within 
a form space F spanned by suitably chosen coordinates. In such a form space, every point rep- 
resents a different form. Thus, the existence of a continuous symmetry-preserving deformation 
will give rise to a line of constant symmetry in the form space. A systematic look into such rela- 
tions will reveal isolated points, lines, surfaces, and volumes--in general: manifolds--of constant 
symmetry within the form space. They will be termed "isosymmetric manifolds." 

2. FORM VARIATIONS AND FORM SPACES 

In this paper, form variations will be treated as variations of certain continuous parameters zi 
(e.g., coordinates). If there are N such parameters, they will span an N-dimensional space F 
(see footnote1). If every N-tuple of parameter values corresponds to a different form, we have a 
one-to-one mapping of the possible forms to the points of F so that ]F can be regarded as a form 

I am deeply indebted to cand. phys. Thomas K~hler for preparing the figures for this paper. 
1Normally, ]F is an  ]1~ N so t ha t  ]F = {~ '= (zl  . . . . .  ~'N) T E ]~N}. 
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space. Each form ~ which is possible under the set of allowed deformations a corresponds to a 
point P ( z l , . . . ,  ZN) or vector 7 =  ( x l , . . . ,  XN) T in ]?, and a form variation 6~ can be described 
as a parameter or coordinate variation 6b'= (6x l , . . .  ,6XN) T in ]?. A form transition ~1 --* ~:2 is 
then represented by a trajectory within ]F. 

Some examples of form variations will be sketched now: 
(i) In a recent paper [1], I proposed a characterisation of two-dimensional forms by the Fourier 

coefficients ak and bk of their form functions R(~0): 

K 

R(~) = ~--~(ak • cos k~ + bk. sin k~0) (I) 
k=0 

(R: radius, ~o: angle). Here, the ak's and bk's span a (2K +2)-dimensional real space F = ll~ 2K+2, 
with K being the maximum number of terms taken in the Fourier series [1]. A continuous form 
variation can be carried out by varying the Fourier coefficients. 

(ii) Another possible form variation described in [1] is a continuous form transition between 
two forms ~1 and ~2 through intermediate forms ~ x  generated by weighted addition of the form 
functions of ~1 and ~2 according to 

Rx(~) -- Zl" RI(~p) -6 j32. R2(~) (2) 

(/~1,/~2: weight factors) or by weighted addition of their respective Fourier coefficients ("mixing 
of forms"). In general, if M forms are to be mixed, we have 

M 

Rx( ) = ZmRm( ) (3) 

and, if only relative positive weights are meaningful, 

Z 3 m  = 1. (4) 

Then, the appropriate form space for the mixing of M forms is the simplex S M which is given by 

~5 M : { F =  (# , , . . .  ,#M) T e ~M : #,,, _> O, Z # m  = I }  (5) 
m 

(see Section 5.6). 
(iii) A form variation by variation of coordinates may be illustrated by a triangle whose points A 

and B are fixed, whereas point C is freely movable in the plane (Figure la). Each resulting 
triangle will be characterised by the angles a and # which span the form space (restricted by the 
relation a -6/3 -6 7 = 7r). The highest possible symmetry is D~ (see footnote3), which is found at 
a = fl = 7 = ~r/3. A D~ symmetry occurs along three lines which intersect in the D~ point. The 
"background" of the diagram in Figure lb  corresponds to triangles with C~ symmetry. 

(iv) The same form variation can be described in another way, viz. by taking the Cartesian 
coordinates of point C as coordinates of the form space (IF = ]~-). This example can be generalised 
by allowing all three points to move freely within the plane. Then one has F = ~6 (see Section 5.3). 

(v) A form variation can also be managed by a superposffion of some forms whose orientation 
in space is variable. Consider, for instance, two ellipses who have one focus in common and 
can rotate freely around it. The superposition of the two forms can be done by adding the two 
respective form functions or their Fourier coefficients. Then, the rotation angles a l ,  c~2 can be 
taken as coordinates for the form space IF. This case will be described in Section 5.1. 

~This set comprises all deformations which can be set up from variations of the parameters  considered. 
SThere are only two types  of two-dimensional point  groups: C*  and ]D*. Here, C*  denotes a rota t ion group 
(cyclic group) having only an n-fold rota t ion point C , ;  D~ denotes a dihedral group consisting of an n-fold 
rota t ion point and  n mirror lines (a).  I use the Schoenfliess-Niggli nomenclature;  the corresponding internat ional  
(Hermarm-Mauguln) symbols are: n for C~,, m for D~, m m  for ]I~, n m  for ]I}~ (n odd), and n m m  for ]D~ 
(n even) [2]. In contrast  to three-dimensional symmetry groups, two-dimensional groups will be marked with an 
asterisk. Symmetry elements and symmetry operations as such will be typed in s tandard  or Greek letters (E, Cn, 
a);  for their  operators and transformation matrices, I will use a caret (Cn) and square brackets ([Cn]), respectively. 
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A B 0 CX 31" 

Ca) (b) 

Figure 1. Symmetry diagram (b) for the form variation of a triangle (a) by changing 
the angles a and 8, respectively ('y is given by the relation a + ~ + q ,  = ~r). Occurring 
symmetries axe: ] ~  (e), D~ (bold lines), and  C~ ("background," i.e., all other 

points).  

3. NORMAL DEFORMATIONS OF POLYGONAL FORMS 

Plane K-vertex polygons can be characterised by the 2K Cartesian coordinates of their ver- 
tices. 4 Therefore, the appropriate form space is F = I~ ~K, and every point P(zl, Yl, . . . ,  zg ,  YK) 
or P (Z l , . . . ,ZN)  (see footnote 5) in iF corresponds to a different (but maybe equivalent) form. 
A deformation of the polygon can be achieved by displacements of the vertices. To describe 
such displacements, we attach separate local Cartesian coordinate systems to each vertex of the 
polygon with the vertices in the origins and all z and y axes pointing into parallel directions, re- 
spectively. Then, a general deformation of the polygon will be expressed as a linear combination 
of the Cartesian displacements of the vertices: 

N K 

drj = E c j i . d z i  or drj = E(a jk .dzk  +bjk.dyk) (6) 
i=1 k = l  

with ajk,bjk,cjk real and N = 2K. This way, all 2K degrees of motional freedom of the K 
polygon vertices are resolved into Cartesian displacements. 

These displacements can be made the basis of a matrix representation of the symmetry group G 
of the polygon. This representation comprises the transformation matrices [Gj] for all symmetry 
operations Gj of G (j = 1 , . . . , 9  with g: order of G). It will normally be reducible, i.e., after 
a similarity transformation, the matrices will have a block diagonal form so that the system of 
transformation equations will become partly or completely decoupled. The new basis then defines 
the normal modes of deformation ("normal deformations") of the polygon [3-6]. It must be 
stressed that the term "normal deformation" is a shorthand for "normal mode of deformation" 
analogous to "normal vibrations," and should not be confused with deformations in normal 
directions in elasticity theory. 

As an example, let us analyse the deformations of a square which will be represented by its 
four vertex points P1 : . .  P4 (Figure 2a). The Cartesian coordinates zk, Yk (k = 1 , . . . ,4 )  of these 
points constitute the form space iF = ~s. A general deformation of the square can then be 
described by a linear combination of the 8 Cartesian displacements dzk and dyk for every vertex 
according to equation 6. 

We choose the 8 Cartesian displacements of the vertices as basis for a matrix representation 
of the symmetry group of the square, D~. To get this representation, we have first to set up the 
transformation matrices transforming the coordinate displacements under the symmetry opera- 
tions of II)~: 

d~"= [GADS" (7) 

4 In this regard, the K-ver tex polygons correspond to molecules consisting of K atoms, whose deformations (leading 
to vibrations) are described in the same way. The application of the methods described below to three-dimenslonal 

polyhedral  forms is straightforward. 
SFor general considerations and  matr ix  equations, coordinates will ke described by 6. = (Xl . . . . .  x i , . . . ,  xN) T , 
whereas Cartesian coordinates for part icular  K-vertex polygons will be wri t ten as 6" = ( x l , y l , . . . , x k , Y k , . . . ,  
X K ,  Z/K) T • 
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Figure 2. Cartesian basis displacements (a) and normal deformations corresponding 
to A1 (b), A2 (c), BI (d), B2 (e), and E (f and g) for a square. 

([Gj]: transformation matrix for the symmetry operation G j; dF: vector of coordinate displace- 
ments; dF': vector of the resulting displacements). The trace tr  [Gj] of each matrix gives the 
so-called character X (Gj) for the corresponding symmetry operation Gj [4, p. 55; 5, p. 95]. This 
way we get the following character set for D~: 

Class of symmetry operations (C): E 2C4 C2 2a= 2 ay 

Character x(C) 8 0 0 0 0 

This set has to be compared to the character table of the D~ group. Since the symmetry elements 
of D~ are identical with the ones of the three-dimensional group C4., we may use the character 
table of C4~ given in the literature [4, Appendix; 6, p. 421 ff]. Since there is no 8-dimensional 
(i.e., X (E) = 8) character set in this table, thus, our set must be reducible. The reduction can 
be done with the help of the reduction formula [4, p. 69; 5, p. 96; 7, p. 192] 

9 
1. x(Gj, r ,) .  x(Gj, r), (8a) a ( r , )  = j--1 

1 
a(r  D = g . ~ nc  . x ( c ,  r D  . x ( c ,  r)  (8b) 

C 

(a(rD: multiplicity of r~ in r; g: order of G; x(C,r~),  x(C,r ) :  characters for class C of 
symmetry elements in the irreducible representation rk and in the reducible representation F, 
respectively; no: number of elements in class C). Reduction of our character set results in the 
s u m  

r = A1 + A2 + B1 + B~ + 2E, (9) 

i.e., the reducible representation decomposes into 1 two-dimensional and 4 one-dimensional irre- 
ducible representations (or "symmetry species"). This means that we must be able to transform 
our set of Cartesian displacements into a new set (symmetry-adapted or normal deformations) 
whose members will belong to the very symmetry species listed in equation (9). Since the totally 
symmetric representation A, is contained in the sum equation (9), there must exist a symmetry- 
preserving deformation among the 8 normal deformations (vide infra). Moreover, among the 
deformations, the rotation Rz (see footnote 6) around the centre of the square and the transla- 
tions T~ and Ty will also be present. R~ belongs to the symmetry species A2, whereas Tx and Ty 
jointly belong to E. Subtracting the symmetry species of these three symmetry transformations 
from our representation, we end up with the representation for the genuine deformations: 

rdef = AI + B, + B2 + E. (I0) 

6In three dimensions, it corresponds to a rotation around the z axis; the nomenclature has been taken over here 
also for two dimensions to facilitate the comparison with character tables. 
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To get explicit expressions for the symmetry-adapted normal deformations, it is convenient to 
utilize the method of the projection operator P(rk)  [5, p. 111 if; 7, p. 196]. This operator 
projects the vectors taken as a basis of the representation along new symmetry-adapted directions 
giving the vectors of the normal deformations. The projection operator/3(Fk) belonging to the 
representation rk is defined either as a "character projection operator" [5, p. 117; 7, p. 196] by 

1 g (11) 
7Zq_-x 

((]j: operator of the symmetry operation Gj) or as "matr ix-e lement  projection operator" [5, 
p. 118] by 

g 
dk X-" o_(k) . (~j (12) Pij(rk) - 7 "z.., 

/=1 

(~(k) . matrix element i j  of the transformation matrix [Gt] for symmetry operation G~ in the 
"q(0" 

irreducible representation Fk; dk: dimension of Fk). Whereas the first operator is easier to use, it 
may lead to ambiguities for degenerate representations so that in these cases, the second formula 
should be used [5, p. 111 If]. 

Taking a certain displacement (say, dXl) as a basis, it must be transformed by all symmetry 
operations of the group. If the set of transformed displacements dx~ does not exhaust the basis 
set {dxi} of displacements, another basis must be treated in the same way. With dxl as a basis, 
we get r 

G: E C 4 C~ C 2 Otv Oltv and Ottd 

• dzl: dxl dy2 -dy4 -dx3 dx4 -dx2 dyl -dy3 

x(A2): 1 1 1 1 - 1  - 1  - 1  - 1  

(here, also the characters for symmetry species As are given). Then, the projection operator 
must be applied to all bases. This gives for As, using the definition of equation 11: 

1 
P ( A 2 ) ' d x l  = ~" [x(E, A2)" E" dXl + x(C4,As)" (~4"dxl 

(13) 
^3 

+ x(Ca, A2) .C 4. dxl  + x(C2,A2) ' (~2 'dxl  + . . . ] .  

The resulting normal deformations are: s 

dxl  + dyl - dx2 + dy2 - dxa - dya + dx4 - dy4, 

dx l  - dyl + dx2 + dy2 - dx3 + dy3 - dx4 - dy4, ( Rz) ,  

dn 1 . -  

dn2 = 

dn3 = 

dn4 = 

dn5 = 

dn6 = 

dn7 = 

dns = 

A1 : 

As  : 

B1 : 

B2 : 

E :  

dxl  - dyl - dx2 

dxl  A- dyl + dx2 

dz l  + dx2 + dx3 

- dy2 - dxa + dy3 q- dx4 + dy4, 

- dy2 - dxa - dya - dx4 + dy4, 

+ dx4, (T.), 
(14) 

dyl + dy2 + dy3 + dy4, 

E : dx l  - dx2 + dx3 - dx4, 

dyl - dy2 + dy3 - dy4. 

They are depicted in Figures 2b-g. 
The next problem is: what kind of symmetry will result after the deformation of a form by 

a certain normal deformation dn? This can be judged from the character set of the respective 
irreducible representation to which dn belongs: 

~The nomenclature of the mirror lines in the table follows the convention used in the character tables. Confer, 
however, Footnote 12. 
SNormalising factors like (1/9) resulting from the projection operator scheme have been omitted throughout this 
paper since they have no meaning for normal deformations. 
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(i) A symmetry element G will be preserved in a deformation dn belonging to the one- 
dimensional representation Fk, if x(G, Fk) = +1. The reason for this can be seen as follows: 
a certain normal deformation dn will be transformed by the symmetry operation G as 

dn' = [G]. dn = [4-1]-dn, (15) 

the character (trace) of the transformation matrix [4-1] being 4-1. If the character is +1, dn is 
transferred into itself by the symmetry operation G, i.e., it is invariant under G. This means, on 
the other hand, that dn preserves the symmetry element G. The deformation d~: corresponding 
to dn will then lead to a form ~' which also displays this symmetry element. If the character 
is -1 ,  then dn is incompatible with G, which therefore will not be preserved under dn. Thus, the 
symmetry group resulting after a deformation dn belonging to the irreducible representation Fk 
comprises all symmetry elements Gj whose character x(Gj, Fk) is +1. This means especially that 
the totally symmetric representation always preserves the full symmetry of the form. Strictly 
speaking, the above rule is valid only for genuine deformations. The rotation R~, and likewise 
the translations Tx and T~ which do not belong to the totally symmetric representation, nev- 
ertheless (by definition) preserve the full symmetry of the form. The representations to which 
R~, Tx, and Ty belong can be seen in the respective character table. If these representations 
appear in the sum after the reduction of F, it has to be found out whether they belong to the 
rotations/translations or constitute genuine deformations. 

(ii) If the representation is degenerate, the specific transformation matrix [G] has to be con- 
sidered. A certain symmetry element G will be preserved under a deformation dn only if the 
transformation matrix [G] has a block diagonal form and if the matrix element transforming dn 
equals @1. To give an example: in the case of an E representation 

dn'l 1 01 (16) 
- \ dn2 ] '  

the symmetry element G corresponding to the 2 x 2 matrix [G] is preserved only by dnt but not 
by dn2. A linear combination of the degenerate normal deformations may result in a new set of 
normal deformations which preserve other symmetry elements and thus lead to forms with other 
symmetries. For examples, see Sections 5.2 to 5.4. 

4. NORMAL COORDINATES OF THE FORM SPACE 

Having developed the normal deformations for a particular problem, the coordinates of the 
form space may be transformed into symmetry-adapted normal coordinates by simply taking the 
linear combinations of Cartesian coordinates corresponding to the individual normal deformations 
as the appropriate normal coordinates. Thus, since the normal deformations are given by 

= ei i"  dxi (17) 
i 

(eji real), the corresponding linear combinations 

= ( i s )  
i 

will form the corresponding set of symmetry-adapted normal coordinates for the form space. 
These normal coordinates have important advantages over Cartesian coordinates for the form 

space: 

(i) A normal deformation dnl of a form can be easily achieved by changing the corresponding 
normal coordinate ni. In this way, also the translation or rotation of a form is possible. 

(ii) It is possible to determine the symmetry of a form from the values of normal coordinates 
in a simple manner. This will be shown in Section 6.3. 
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5. E X A M P L E S  

5.1. Two Points on a Circle (Two Confocal Ellipses) 

First, the superposition of objects of the same kind will be treated, viz., two ellipses which 
have one of their foci in common and can rotate around this point. To simplify the analysis, 
each ellipse will be replaced by two points (e.g., the foci), since both an ellipse and two points 
on a line have the symmetry ~ [  (two points with fixed distance represent a minimal point set 
which is symmetry-equivalent to an ellipse). To model two confocal ellipses, let one point of each 
pair coincide so that  the other can move on a circle (Figure 3a). The rotation angles cq and ~2 
constitute the coordinates of the form space F. The angular displacements dal  and da2 are the 
basis set for the construction of normal deformations of this system. Special configurations have 
II~[ and II~ symmetry, respectively (Figures 3b and 3c). 

y '--~y y 

(a) (b) (c) 

2TI" 

0 
0 ~1  

2 .  

n2 

0 
2rr 0 nl 2-n- 

(d) (e) 

(f) (g) 

Figure 3. Two points on a circle: coordinates and basis displacements (a), charac- 
teristic configurations with symmetries ]I~ (b) and ]]~ (c), and symmetry diagram 
for a2 vs. al (d) and n2 vs. nl (e) with symmetries ]I~ (bold lines) and ]I~ ("bacako 
ground"), and normal deformations of a ]~  configuration for A2 -- Rz (f) and 
B2 (g). 

Starting with the ]D~ configuration of Figure 3b, we get 9 a reducible character set X(F) = 
{2, 0, - 2 ,  0} whose reduction ends up with the decomposition r = A2 + B2. The corresponding 
normal deformations are: 

A2 : dnl = dcq + dc~2 Rz, 
(19) 

B2 : dn2 = dax - da2 deformation to ~ 

(see Figures 3f and 3g). An analogous analysis for an arbitrary ID~ configuration gives I" - A1 +As,  
and the normal deformations are 

A2 : dnl = dcq + da~ Rz, (20) 
A1 : dn~ = dax - d ~  totally symmetric deformation. 

9For D~ groups, I use the character tables for the three-dlmensional Cn~ groups as indicated above, whereas for 
C~ groups, the character tables for Cn have to be considered. 
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To characterise the symmetries within the form space, I propose a symmetry  diagram (Figure 3d) 
where points which represent forms with equal symmetries are depicted in the same way. It can 
be seen that there is a line of constant (IDa) symmetry corresponding to the rotation R~. From 
equation 19 and the data for the configuration in Figure 3b (al = 0, as = ~r), there follows for 
this isosymmetric line 

d a 2 = d a l  and a 2 = a x + r  or a 2 = a l - r ;  (21) 

these are the two isosymmetric lines seen in Figure 3d. Deformation of a ]~ configuration 
along dn2 (in the diagram of Figure 3d: perpendicularly to the isosymmetric line) destroys the 
]I)~ symmetry and leads to a form with ]~ symmetry. 

Since the rotation of a form is not a genuine deformation, this redundancy can be omitted by 
taking (a2 - a l )  as a coordinate for the form space. Then we end up in a one-dimensional form 
space consisting of D~ isosymmetric lines meeting in an isolated ~ point at as - al  = r. On the 
other hand, a transformation of the form space coordinates into normal coordinates according to 

n l  = a l  -{- a 2 ,  (22) 
n 2 ~ o~ 1 - -  a 2 

results in a similar simplification of the structure of the form space (Figure 3e). The ~ isosym- 
metric line is now parallel to nl since dnl belongs to the totally symmetric representation and 
therefore does not change the symmetry of a ]I)~ form. 

The model system described so far may be extended to the superposition of two ellipses with 
their centres in common. This corresponds to two pairs of points laying on two diameters of 
the circle. The symmetry diagrams for these concentric ellipses correspond to the ones given 
in Figures 3d and 3e, but they have half the identity period (the point 2r of Figures 3d and 3e 
corresponds to 7r for this system) so that they are made up of 4 identical copies of the diagrams in 
Figures 3d and 3e. The symmetry ~ in Figures 3d and 3e has to be replaced by ]I)~, and instead 
of ~ ,  one gets ~ .  The normal deformations belong to the same irreducible representations and 
result in the same combinations of Cartesian displacements. 

5.2. Three Points on a Circle (Three Confocal Ellipses) 

This example deals with the superposition of three confocal rotatable ellipses which may be 
represented by three points on a circle taking account of the center of the circle (the focus which 
is common to all three ellipses). Coordinates of the form space are the three angles al ,  a2, a3; 
the corresponding displacements are dal,  da~, and da3 (Figure 4a). 

Characteristic configurations of the system have ID~ and D~ symmetries, respectively (Fig- 
ures 4b and 4c). The three basis displacements give under I~ symmetry a reducible representa- 
tion with x(F) = {3, 0,-1},  whose reduction leads to F = A2 + E, and the corresponding normal 
deformations are (cf. Figures 4f-h): 

A2 : dnl = dal  + daz + da3, 

E : dn2 = 2dal - da2 - da3, 

dn3 = da2 -- da3, 

R~ (preserves ]~), 

deformation to C~, 

deformation to ~ .  

(23) 

These normal deformations can be derived by using the projection operator technique. Here, 
a simplification of the procedure may be introduced [6, pp. 176 f, 182; 7, p. 250]: since in E 
representations of Car groups, characters for mirror lines invariably vanish, the whole information 
is contained in the rotational subgroup Ca. Therefore, only the character table for C3 has to 
be considered to find out the E normal deformations in our example. However, the complex 
characters have to be transformed into real ones by linear combination resulting in [6, p. 182; 7, 
p. 250] 

n Ca C~ 
_1 _1) 

E 0 1 -1  " 
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G" l-- 

(b) (c) 

2"1"1" ~ 

0 n2 2~ 
(d) (e} 

(f) (g) (h) 

~ 2 

Figure 4. Three points on a circle: coordinates and basis displacements (a), charac- 
teristic configurations with symmetries ~)~ (b) and D~ (c), and symmetry diagram 
in the (~2,~3) plane for ~1 m 0 (d) and in the (n2,n3) plane (e) with symmetries 
]I~ (.),  ] ~  (bold fines) and C~ ("background"), and normal deformations of a ]I~ 
configuration for A2 (f) and E (g,h). The E deformations correspond to dn2 and 
dn3. 
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Application of the projection operator onto dal  as a basis deformation then gives dn2 and d n 3  

(vide supra). The matrices for the E representation are: 1° 

(_00 (o0: 
, [ c ~ ] =  . - 0 . 5  [El= 0 , [C3]= -0 .5  

-1 .5  ( :  0), (00:  ,o,,,,__ (24) 

Contemplation of the rules given in Section 3 shows that dn2 preserves only E and thus leads 
to C~, whereas dn3 preserves E and a ~ (but not a" or a m) and hence transforms the configuration 
to D~ as specified above. The degeneracy of dn2 and dn3 has an additional effect: since both 
normal deformations belong to the same reducible representation, they can be combined linearly 
to give other sets of normal deformations. Among these, two sets are especially noteworthy: 

1 3 
dn'2 - doq - 2dot2 + dol3  - -  ~ • dn2 - ~ • d n 3 ,  

1 1 
dn"3 = dcq - do t3  = ~ • dn2 + ~ • dn3, 

(25a) 

1°The upper row of the matrices corresponds to dn2, the lower row to dn3. This is important for the discussion 
which follows. 
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and 
1 3 

dn"u = d a l  + da2 - 2da3 = ~ • dn2 + ~ • dnz, 

1 1 
dn"3 = - d a l  + dau = --~ • dnu + -~ • dnz. 

From the transformation matrices for the mirror reflections, 

for ( dn'z "~. 
dnt3 ]" 

OSb) 

(--005.5--1.5) [~rt , ]=(O1 0 1 ) [ o . , , ]  (0.5 10!5) [at]= -0.5 ' ' = 0.5 - . ' 0 6 a )  

(dn"2 
for dn"3 ,] : 

( 1 0 5 5 )  ( - 0 0 5 . 5 - 1 . 5 )  [a,t] ( O  1 0 )  0.5 [a"] = - 0 . 5  = 1 0.5 ' ' ' 
(26b) 

it can be seen that dnt3 preserves a" whereas dn"3 preserves a " .  Other linear combinations of 
dn2 and dn3 will preserve none of the mirror lines. Thus, degeneracy of dn2 and dn3 means that 
different linear combinations of them will preserve different mirror lines of the same class (er). 

Reduction of the character set X(F) = {3,-1} for ~ symmetry (Figure 4c) gives F = A1 +2A2; 
the normal deformations are (if the symmetry line dissects point P1): 

A2 : dnt = dO:l + de~2 + daz, 

A2 : dn2 = da2 + dot3, 

At  : dnz = d~2 - doe3, 

Rz (preserves ff~), 

deformation to C~, 

totally symmetric deformation. 

(27) 

Since dnl and dn2 belong to the same symmetry species A2, they may mix. This means especially 
that the linear combination 

dn~ = 2dnx - 3dn2 = 2doq - dot~ - dc~3, 

which is identical to dn2 under D~ symmetry (equation (23)), also transforms according to A2 
so that (2dal - da2 - da3) can be used as a form space normal coordinate both under ]D~ and 
]D~ symmetries whereas (da~ + da3) is a normal coordinate only under D~ symmetry but not 
under D~. 

The symmetry diagram for the whole system is depicted in Figure 4d. The filled circles mark 
intersection points of ~ isosymmetric lines where the symmetry is IDa. It must be stressed, 
however, that there are also intersection points of the same three D~ isosymmetric lines (points 
P(0, 0), P(0, 27 0, and so on) where the symmetry is only ~ .  These two types of intersection 
points are to be discussed separately: 

(i) ~ intersection point: there is a symmetry-preserving rotation (dnt) giving rise to a D~ 
isosymmetrie line which intersects the plane of the paper obliquely in the D~ intersection point. 
On the other hand, dnz deforms the D~ configuration to ~ ,  whereas dn2 leads to C~. But, as has 
been explained above, dn3, dn~, and dn~ constitute three equivalent possibilities for breaking the 
1~ symmetry, by preserving ~t, a , ,  or a "  separately to give three equivalent ~ configurations. 

(ii) ]D~ intersection point: here, the three symmetry lines are coincident; therefore, the sym- 
metry of the configuration is only D~. There are three ways to preserve this D~ symmetry under 
a deformation, viz., by rotating a pair of lines by an angle 4-da off the fixed third line: in the 
resulting configuration, the mirror line a', a", or ~r m may be the bisector and will then be pre- 
served. These three possibilities correspond to the three lines meeting in the ID~ intersection 
point. Mathematically, there is an ambiguity in the assignment of the transformed basis de- 
viations: since dai = da2 = da3 and da'l  = a(dat)  = - d a l ,  one may equally well take the 
assignments da'! = -da2  or dart = -da3.  These three assignments lead to the same three D~ 
lines intersecting in the 1~ point. 
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The symmetry diagram may be reduced since only two non-trivial deformations are present. 
This reduction has already been performed in Figure 4d by setting a l  = 0 (another way would 
have been a plot of (a3 - a l )  vs. (a2 - a l ) ) .  Alternatively, the form space coordinates may be 
transformed into normal coordinates (Figure 4e). In this case, it is necessary to have the same 
normal deformations throughout the form space. Therefore, in the case of ]D~ symmetry, the 
normal deformation dn~ = 2dal - da2 - da3 was taken instead of dn2 = da2 + da3 as has been 
explained above. After the transformation of the form space coordinates into normal coordinates, 
the structure of the form space is nicely simple but nevertheless topologically equivalent. Isosym- 
metric D~ lines in Figure 4e correspond to dna (vertical lines), dn~ (ascending lines), and dng 
(descending lines). They illustrate the degeneracy of the deformations dn2 and dn3 in accordance 
with the above discussion. 

As in Section 5.1, we may extend the problem to the analysis of three concentric rotatable 
ellipses. This system corresponds to three pairs of points on a diameter each which can move 
on the circle. The symmetry diagram corresponds to a collage of four copies of the diagram in 
Figure 4d or 4e, since its identity period is half the size of the present diagram. Instead of ]l)~ 
symmetry, we find ]I)5, and instead of D~, we have ll)~, the "background" symmetry being C~. 
The deformations under ~ are: 

As : dnl = dal + da2 + da3, 

E2 : dn2 = 2dal - dc~2 - dot3, 

dn3 = dc~2 - dct3, 

RZ 

deformation to C~, 

deformation to D~, 

(2s) 

in perfect analogy to the case of three confocal ellipses. 

5.3. Three Points in a Plane (Arbitrary Triangles) 

Symmetries of arbitrary triangles can be treated (as an extension of the problem sketched 
in Section 2) by allowing all three vertex points P1, P2, and /:)3 of the triangle to move freely 
within the plane. Taking the coordinates x and y for each point as a basis (Figure 5a) gives 
a form space IF = R 6. Of course, the system is redundant if rotation and translations are 
considered unimportant.  In this case, besides a transformation of the form space coordinates 
into normal coordinates, also other ways to tackle the problem with a reduced coordinate set 
may be advantageous (vide infra). 

dyl 

dy2  
0'" dx2 

0" 

• dx~ 

~d~ dxs 
~=III 

(a) 

(b) (c) 

(d) (e) 

Figure 5. Cartesian basis displacements for an equilateral triangle (a) and the cor- 
responding normal deformations: A1 (b), A2 (c), and E (d and e). 

The highest symmetry in the system is ]I)~ (if the special case of an incidence of all points 
giving ]])~o symmetry is not to be taken into account, though it corresponds to a point of our 
form space). Under ]])~ symmetry, the reducible character set for the displacements dzk, dyk 
(k = 1 , . . .  ,3) is X(F) = {6,0,0} which can be reduced to F = A1 + A2 + 2E. The corresponding 

CN4~ 25:9-F 
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normal deformations are (with a = 1/2; b = v/3/2): 

A x  : d n t  = d y l  - b . d z 2  - a . dy2 + b . d z 3  - a . dy3  deformation, 

A 2  : dn~  = d x l  - a . dx2  + b . dy~ - a . d x a  - b . dy3 R z  , 

E : d n 3  = d x l  + dx2  + d r 3  T~ ,  

d n 4  = dyx + dy2 + dy3 T y ,  

E : dn5  = d x l  - a • dx2  - b .  dy2 - a • d x a  + b .  dy3 deformation, 

dn6  = d y l  + b • d z 2  - a • dy2 - b . d x a  - a • dy3 deformation 

(29) 

(Figures 5b-e). Here, the basis displacements have been chosen as in [3, p. 126] to facilitate the 
comparison. The normal deformations d n l  and dn2  are identical with the ones derived in [3], but 
for the first E representation, these authors have (c = 3/2): 

E :  d n t 3  = 2 .  d y l  + a . dy2 + a • dy3  + b . dx~  - b . d x 3 ,  

d n ' 4  = 0 • d y l  + c . dy2 + c . dy3 - b . dx2  + b . d x 3  
(30) 

(deformations for the second E representation are not explicitly stated in [3]). It can easily be 
seen that these normal coordinates are linear combinations of d n 4  and dn6  given above. To get a 
clearer picture of the normal deformations, it is desirable, however, to separate the translation Tu 
from dnl3 and dnl4. Analogously, the derivation of deformation coordinates for the second E 
representation according to the algorithm described in [3, Chapter 6.5] gives 

d n ' 5  = 2 • d X l  + a • dx2  + a • d x 3  - b . dy2 + b . dy3 ,  

d n ' 6  = O . d x l  + c . dx2  + c . d x a  + b . dy2 - b . dy3 .  
(31) 

From these deformations, d n 3  and d n 5  can be obtained by separating the translation T~ from the 
genuine deformation. 

The matrices for the joint transformation of the E deformations are: 

for d n 4  : 

' - -  ' - - a  ' 

[ a ' ] - - ( O  1 01) [ a " ] ' - ( b  b ) [ a " ] =  ( a  b Z b a )  ' - - a  ' ' 

(32a) 

dn5  ) 
for dn6  : 

°1) . . - ( :  (:: :o) 
(o I (: :o) 

(32b) 

The translations T~ and T~ are symmetry-preserving, of course, in any arbitrary linear combina- 
tion. Among the genuine deformations dn5 and dn6, only dn6  preserves a non-triviM symmetry 
element ( v i z . ,  a~), and thus corresponds to a transition to ]D~. For the sake of symmetry, there 
must equally well be possibilities to preserve a" and am. They can be found by arranging dn~ 

and d n 6  in other linear combinations: 

d n " 5  = - a  • d X l  - b . d y l  - a • dx2  + b . dy2 + d z 3  = - a  • d n 5  - b . d n 6 ,  

d n " 6  "- + b  • d x t  - a • d y t  - b • dx2  - a • dy2 + dy3 = + b  • d n 5  - a • d n 6 ,  
(33a) 

o r  

d n ' 5  = - a  • d x l  + b .  d y x  + d z ~  - a • d z 3  - b • dy3 = - a  • d n 5  + b . d n 6 ,  

d n m 6  = - b  . dxx  - a • dyx + dy2 + b . d x 3  - a • dy3 = - b  . dn5  - a . d n 6 .  
(33b) 
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It can easily be checked by looking at the corresponding transformation matrices that, first, dng 
preserves a"  and dng I preserves a m, and secondly, the linear combinations given above are the 
only ones which preserve a mirror line. 

For a configuration with D~ symmetry (an isosceles triangle), the character set is x(r )  = {6, 0} 
which reduces to r = 3A1 + 3A2. The normal deformations are then: 

A1 : dnl = dz2 - d x 3  totally symmetric deformation, 

A1 : dn2 = dyl - dy2 - dy3 totally symmetric deformation, 

A1 : dn3 = dyl + dy~ + dy3 Ty, 

A s :  dn4 = dzl + d:r2 + dz3 T,:, 

A2 : dns = dZl + dy~ - dy3  R z ,  

A2 : dne = dzl deformation to C~. 

(34) 

These expressions have been calculated by the method of the projection operator. Since the 
deformations dnl to dn3 belong to A1, and dn4 to dn6 belong to A2, one can equally well use 
linear combinations of them. In order to have consistent deformations throughout the form space, 
the normal deformations for D~ symmetry may be taken over to D T configurations giving the same 
numbers of symmetry species A1 and As as those in equation (34). 

The problem of form variation in triangles can also be treated with reduced coordinate sets. 
One example has been given in Section 2. Another possibility is to fix points P2 and Pa and to take 
the coordinates Xl and Yl of point P1 as coordinate set (Figure 6a). Rotation and translations 
will be omitted this way. The symmetry diagram for this system is displayed in Figure 6b. Here, 
the y axis corresponds to a =/~ (angles are located as in Figure 1) in the example of Section 2, 
the left circle to a = 7, and the right circle t o / /  = 7- The intersection points of these three 
curves give a =/~ = 7 and hence, D~ symmetry. On the other hand, the right intersection point 
of the left circle with the z axis corresponds to the configuration with P1 = P3 (D~). Starting 
from this configuration, two types of deformation retaining the symmetry D~ are possible: a shift 
of point Px either along the z axis or on the arc of the left circle. On the other hand, the left 
intersection point of the left circle and the x axis gives a line P1 P3 bisected by P2 which displays 
D~ symmetry. 

y 
p, (x,y,) 

' 2 
-1 1 

(a) (b) 

Figx~re 6. Triangle with reduced degrees of freedom (a): only point P1 = (xl, yl ) can 
be varied. Symmetry diagram (b) with symmetries D~ (A), ~ ((9), ~ (circles and 
axes), and C~ ("background"). 

5.4. Four Points in a Plane (Arbitrary Quadrilaterals} 

The highest possible symmetry in this system (besides D~ for an incidence of all vertices) 
is D~ (a square). The deformations of the square and their analysis have already been presented 
in Section 3 (Figure 2). 

Under D~ symmetry (rectangle or rhombus) and also under D~ (trapezium or unsymmetric 
rhombus) one gets the same normal deformations, but they belong to different irreducible repre- 
sentations; the correlation is as follows: 11 

11For correlation tables, see [3, p. 333 if]. If in Cnv only one mirror line is preserved, the resulting group is 
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represe~atation in ~ :  AI A2 BI B2 E 
representation in ]I)~: AI A2 A1 A2 BI + B2 
representation in ~ :  A1 A2 AI A2 AI + A2 

This means tha t  the representation of the 8 Cartesian displacements reduces under ]D~ symmet ry  
to r = 2A1 + 2A2 + 2B1 + 2B2, and under D~ symmet ry  to r = 4A1 + 4A2. Since the normal 
deformations have the same composition in all symmet ry  groups, their spatial  directions are 
constant everywhere in the form space. 

Analogously to the case of arbi t rary triangles (Section 5.3), there is a degeneracy in the normal 
deformations belonging to the symmet ry  species E.  For these normal deformations, the relevance 
of linear combinations has therefore to be considered. The translations T= and T~, of course, span 
an isosymmetric plane since arbi trary linear combinations of them are symmetry-preserving.  For 
dn7 and dns (equation (14)), it follows from the transformation matrices and also from their 
pictures (Figure 2g) that  dn7 preserves ay, and dn8 preserves a=. The only linear combinations 
of dn7 and dn8 which preserve a symmet ry  line are 12 

dn'7 = dn7 - dns (preserving ~q), 

dn'8 = dn7 + dns (preserving ad). (35) 

The pictures of these deformations can easily be inferred by vector addition from Figure 2g. 
The full network of possible deformations of a square is'given in Figure 7. 

4,7 4,8 7,8,7',8' 3,8' 3,7' 

Figure 7. Graph showing the network of normal deformations starting from a square 
(]~ symmetry) down to an asymmetric (C~) quadrilateral. Symmetry-preserving 
deformations are shown as loops. Numbers denote the different normal deformations 
(for the sake of clarity, "dnl" has been replaced by "1," etc.). 

given there as Ca. However--as can be inferred from the Mulliken symbols for Ca (A I, A')--this group is 
regarded as being the Clh group (with a horizontal mirror plane), whereas "genetically" it should be C1~ (with 
a vertical mirror plane). Since the genetic relation~hp between the groulm is essential for the consideration of 
form transitions, I denote the resulting group by Clv (here: ]I)~) and classify its irreducible representations as A1 
and A2, respectively. 
12The four mirror lines of the square will be termed here after their locations a=,ay (along the z and y axes, 
resp.), o' d ("diagonal," bisecting the first quadrant), and aq (transverse, in German "quer," bisecting the second 
quadrant). The subgroups of ]I~ will be termed after the mirror lines they contain as D~=, ~[)~u' ]])~d, ]I)~q, ]I)~=u, 
and ~dq" 
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The relationships for the square itself and the D~ forms derived from it (D~,u: a rectangle, and 
D~dq: a rhombus) are illustrated in Figure 8. Normal coordinates have been used here to give 
a clearer picture of this part of the form space. In the (n¢, ns) plane, it is obvious (Figure 8a) 
that the square (D~ symmetry) forms an intersection point of four D~ isosymmetric lines, each 
preserving one of the four mirror lines of the square. The action of dn'¢ and of dn's (leading to 
D~q and D~d , resp.) is also clearly visible. On the contrary, given a D~ form (Figures 8b-c), the 
effect of the degenerate E deformations depends on which mirror lines are present in the starting 
form: in D~x~, dn~ and tins preserve % and o~, resp., whereas in ]I)~dq, dn~7 and dn~s preserve 
~,q and ad, resp., in accordance with what has been said above. 

" / i f  T,X - , ,  
¢'; D;y 

n 7 !"17 I17 

(a) (b) (c) 

Figure 8. Isosymmetric manifolds for tim deformation of a square in the (nr ,ns)  
plane near a ]]~ point (nl ~ 0, n3 = n4 = 0) (a), near a ]~)~y point (nl  ~ 0, 
n 3 = 0, n$ ~ 0) (b), and near & ]I~d q point (n 1 ~ 0, n3 ~ O, n4 ---- O) (c), see text. 
Symmetries are: ]I~ (m), ] ~  (.),  ]I~ (bold lines), and C~ ("background"). 

5.5. Two Point Pairs on Two Circles (Two Concentric Ellipses) 

An interesting case is given by two rotatable ellipses whose fixed centres are at some distance. 
Reducing the ellipses to point pairs on circles, this gives two distinct circles with one pair of 
points on each (Figure 9a). 

The highest possible symmetry is D~. Under this symmetry, the character set x(F) = 
{2, 0, -2 ,  0} for the representation reduces to F = A2 + B2, and the corresponding normal defor- 
mations are: 

A2 : dnl = dal - da2 deformation to C~, 
(36) 

B2 : dn2 = dcq + da2 deformation to D~. 

There exists no symmetry-preserving deformation, but the two deformations lead to the two 
subgroups of D~, viz., D~ and C~, and give rise to two isosymmetric lines in the symmetry 
diagram (Figure 9f). 

Deformations starting at points on the D~ isosymmetric line (configuration of Figure 9c) belong 
to symmetry species A1 or A2 ( r  - A1 + A~): 

A1 : dn2 = doq + da2 totally symmetric deformation, 
. ( 37 )  

A2 : dnl = dal - da2 deformation to C1. 

On the C~ isosymmetric line, we have F = A + B and 

A : dnl = dal - da2 totally symmetric deformation, 
. ( 38 )  

B : dn2 = dal + da2 deformation to C 1. 

It is surprising that besides the D~I isosymmetric lines, there exist also isolated D~ points in 
the form space which correspond to the configuration of Figure 9d. That they must be isolated 
will be clear from the analysis of deformations starting from such a point: the basis deformations 
give rise to a representation with X(r) = {2,-2} which reduces to F = 2A2: both deformations 
destroy the D~ symmetry of the form leading to C~. Since there is no symmetry-preserving 
deformation at all, the D T point must be an isolated point. 
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q ;  
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2rr 

0(2 

0 

(a) 

do( 2 

@-- 
do( 2 

(c) (d) 

0 U1 
(f) 

(e) 

Figure 9. Two point pairs on two circles: coordinates and basis displacements (a), 
configurations with symmetries ] ~  (b), ~)~ (c and d), and C~ (e), and symmetry 
diagram with symmetries ]]~ (s), ]~)~ (o and --) ,  C~ (- - -), and C~ ("background"). 

5. 6. Mixing of Three Forms 

As has been stated in Section 2, a form variation may also be performed by a mixing of forms 
by weighted addition of their form functions or their Fourier coefficients [1]. Here, forms will be 
constructed by mixing pure Fourier coefficients of different symmetries according to 

R(~) = f l . c o s k ~ +  f 2 . c o s i ~ + f a . c o s m ~  (39) 

with 

fx + f2 + f3 = 1. (40) 

For the fin's we take 0 _< fir. _< 1, so they are located within the positive orthant ]~. of the 
Euclidean space. Because of the restriction equation (40), the form space ~" is reduced to the 
simplex S 3, i.e., the triangle between the points P1 = (1,0, 0), P2 = (0, 1, 0), and/°3 = (0, 0, 1) 
of R~. Figure 10 shows some examples of such form variations. It is evident that if the symmetry 
group at the vertex point Pi is G(Pi), then we must have on the edge Eij connecting the points 
Pi and Pj 

G(EIj) = G(Pi) f"l G(P/), (see footnote 13) (41) 
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and in the interior I of the simplex 

G(I )  = G(PI )  n G(P2) N G(Ps)  (42) 

so that  the topology of isosymmetric lines is always very simple. 

",., D; 

D; D; D~ D4 D~ D ~ 
(a) (b) 

Figure 10. Simplices for the mixing of three Fourier coefficients: 
R(~) = ~1 • cos 4~ + ~2 • cos 6~ + ~3 • cos 9~o, 
R(~) = ~i • cos4~ + f~2 • cos6~ +/~3 • cos 8~, 
R(~p) = fll " cos 2~o -I" ~2 " cos 3~p q-/~3 " cos 6~p, 

with~l + ~ 2 + ~ a = l .  

v; 

/,\ 

(c) 

(a) 
(b) 
(c) 

6. I S O S Y M M E T R I C  M A N I F O L D S  IN F O R M  S P A C E S  

6.1. Types of Isosymmetric Manifolds 

The  symmetry analysis of the form space shows that  there are isolated points, lines, surfaces, 
and also volumes (in summary: manifolds) of constant symmetry. They  have been termed "iso- 
symmetric manifolds" here. In most cases considered in this paper, these manifolds are straight 
lines and planes, respectively, but  in general, also curved lines and surfaces can be found (cf. the 
example in Figure 6). 

The dimension N of the form space IF is given by the number of coordinates that  will be 
considered. Then there will be N normal deformations dni starting from every point P in F. 
According to the irreducible representation to which a certain dni belongs, it leads from the 
symmetry  G of the starting point to a second symmetry Gi in the neighbourhood of it. These 
relationships can be best displayed by a deformation graph (Figure 11) showing all N deformations 
starting from a point of given symmetry and the resulting symmetries, 14 symmetry-preserving 
deformations being represented by a loop. Since the kind of analysis performed in this paper 
will primarily predict a descent but not an ascent in symmetry, graphs have been directed to 
subgroups but  not to supergroups (see, however, Section 6.2). In turn, every type of deformation 
graph results in a certain topology of the isosymmetric manifold in the vicinity of the point of 
the form space which is considered. The most important  types for two-dimensional form spaces 
are shown in Figure 11. 

In general, two normal deformations dn' and dn" applied to a form ~ (corresponding to a 
point P in the form space) with symmetry G will result in forms ~ and ~" with symmetries G ~ 
and G".  Then,  a linear combination 

dn'" = ff  dn' + ff'dn" with i f ,  f~" ~ 0 (43) 

(/~',/~": weight factors) will result in a form ~'" with symmetry  G"'  where 

G " = G ' N G " .  (44) 

l a g  I n C~ means the section of the sets of symmetry elements of both groups. 
14If non-eqttiva]ent points with the same symmetry occur in the form space, then there is a separate de/'ormation 
graph for each point (compare isolated ~)~ points with points on ]])~ lines in Section 5.5). 
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CG G G 

L) (a) (b) (c) (d) 

CG' G":) 

(e) 

Figure 11. Topologies of isosymmetric manifolds around a reference point and the cor- 
responding deformation graphs for this point  taking into account only non-degenerate 
deformations (a-e).  The reference point is always the centre of the square which is 
presumed to have symmetry ~ .  This point has been made to s tand out only if its 
symmetry differs from tha t  of neighbouring points. The directions of the normal 
coordinates n '  and n "  corresponding to the two deformations dn' and dn" (see text) 
are horizontal and  vertical, respectively. 

For two-dimensional form spaces, there are 5 possibilities displayed in Figure 11: if both normal 
deformations dn' and dn" are symmetry-preserving 15 (i.e., G = G I = G" = Gin), then P is 
part  of an isosymmetric plane of G (Figure l la ) .  If dn' is symmetry-preserving and dn" leads 
to some subgroup G" (G = G ~ D G" = Gin), then we have P as a part  of an isosymmetric 
line of G embedded in an isosymmetric plane of G" (Figure l ib ) .  If both deformations lead 
to the same subgroup G ' (G D G ~ = G" = Gin), P is embedded in an isosymmetric manifold 
of G ' (Figure l lc ) .  If dn ~ and dn" result in two subgroups G ~ and G" of G with G" being in 
turn a subgroup of G ~ (G D G ~ D G" = Gin), then the point P with symmetry  G lies on an 
isosymmetric line of G ' embedded in a plane of G" symmetry (Figure 1 ld).  The case of two 
deformations leading to two different subgroups (G D G' and G D G" with G "  = G' N G" 
and G' # G" # G"')  which corresponds to the example described in Section 5.5 is shown in 
Figure 1 le. Thus, Figure 11 summarises the topologies of isosymmetric manifolds found for two 
non-degenerate deformations. 

In sum: 
(i) If there are s symmetry-preserving normal deformations starting in P (with symmetry G), 

then P is part  of an s-dimensional isosymmetric manifold of G spanned by the directions of 
the corresponding deformations. If all N deformations lead to the same subgroup G', then P 
is an isolated point (0-dimensional isosymmetric manifold) of G; embedded in an N-dimensional 
isosymmetric manifold of G'. 

(ii) If in an N-dimensional form space there are only 2 symmetries G and G', s normal de- 
formations starting from P (with symmetry G) being symmetry-preserving, and s' deformations 
leading to symmetry  G'  (s + s' = N),  then P lies in an s-dimensional isosymmetric manifold of G 
which comprises the whole form space if s = N, s' = 0, otherwise it will divide an N-dimensional 
isosymmetric manifold of G'. If there are more then two symmetries in the form space, their 
mutual subgroup-supergroup relationships will determine the topology of the isosymmetric man- 
ifolds. 

(iii) Intersection manifolds of isosymmetric manifolds are themselves isosymmetric manifolds. 
For the symmetry  G(MI N M2) of the intersection manifold of two is~ ~ymmetric manifolds M1 
and M2, we have 

G(r~l n M~) = G(M,) 0 G(M2) (45) 

15Note tha t  in the present context these are not only the totally symmetric deformations but  also rota t ion and 
translations,  if they are possible. In the following, G,  Gi ,  ~ . ,  and  ~ m  always refer to the symmetries of the 
reference point and  the symmetries induced by dn I, dn", and dn TM, respectively. The nomenclature in Figure 11 
has been adapted  to this convention. 
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(and analogously for more than two intersecting manifolds). Thus, the intersection manifold 
corresponds to a supergroup of the symmetries of the intersecting manifolds if the groups G(IV~) 
are different as in the case of the l~  intersection point in Section 5.5, or if the intersecting 
manifolds belong to the same (IDa) symmetry, but on the intersection manifolds the mirror lines 
have different positions (cf. the ]D~ point in Section 5.2). On the other hand, if the intersecting 
manifolds have the same (D~) symmetry, and the mirror lines of the intersecting manifolds 
coincide on the intersection manifold, then the latter has the same symmetry as the Mi's (cf. the 
]D~ intersection point in Section 5.2). 

6.2. Descent and Ascent in Symmetry  

The symmetry analysis of deformations gives, in principle, informations about a descent in 
symmetry:  if a genuine deformation dn starting at a point P with symmetry G does not belong 
to the totally symmetric representation, then neighbouring points in the direction given by dn 
will have a certain lower symmetry. But what about an ascent in symmetry:  how does the system 
pass to a higher symmetry? By combination of the symmetry analysis and the transformation of 
form space coordinates, this question can be answered unambigously: 

(i) An ascent in symmetry is only possible through a genuine deformation belonging to the 
totally symmetric representation. This is simply since other deformations invariably lower the 
symmetry. 

(it) An ascent in symmetry is possible only through the one deformation which brings about 
the corresponding descent in symmetry. This is because the reversibility of deformations. The 
statements (i) and (it) are connected as follows: since a normal deformation which induces a 
symmetry transition G ---* G' must preserve the symmetry elements of G ~, it will under G' belong 
to the totally symmetric representation. These relationships are illustrated in Figure 12 for the 
case of two point pairs on two circles (cf. Section 5.5). Here, in the subgroups C~, C~, and ]l)~, 
the totally symmetric deformations lead either to the same group or to the supergroup. If, for 
instance, the deformation dn = dal  - da~ leads from ]D~ to C~, then this deformation must 
tinder C~ belong to the totally symmetric representation and potentially lead back to D~. 

• > ID 2 
I 

< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I i 

dnl=dal+da2 dn2=dal-da 2 
$ $ 

) D1 ~2 
I } 

F I I 

d n l = d ~ l + d ~  2 d n 2 = d ~ l - d ~  2 d n l = d ~ l + d ~ 2  
I I 

) C 1 < 
J 

i i 

d n l = d ~ l + d ~ 2  d n 2 = d ~ l - d ~  2 

( 

I 

dn 2=dcc l-da2 - 

Figure 12. Routes b e t w e e n  t h e  different symmetries for two point pairs on two circles 
in relation to the two possible normal deformations (see text). 

(iii) If a certain deformation dn' leads from symmetry G to its subgroup G', then it is possible 
to go back from G' to G along the very same deformation coordinate if, by this process, the value 
of the corresponding normal coordinate W of the form space is brought to zero. In this way, the 
symmetry-reducing deformation can be cancelled. If there is more than one path between G and 
G ° (cf. Figure llc), then the normal coordinates corresponding to all of these ways have to be 
brought to zero. This is since n' = 0 means that there is no symmetry-reducing deformation at all 
in the direction of dW (see next section). By the way, in Sections 5.3 and 5.4, the totally symmetric 
deformations should potentially lead to the supergroup of the respective system, viz., ]~*oo which 
will be reached if all points coincide. From the pictures of the totally symmetric deformations of 
both systems, it can be seen that this is possible. In this case, we find nl = 0. 
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6.3. S y m m e t r y  A n a l y s i s  o f  a F o r m  by Means  o f  I t s  N o r m a l  Coordinates  

The symmetry of a form can in an easy way be inferred from the values of its normal coordinates. 
This will be illustrated here for a square (eft Sections 3 and 5.4). From the normal deformations 
of the square (equations (14) and (35)), the following normal coordinates of the form space can 
be derived by integration (see Section 4): 

n l  -~- X l  "~ Y l  

n 3  = ,T1 - -  Y l  

n 4  --: ~rl + Y l  

n 5  -"  ~ff l "~- x 2  

n6 = Yl + Y2 

n 7  "= T,I - -  ;g2 

n8 = Yl - Y2 

a t 7  = X l  - -  Y l  

a t 8  = ,T1 • Y l  

- -  X 2 

- -  X 2 

-t- x2 

+ Y2 -- z3 -- Y3 + Z4 -- Y4, 

+ Y2 -- xa + Y3 -- x4 -- Y4, 

-- Y2 -- Za "[- Y3 "~- ~:4 "~" Y4, 

- -  y 2 - -  x 3  - -  y a  - -  x 4  "~ Y 4 ,  

-~ X 3 -~- X4 ,  

+ Y3 + Y4, 

+ x3 -- z4, 

+ Y3 -- Y4, 

- -  X2 + Y2 + x 3  - -  Y3 - -  x4 Jr Y4, 

- -  x 2  - Y2 + ~:3 + Y3 - -  z 4  - -  Y4. 

(T~), 
(46) 

(T~), 

For some simple forms resulting from a square by the different normal deformations (Figure 13), 
Cartesian and normal coordinates are given in Table 1. 

! 

.i 
I 

y I 
(-) 

X 
(c) (b) 

if) (e) (g) 

(d) 

(h) 

Figure 13. Schematic drawings of the forms resulting from a square (faint lines) by 
the normal  deformations d n l  (a), dna (b), dn4 (c), dn3 + dn4 (d), d n r  (e) ,  dns  (f), 
dn~r (g), and  dn~s (h); compare with Table 1. 

It is obvious that  the normal coordinates, corresponding to the normal deformations by which 
the forms result from a square, have nonzero values; all others (except nl,  corresponding to the 
totally symmetric deformation, and linear combinations of nonzero coordinates like n~ and n~) 
vanish. This way, a simple and efficient symmetry analysis is possible by deducing the symmetry 
elements of a form as the set of symmetry elements which will be preserved by all deformations 
corresponding to nonzero normal coordinates of the form. 

This type of analysis is possible, if the forms to be analysed are aligned with the coordinate 
system so that  the orientation of their mirror lines and the numbering scheme of the vertices match 
the standard arrangement of Figure 2. It can, however, not necessarily be taken over to general 
orientations of the forms. Using the expressions for the normal coordinates in equations (46) for 
forms of arbitrary orientation means that  the directions of the deformation vectors will be retained 
regardless of the orientation of the square. Figure 14 illustrates how the normal deformations 
change if point P1 of the square is rotated. 
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Table 1. Cartesian and normal coordinates for the forms of Figure 13 resulting 
from a square by normal deformations dnl to dn's (see text) .  Values for n5 and ne 
(corresponding to the translations T= and Tu, resp.) have been omitted: they vanish 
since the reference square is centered at the origin. Below the form names, the 
deformations by which they result from the square are given. 

87 

Form/ Fig. xl yl x2 y2 xz yz x4 y4 
Symmetry 

Deformation 13 nl n2 n3 n4 nr ns n~r n~s 

Square a xi 1.2 1.2 -1.2 1.2 -1.2 -1.2 1.2 -1.2 ]I~ 
dnl ni 9.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rectangle b xi 1.2 1.0 -1.2 1.0 - 1 . 2  - 1 . 0  1.2 - 1 . 0  ]I~xy 

dn3 ni 8.8 0.0 0.8 0.0 0.0 0.0 0.0 0.0 
Rhombus c xi 1.2 1.2 -0.8 0.8 - I  .2 -1.2 0.8 -0.8 ]I~d q 

dn4 ni 8.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 
Quadrilateral d xi 1.2 1.0 -1.0 0.8 -1.2 -1.0 1.0 -0.8 C~ 
dn3 -l- dn4 ni 8.0 0.0 0.8 0.8 0.0 0.0 0.0 0.0 
Trapezium e xi 1.2 1.0 -1.2 1.0 -0.8 -1.0 0.8 -1.0 ]]~y 
dn7 ni 8.0 0.0 0.0 0.0 0.8 0.0 0.8 0.8 
Trapezium f xi 1.0 1.2 -1.0 0.8 -1.0 -0.8 1.0 -1.2 ~)~z 
dns ni 8.0 0.0 0.0 0.0 0.0 0.8 --0.8 0.8 
Rhomboid g xi 1.2 0.8 -1.2 1.2 -0.8 -1.2 0.8 -0.8 ]I~q 
dn~r ni 8.0 0.0 0.0 0.0 0.8 -0.8 1.6 0.0 
Rhomboid h xi 1.2 1.2 -1.2 0.8 -0.8 -0.8 0.8 -1.2 ]I~d 
dn~$ ni 8.0 0.0 0.0 0.0 0.8 0.8 0.0 1.6 

I t  can be seen tha t  dnx (expansion of  the square) cont inuously t ransforms into dn2 (rotat ion) ,  
dn3 t ransforms into dn4, and vice versa, whereas dns,  dn6, dn7, and dns  do not  t ransform into 
one another .  From the pictures it can be seen tha t  in Figure 14a, the  ]I)~ s y m m e t r y  of  the square 
is preserved for all ro ta t ion  angles (only the  area of  the  square changes).  In Figure 14b, the C2 
ro ta t ion  axis is preserved under  all c ircumstances,  whereas the two mirror lines are preserved only 
in special or ientat ions  (first, third,  and four th  one). In Figure 14c, for general ro ta t ion  angles, 
the s y m m e t r y  of  the form is reduced to C~, and only for special or ientat ions (first, third, and 
four th) ,  one mirror  line is preserved. From these results, the following can be deduced:  

(i) If, for an a rb i t ra ry  quadri lateral ,  only nx and /o r  n~ have nonzero values, 16 then this 
quadri la teral  mus t  be a square. 

(ii) I f  n3 a n d / o r  n4 have nonzero values, the min imum s y m m e t r y  of  the form is C~, bu t  in 
special cases it may  be ]I)~. 

(iii) I f  n7 a n d / o r  ns have nonzero values, then the s y m m e t r y  of  the quadri la teral  will be C~, 
or in special orientat ions,  1I)~. 

Thus ,  for this special choice of  normal  coordinates  (which can be checked very fast by a 
compute r  program) ,  a reduced s y m m e t r y  analysis of  forms is possible. To take full advantage  
o f  the possibilities of  such an analysis, one has to  formulate  the expressions for the normal  
coordinates  in a rotat ion- invar iant  manner .  This can be done by using analogues to the internal 
coordinates  of  molecules (radial and angular  displacements  of  the vertices of  the form). Then ,  
n3 ¢ 0 and n 4 , . . . , n s  = 0 would mean tha t  the form has ]D*2~y symmetry ,  17 n3 :-  0, n4 ~ 0, 
and n s , . . .  , n s  = 0 would denote  a D~d q symmetry ,  whereas nz, n4 ¢ 0, n s , . . .  ,ns  = 0 would 
characterise a form with C~ symmetry .  This  way, a precise analysis of  the form s y m m e t r y  could 
unambiguous ly  determine all symmetr ies  of  deformed squares displayed in Figure 7. 

The  restr ict ions described above are, of  course, not  relevant to the normal  deformat ion analysis 
per formed in Sections 3 and 5.1 to 5.6. There,  the analysis is made  for a precisely defined 

16The normal coordinates corresponding to translations, i.e., n5 (Tx) and ne (Ty), will not be considered here; 
they may have arbitrary values. 
IrD~xy symmetry would mean in this enlarged context of rotated forms that the mirror lines bisecting the edges 
of  the form are preserved; in ]]~dq, these would be the mirror lines running through the vertices of the form. 
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~ 1  /, 1 

dn 1 dn 2 -dn 1 

(a) 

dn 3 dn 4 -dn 3 
(b) 

dn 7 
(c) 

(dn-~) -dn 7 

Figure 14. Effect of a rotation of the form on the normal deformations of a square 
when tile respective directions of the displacement vectors are retained during the  
rotation, shown for dnl (a), dn3 (b), and dnr (c); see text. The rotation angle can 
be inferred from the position of point P1 which is marked by "1." 

arrangement of the form. The conclusions drawn there about matrix representations are valid 
for arbi trary orientations of the form, in contrast to the mathematical expressions for the normal 
coordinates which can be taken over to arbitrary orientations only with the information loss 
detailed here. 

7. CONCLUSIONS 

The symmetry  analysis of deformations presented here is in effect a local one: a certain point 
within the form space (a form) for which the analysis is to be made, has to be set in advance. 
Conclusions can then be drawn primarily for certain surroundings of this point. This is analogous 
to the analysis of vibrating molecules: there the analysis is performed in the vicinity of the equi- 
librium configuration of the molecule. In the form space, however, such a privileged configuration 
does not exist so that the restriction to a local analysis would be a drawback. 

However, global predictions can be made at least for form spaces spanned by non-angular 
coordinates if throughout  the form space, the same normal deformations are used. As has been 
shown in Section 5.2, under a subgroup symmetry, the projection operator technique may give 
a different composition of a normal deformation, but in such cases, the corresponding normal 
deformation for the supergroup will belong to the same symmetry species (eft dn2 and dn~ 
there). Conclusions about an ascent in symmetry and a simple and efficient symmetry analysis 
of forms based on their normal coordinates are also possible for these form spaces. 

For form spaces spanned by angular coordinates, the situation is somewhat more complicated. 
Here, the isosymmetric manifolds give periodic structures since the angular coordinates are pe- 
riodic, and singular points with higher symmetry (see Section 5.5) can arise. The locations of 
such points cannot be predicted in a conclusive manner up to now. It is hoped, however, that  
the utilisation of the fuzzy symmetry concept [1] can help in the search for points in the form 
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space where such higher symmetries (compared to their surroundings) emerge. This will be the 

theme of a forthcoming paper. 
In sum, the methods presented here are able to facilitate the analysis of isosymmetric manifolds 

in form spaces, to describe these high-dimensional spaces in an efficient way, to perform a fast 
and (in case of a rotation-invariant formulation of the normal coordinates) detailed symmetry 
analysis of forms, and to put the analysis of symmetry consequences of form deformations onto 

a sound basis. 
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