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A B S T R A C T

We developed a new model of glucose dynamics. The model calculates blood glucose level

as a function of transcapillary glucose transport. In previous studies, we validated the model

with animal experiments. We used analytical method to determine model parameters. In

this study, we validate the model with subjects with type 1 diabetes. In addition, we combine

the analytic method with meta-differential evolution. To validate the model with human

patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center

for Health Research.We calculated a continuous blood glucose level from continuously mea-

sured interstitial fluid glucose level.We used 6 different scenarios to ensure robust validation

of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke

Error Grid. No data set required any correction of model parameters during the time course

of measuring.We successfully verified the possibility of calculating a continuous blood glucose

level of subjects with type 1 diabetes. This study signals a successful transition of our re-

search from an animal experiment to a human patient. Researchers can test our model with

their data on-line at https://diabetes.zcu.cz.

© 2016 The Author. Published by Elsevier Ireland Ltd. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Glucose is primarily distributed in the blood through which it
is transported across capillary membrane into the interstitial
fluid of subcutaneous tissue [1,2]. In subcutaneous tissue, the
interstitial fluid glucose level (IG) can be monitored continu-
ously with a sensor of continuous glucose monitoring system
(CGMS). The sensor comprises a needle that measures electri-
cal current produced by glucose oxidase reaction in the
subcutaneous tissue [3–5]. This current is mathematically fil-
tered and wirelessly sent to the CGMS receiver, where it is
converted to glucose level unit and downloaded to a computer

[4,5]. Downloaded data comprise time series of IG with 5minute
interval between each two levels.

There is an immune response as the CGMS sensor is a
foreign body [3,6]. Because of physiological interference,manu-
facturing tolerances and imperfections, the sensor must be
repeatedly calibrated using blood glucose level (BG) [3–5]. To
avoid calibration errors, IG should be steady so that it could
be assumed that BG is steady as well and thus both levels agree.
As sensor’s precision degrades continually, despite the cali-
bration procedure, the sensor must be replaced eventually.

Using a finger-stick, the patient draws a drop of capillary
blood onto a test strip [7]. Then, a glucometer applies an elec-
tric voltage on the terminals of the strip so that an electric
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current flows through the strip. This electric current is quan-
tified, scaled and reported as glucose level [7].

Using a finger-stick, BG can only be monitored sporadi-
cally to avoid increasing the discomfort of the patient [8].Minder
et al. [9] pin-pointed 3 and 4 self-monitored blood glucose
(SMBG) measurements a day. Petry et al. [10] reported SMBG
increase from 2 to 5 measurements a day, if the patients earned
monetary reinforcers. Beck et al. [11] explicitly state this: “re-
quiring patients to do 6–8 SMBG a day at specified intervals
for long periods of time will be too burdensome for most pa-
tients, and compliance with frequent middle-of-the-night
measurements is likely to be low”.

When self-measuring the blood glucose level, the patient
could introduce an error as he could assign a wrong time to
measured BG. Olansky and Kennedy [12] further reviewed the
SMBG accuracy. In addition, Del Favero et al. [13] discussed
human errors, erroneous data entry, and incorrect blood
sampling/processing in the section on data pre-processing.

Inpatient closed-loop studies rely on BGmeasurements [11].
While CGMS solves the problem of sporadic BG measure-
ments, it does not replace them. CGMS does not measure nor
calculate BG. With outpatient studies, feasibility of SMBG is
limited too [11]. Frequent and accurate reference BG is key for
modeling and computing outcomemetrics in clinical trials, but
it is difficult, invasive, and costly to collect [13]. Continuous
glucose monitoring (CGM) is a minimally-invasive technol-
ogy that has the requested temporal resolution to substitute
BG references for such a scope, but still lacks of precision and
accuracy [13]. Therefore, we are motivated to calculate con-
tinuous BG from continuously measured IG. In this study, we
validate our model of continuous BG calculation with sub-
jects with type 1 diabetes. In addition, we present an extension
to the original analytic method to determinemodel parameters.

1.1. Related work

Before we conducted this study, we considered other models
of glucose dynamics. Only SMBG and CGMS are available in out-
patient study. Therefore, we had to exclude models, which
required additional measured quantities (e.g. insulin [14], rate
of oxygen consumption [15,16], [18F]fluorodeoxglucose tracer
[17]), from the consideration.Then, we excluded models which
capture no physiological knowledge—e.g. Volterra–Wiener
framework [18] and autoregressive model [19].

To the best of our knowledge, only the Steil–Rebrin model
meets the required criteria. Equation (1) denotes this model;
b(t) and i(t) symbols denote BG and IG respectively at time t.

τ
g

di t
dt g

i t b t× ( ) + × ( ) = ( )1
(1)

Accordingly to References [20, 21], the g-parameter is steady-
state gain and the τ-parameter is IG equilibration time constant.
Considering steady state with no change of IG, the g-parameter
should equal 1 as there would be zero concentration gradi-
ent between IG and BG. Nevertheless, estimating both
parameters improves precision of the model [20,22].

Recently, Del Favero et al. [13] considered the g-parameter
as 1 while adding a calibration-error model to restore a “true”
IG, it(t), using Equation (2). The α, β, and γ parameters are

considered as calibration parameters, which must be re-
determined whenever the CGMS sensor is calibrated. Δt(t) is the
time difference with respect to the last calibration time − tcal.
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From Equation (1), by substituting i(t) with it(t) of Equation
(2), we obtain Equation (3). In Equation (3), i(t) represents CGMS
measured IG.
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As Del Favero et al. [13] considered g = 1, the α-parameter
overtook the role of the g-parameter in Equation (1). Hence,
we obtain Equation (4) that shows that Del Favero et al. [13]
actually improve precision of the Steil–Rebrin model by adding
simple linear regression with time as the explanatory vari-
able. This variable is supposed to capture CGMS sensor
degradation since last calibration. Therefore, α, β, and γ must
be re-calculated with each calibration.
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Reference [8] queried diabetic type-1 patients’ wishes and
expectations on artificial pancreas.The patients asked for, i.a.,
minimal patient intervention, low maintenance, and ease of
use. Therefore, we do not expect the patient to collect more
BGs than those BGs that are required to keep CGMS cali-
brated, especially if these additional BGs would be used to re-
determine model parameters until the next calibration only.
Instead, we are going to meet patients’ wishes by designing
such a model whose parameters hold over several calibra-
tions, possibly over the entire lifetime of the sensor.

2. Materials and methods

We developed a model that calculates BG from IG [22–25]. The
model is based on a system of glucose dynamics and relates
present BG and IG to future IG. We devised the physiological
foundation of this model in Koutny [23].Then, we further elabo-
rated this physiological foundation in Koutny [24], where we
have shown that model parameters correlate with glucose
uptake rates of subcutaneous, skeletal muscle and visceral fat
tissues.These rates correspond with other studies, which were
conducted using different methods and experimental setups.

Fig. 1 depicts glucose flow in a selected part of glucose dy-
namics that is directly related to themodel. Glucosemay appear
in the blood, e.g., due to consumed carbohydrates, the break-
down of liver glycogen or an infusion. From the blood, glucose
is transported across the capillary membrane into the inter-
stitial fluid. The rate of such a transport is limited by the size
of capillary membrane surface, membrane permeability and
concentration gradient between BG and IG [2]. In addition, this
causes a delay in transport of glucose from blood into inter-
stitial fluid. In the interstitial fluid, the glucose is either utilized
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or leaves the fluid. Depending on BG, part of IG can be trans-
ported back into the blood, with the same limits applied to the
transport in the opposite direction. In addition, yet another part
of IG can leave through an accessory exit route such as the lym-
phatic system, eventually appearing in the blood [1,2].

Both BG and IG affect each other. In addition, they are both
controlled by a number of hormones, neural signals and sub-
strate effects [1]. This is a complex system whose modeling
would lead to a complex model with a considerable number
of parameters. Such a model may be prone to overfitting. In
such a case, the model would describe the error noise instead
of capturing the relationship between the individual compart-
ments of the system. In addition, too many parameters may
make it impossible to identify if we do not have enough input
levels to capture the dynamics of the glucose system.

Instead of designing a complex model, we approach the
problem with an inspiration by federative co-simulation. In co-
simulation, the entire system is decoupled into smaller parts,
each of which is modeled with its own simulator.These simu-
lators communicate with each other, while treating each other
as a black box. In federative co-simulation such as high-level
architecture, a simulator can be used together with a live device
to increase the overall precision of entire simulation [26]. Our
model describes the correlation between BG and IG across the
capillary membrane. The blood and interstitial fluid repre-
sent interfaces that connect our model (simulator) to other
compartments (devices) in the system. As a result, we do not
need to calculate with other substances such as insulin that
moderates the glucose uptake by cells. Instead of such a cal-
culation, the biological system itself carries out the necessary
actions and applies the results to BG and IG, which we read
subsequently—thus having the effects of insulin already and
precisely processed. As a result, the model requires no inputs
such as insulin dosage or volume of consumed carbohy-
drates. The model requires only the continuous measuring of
IG and several samples of BG to estimate model parameters

by building an over-determined system of model equations.
BG can be measured using either SMBG or a catheterized vein.

The model can run in parallel with the real transport of
glucose across the capillary membrane.The model states that
the glucose system changes IG in such a manner so that IG
at three different times infers BG at one of those times. At the
very beginning, we use BG to determine parameters of the
model—i.e., quantifying the effects that exert an influence over
the glucose transport across the capillary membrane.Then, we
continuously measure IG to retrospectively calculate continu-
ous BG.We compare calculated BG to measured BG to estimate
the calculation error—see the metric in Section 2.2. Mea-
sured BG can be further used to calibrate CGMS, or to re-
determine model parameters as needed.

In References [22–24], we derived Equations (5) and (6), i.e.,
the model used in this study, and described its parameters. Ac-
cording to these studies, the p-parameter is an arbitrary
constant representing glucose gain from the blood across the
capillary membrane. The cg-parameter is an arbitrary con-
stant expressing the effect of the membrane surface area and
permeability. b(t) − i(t) is the concentration difference across
the membrane according to Fick’s Law of Diffusion [27]. The
c-parameter is an arbitrary glucose level that represents the
difference between the glucose appearance in the subcutane-
ous tissue and its clearance. Equation (5), i.e., φ(t), is a time-
varying offset of IG changes. It comprises a fixed part, the
Δt-parameter, and a variable part, the h and k parameters. t is
time since some fixed date. In our implementation, it is number
of days since January 0, 1900 00:00 UTC; fractional part stores
time of the day. The h-parameter has the same unit as Δt-
parameter and t. The h-parameter gives an offset into the past
from the time t. For an h-long interval, the k-parameter ex-
presses the effect of the concentration gradient change rate
as it affects the IG over this interval. It converts IG-observed
change into a variable time-distance that is needed to obtain
three IGs that infer single BG. For marginal values of IG time
series, Equation (5) can produce such a time for which there
is no measured IG.Then, BG cannot be calculated. As the time
segment lasts for several days, it is negligible.

ϕ t t t
k

i t i t h
h

h

h
( ) = + +

× ( ) − −( ) ≠

=

⎧
⎨
⎪

⎩⎪
Δ

0

0 0
(5)

p b t cg b t b t i t c i t× ( ) + × ( ) × ( ) − ( )[ ] + = ( )( )ϕ (6)

2.1. Comparison with the Steil–Rebrin model

First, the Steil–Rebrin model calculates with a derivative of con-
tinuous function i(t). Nevertheless, CGMS provides discrete time
series so that we would have to either calculate numeric de-
rivative in discrete time or derive a function that may differ
from real i(t). Therefore, we calculate with b(t) − i(t) to express
the difference between glucose levels on both sides of capil-
lary membrane. In addition, it equals the first derivative of i(t)
according to the Steil–Rebrin model. Nevertheless, unit of τ is
second, while unit of cg is [L/mmol]. Perhaps, the cg-parameter
accommodates a factor of slowness (inverse velocity) of BG–
IG equilibration.
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Fig. 1 – Block schema of glucose flow in a selected part of
glucose dynamics.
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Second, time lag of glucose transport from the vascular to
interstitial space is an important factor. Basu et al. [28] ob-
served a median time lag of 6.8 (4.8–9.8) minutes after an
intravenous bolus of glucose isotopes. Basu et al. [28] col-
lected data from six subjects with type 1 diabetes.Ward et al.
[29] examined CGMS sensor time lag with respect to rising and
falling glucose levels. Using a regression delay method, 8.9 (6.1–
11.6) and 1.5 (2.6–5.5) minutes were determined for the rising
and falling glucose levels, respectively.While the τ-parameter
is a time-constant, the Steil–Rebrin model does not explicitly
calculate with the time lag. We do so with Equation (5).

Third, once we explicitly calculate with the time-lag, we have
to consider a residual mass of IG that is already present in the
future interstitial fluid. While we do so with the c-parameter
[24], the Steil–Rebrin model adds τ × i‘(t).

Fourth, Del Favero et al. [13] adds the error-calibration model
of CGMS in the form simple linear regression. We agree that
absolute difference between measured and calculated BG in-
creases with time.We de-facto already implemented the Steil–
Rebrin model with second order derivative [30] as suggested
by Rebrin et al. [21], and tried to construct a BG-adjusting curve.
To confirm assumptions of Del Favero et al. [13], the curve would
have to be monotonic. But there was only one monotonic curve
of all experiments. Therefore, we rather consider parameters
of our model to be time-invariant. As a respective ISO stan-
dard requires the CGMS to exhibit a particular minimum
accuracy, we chose not to duplicate respective efforts of CGMS
engineers within our model.

Nevertheless, if we would consider linear regression to
correct measured IG to obtain true IG, with measured IG as the
explanatory variable, then Equations (5) and (6) would retain
the same number and placement of their present param-
eters. Therefore, we must consider that parameters of these
equations may correct calibration errors.

We already compared our model with the Steil–Rebrinmodel
(that is the sensor model of Del Favero et al. [13]), and our model
performed considerably better [22]. The comparison was done
using frequent measuring of BG and IG with well calibrated
sensors.With this comparison, the α, β and γ parameters were
1.0, 0.0 and 0.0 respectively. It was an animal, hyperglycemic
clamp study.

To test their method with human patients, Del Favero et al.
[12] used a well-selected glucose profile. For instance, a rate
of change larger than 0.278 mmol/(L × min), or any values
outside the range [2.222, 22.222] mmol/L, were considered sus-
picious and isolated [13]. In addition, they pre-processed the
glucose series to detect and eliminate BG outliers. We do not
do this. We rather take the measured levels “as-is”, because
the self-measured BG will be sparse in the practice.

2.2. Applying differential evolution

We already developed an analytical method [22] that deter-
mines parameters of our model. The method may find a sub-
optimal solution, because themodel does not capture the entire
system of glucose dynamics as a trade-off for the minimum
required inputs (CGMS and SMBG). Therefore, we addition-
ally applied a genetic algorithm to improve the analytically
determined solution.

First, we smoothed measured IG using an approximation
method [30] and determined model parameters using the origi-
nal, analytical method [22]. The analytical method is based on
the least squares method while applying a particular metric
that determines the fitness of a given solution. Then, we pro-
ceeded with a genetic algorithm—differential evolution.

Differential evolution operates on a population of candidate
solutions to a given problem.The method randomly combines,
cross-breeds and mutates members of the population. Such a
procedure is iteratively applied to the population, i.e., growing
subsequent generations,until the best solution reaches a desired
fitness.The fitness of each solution is determinedusing ametric.
As the metric, i.e., a fitness function, we used sum of mean ab-
solute relative error and standard deviation of relative errors of
calculated BG. Relative error is absolute difference between cal-
culated and measured BG, divided by measured BG.

The differential evolution method does not use a gradi-
ent, so the problem does not need to be differentiable. As a
result, the problem can be noisy (measurement error) and
change over the time (CGMS calibration).

Particularly, we used meta-differential evolution.With dif-
ferential evolution, each member of the population represents
one possible solution—i.e., model parameters. With meta-
differential evolution, each member represents one possible
solution and parameters such as mutation constant, cross rate,
mutation operation, and the preferred generator of random
numbers—with our implementation.Themeta-differential evo-
lution method self-tunes these parameters to optimize the
possible solutions.

Nevertheless, meta-differential evolution is not guaranteed
to find a solution. The first generation is generated randomly.
Therefore, we set the first member of the first generation as the
analytically determined solution.This way, it is guaranteed that
the evolution method will not finish with a solution worse than
the analytical one, while it may improve upon it.

An adverse effect of differential evolution is stagnation.With
stagnation, the optimization process does not progress anymore
toward finding a global optimum. Unlike premature conver-
gence, themembers remain diverse and un-converged.Typically,
it occurs without any obvious reason [31]. To guarantee con-
vergence of the method, we used different mutation strategies,
which implied using two random-number generators:

1. It can be reasoned that a less uniform member selection
during the mutation could avoid the stagnation. Therefore,
we decided to use a deterministic chaos to generate random
numbers for the current to p-best, best to bin, and current
to rand1 mutation strategies. Specifically, we described the
deterministic chaos with the Lyapunov exponent [31].

2. According to Zhongobo et al. [32], convergence of the dif-
ferential evolution method can be proven with a uniform
random number generator using a specifically designedmu-
tation strategy. Therefore, we implemented additional
strategies, using a uniform random number generator that
is implemented with the Mersenne twister [33].We added
the following mutation operations: current to umpbest [32]
and umbest1 [32].

Genetic algorithms mimic a natural selection of organ-
isms.We add a local search to the differential evolutionmethod,
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to mimic a human that developed a genetic engineering to alter
organism’s DNA so that the organism will fit better to human-
designated goals in a given environment. In the implementation,
we perform the local search after the selection, before evalu-
ating the stopping condition. Local search applies local changes
to a candidate solution by assuming that a better solution is
close to the solution being locally modified.

As glucose levels of two compartments influence each other,
we assume a possible dependency among parameters of the
model. In such a case, it is not guaranteed that we will find
optimal parameters only by subsequently examining global ex-
tremes by partial derivatives.With a dependency, a parameter
achieves optimal value in dependency on values of one or more
other parameters.We would need to re-calculate value of each
parameter once another parameter value has been changed.
This could lead to an indefinite cycle. With our solution, we
apply the partial derivatives once and use differential evolu-
tion method to drive the changes of all parameters’ values. As
a result, we avoid the indefinite cycle while maintaining the
diversity given by differential evolution.To calculate partial deri-
vations numerically, we step each parameter through its
discretized range while storing such a parameter value that
produces the best metric value.

Differential evolution can be parallelized per population
member [34–37]. In one extreme, each member is processed
in a separate thread. In opposite extreme, there are several
populations, called islands, each being evolved in a separate
thread. The latter extreme is suited for a distributed environ-
ment. In both extremes, threads interact to share best known
solutions to speed up the convergence rate of the entire
evolution.

We implemented the island version, but with a parallel pipe-
line. Steps of the Mutation–Recombination–Selection sequence
formed stages of a pipeline.Therefore, we created several popu-
lations. We repeatedly processed each population within the
pipeline until we reached a stopping condition. All popula-
tions shared an extra member that held the best known global
solution. On entering the pipeline, each population com-
pared its best, population-local solution to the best global
solution and updated the worse one with the better one. As a
result, information about best known global solution was dis-
tributed among all populations.

With differential evolution, the domain of the p-parameter
ranged from 0.0 to 2.0.The domain of the cg-parameter ranged
from −0.5 to 0.0 L/mmol.The domain of the c-parameter ranged
from −10.0 mmol/L to 10.0 mmol/L. The domains of the other
parameters were the same as with the analytical solution [22].
Specifically, the Δt and h parameters ranged from 0 to 2400
seconds.The k-parameter ranged from −1.0 to 1.0 s2 × L/mmol.

2.3. Experimental setup

The US National Institutes of Health funded Maahs et al. [38]
to investigate nocturnal hypoglycemia in subjects with type
1 diabetes. This study is listed in the US Clinical Trials regis-
try and results database under the number NCT01591681.The
study evaluated a system to reduce nocturnal hypoglycemia.
Study participants have had the system active in a random-
ized fashion. There were 45 participants using the system for
42 nights; 21 with an active system to reduce the nocturnal
hypoglycemia and 21 control nights [38]. As we reached an
agreement with the Jaeb Center for Health Research (JCHR), we
obtained the data set of this study so that we could test our
model with independently obtained data.

The data weremeasured using MiniMed Paradigm REALTime
Veo System and Enlite glucose sensor (Medtronic Diabetes,
Northridge, CA) [38]. Keenan et al. [39] examined the accuracy
of theVeo system. It states that 72.92%, 26.66%, 0.54%, 3.76% and
0.12% of the measured levels fall in the A, B, C, D and E zones
of the Clarke error grid, respectively. Mean absolute relative dif-
ference was 16.14% [39]; it was aggregated for all BG–IG pairs.

We parsed the original data to obtain segments of continu-
ous measurements. For the testing, we used segments with at
least 30 measured BGs so that we could design the following
testing scenarios. We desired to test the model with at least
10 BGs due to the number of model parameters. Simultane-
ously, we were interested in testing model’s accuracy if we
determine its parameters with only one third of available BGs.

There were 78 segments of 20 patients, with 3516 mea-
sured BGs. Patients conducted additional SMBGmeasurements,
which were not used to calibrate CGMS (Table 1).

To ensure robust validation of the BG calculation, we ar-
ranged the following testing scenarios:

1. We determined model parameters per each segment using
all measured BGs of that segment. In addition to the dif-
ferential evolution, we used this scenario with the analytical
method as well to show the difference between these two
methods.

2. We determined model parameters per each segment using
first 20 measured BGs of that segment.

3. We determined model parameters per each segment using
first 10 measured BGs of that segment.

4. We determined model parameters per each segment using
every second measured BG of that segment.

5. We determined uniform model parameters for all seg-
ments using measured BGs of all segments.

6. We determined uniform model parameters for all seg-
ments using measured BGs of half of the segments.

Table 1 – Summarization of parsed JAEB data set.

Marker per patient Minimum 25th percentile Average Median 75th percentile Maximum

Segments 1.00 1.75 3.90 2.00 4.50 12.00
Measured BGs 31.00 36.00 45.07 42.00 51.00 82.00
Time with CGMS [hours] 24.67 83.22 109.46 121.12 142.46 143.6
Average sampling period [hours] 0.67 1.95 2.50 2.40 3.05 4.55
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With these scenarios, we satisfy the following concerns:

• While the same principles of metabolic processes apply to
all subjects, the rates of the particular metabolic processes
may differ for each subject. Moreover, the rates may change
dynamically per segment, e.g., due to illness, drugs, physi-
cal activity, etc. Therefore, Scenarios #1–#4 calculate the
parameters per each segment.

• A difference between model and parameter identification
methods has to be made. Presenting a model does not pre-
clude a development of a better method to determine model
parameters.Therefore, Scenario #1 represents the so-far pos-
sible best fit that we obtained by using all measured BGs
to determine the parameters.

• To verify that the model calculates missing BG properly, we
have to divide the reference set ofmeasured BGs into training
set (todetermine theparameters) andvalidationset (tovalidate
the determined parameters).Therefore, Scenarios #2–#4 and
#6 determine the parameters using various training sets.

• While the rates of metabolic processes vary per subject, they
should agree on median values. Then, default model pa-
rameters should exist. Therefore, Scenarios #5 and #6
determine such parameters. Scenario #6 adds the concept
of training and validation sets to this testing.

2.4. Results

Table 2 gives determined parameters for Scenarios #1–#6, which
tested the use of differential evolution, and Scenario #1 for the
analytical method.

As Equation (5) may produce such a time for which there
is no measured IG, thus BG cannot be calculated at that time;
Table 3 presents differences between lengths of calculated BG
and measured IG. As the shortest time segment lasted 24.67
hours, the loss of approximately 20 minutes is negligible.

Table 4 gives frequency of relative error while putting it into
a context with average, median and relative errors. In addi-
tion, Table 4 analyzes relative error of CGMS against measured
BG. With such an analysis, we tested whether the BG calcula-
tionmethodwould outperform CGMS in assessing BG—i.e.when
considering IG as BG due to the unavailable BG measurements.

Fig. 2 depicts Table 4 by showing empirical cumulative dis-
tribution function of relative error of individual scenarios and
CGMS.We sorted the relative errors in ascending order. Thus,
we obtained the empirical distribution function as a step func-
tion with a stepping of 1/n where n is the number of calculated
BG. According to the Glivenko–Cantelli theorem, such an em-
pirical distribution function converges to the true distribution
function [40,41].

Table 2 – Determined parameters.

Parameter Analytical method, Scenario #1 Differential evolution scenario

#1 #2 #3 #4 #5 #6

p (unitless) 25th 0.955 0.965 0.929 0.890 0.974 n/a n/a
Med. 0.986 1.033 1.002 0.985 1.023 1.046 1.034
75th 1.024 1.085 1.121 1.085 1.080 n/a n/a

cg [L/mmol] 25th −0.065 −0.043 −0.050 −0.052 −0.052 n/a n/a
Med. −0.041 −0.023 −0.023 −0.031 −0.018 −0.009 −0.010
75th 0.000 −0.003 0.000 0.000 0.000 n/a n/a

c [mmol/L] 25th −0.004 −0.743 −0.724 −0.755 −0.572 n/a n/a
Med. 0.002 −0.056 −0.008 0.004 −0.043 −0.226 −0.098
75th 0.119 0.292 0.611 0.786 0.193 n/a n/a

Δt [min:s] 25th 12:33 13:39 13:10 11:19 12:46 n/a n/a
Med. 16:11 17:03 16:47 16:50 16:59 18:52 17:57
75th 18:39 19:09 20:59 22:17 20:27 n/a n/a

h [min:s] 25th 00:00 00:00 00:00 00:00 00:00 n/a n/a
Med. 00:00 00:00 00:00 00:00 00:00 00:00 00:00
75th 00:00 00:00 00:00 00:00 00:00 n/a n/a

k [s2 × L/mmol] 25th 0.000 0.000 0.000 0.000 0.000 n/a n/a
Med. 0.000 0.000 0.000 0.000 0.000 0.000 0.000
75th 0.000 0.000 0.000 0.000 0.000 n/a n/a

For Scenarios #1–#4, median (Med.) and 25th and 75th percentiles are given to illustrate shape of the distribution. On average, the cg-
parameter was zero in approximately 21% of cases; the k and h parameters were non-zero in approximately 4% of cases. With Scenarios #5
and #6, we determined uniform model parameters for all segments. Therefore, both percentiles are not applicable to these scenarios.

Table 3 – Time periods for which BG was not calculated.

Percentile Analytical method, Scenario #1 Differential evolution scenario

#1 #2 #3 #4 #5 #6

25th 12:45 13:41 12:51 11:27 13:50 18:45 17:50
Median 16:58 17:02 17:52 17:12 17:25 18:50 17:55
75th 20:24 20:14 21:43 23:35 20:49 18:50 17:55

The unit is [minute:second].
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Over the years, the Clarke error grid [13,42] was accepted
for determining the accuracy of CGMS with respect to the “gold-
standard” of BG monitoring.The grid defines region A as those
levels within 20% of the reference meter. Region B contains
levels that are outside of the 20% area, but do not lead to in-
appropriate treatment. The other regions contain levels that
would lead to unnecessary or potentially dangerous treat-
ments (e.g., the C and D regions, respectively). Zone E identifies
such levels that would confuse hypo- with hyperglycemia and
vice-versa. Table 5 gives percentage of calculated BGs per zone

for the analytical method and Scenarios #1–#6, which tested
the use of differential evolution. In addition, it includes CGMS’
IG as BG relative error.

Fig. 3 depicts an example of BG reconstruction. It sup-
ports Fig. 2 by depicting that IG and BG can differ considerably
and that this will go unnoticed by CGMS. The blue curve rep-
resents CGMS-measured IG in subcutaneous tissue. Red squares
represent self-monitored BG. The brown curve represents the
calculated continuous BG, which fit the measured BG. In ad-
dition, Fig. 3 illustrates that the patient does no SMBG

Table 4 – Frequency of relative error.

Relative error Cumulative probability of less than or equal relative error

Analytical method, Scenario #1 Differential evolution scenario CGMS’ IG as BG

#1 #2 #3 #4 #5 #6

≤5% 29.0% 32.4% 29.5% 25.0% 30.1% 27.4% 26.8% 19.4%
≤10% 52.0% 55.4% 50.4% 45.4% 52.6% 50.2% 49.1% 37.0%
≤15% 67.8% 70.7% 66.9% 59.8% 68.3% 65.6% 64.8% 51.7%
≤20% 78.6% 81.5% 77.9% 70.7% 79.9% 77.3% 76.7% 62.8%
≤25% 85.8% 87.8% 84.6% 78.1% 86.9% 83.6% 84.2% 72.3%
≤30% 90.2% 92.1% 89.6% 83.5% 91.2% 88.5% 88.5% 79.1%
≤35% 93.2% 94.8% 92.7% 88.3% 94.4% 92.3% 92.3% 83.8%
≤40% 95.2% 96.5% 94.9% 91.3% 96.3% 94.7% 94.8% 87.1%
≤45% 96.5% 97.7% 96.1% 93.3% 97.7% 96.4% 96.6% 89.8%
≤50% 97.7% 98.1% 97.3% 94.8% 98.2% 97.2% 97.5% 91.7%
Summarization of relative errors
Maximum 315.3% 125.7% 109.7% 308.0% 256.9% 573.1% 547.7% 269.8%
Mean 13.5% 12.2% 13.7% 16.8% 12.8% 14.3% 14.4% 21.6%
Median 9.5% 8.7% 9.9% 11.5% 9.4% 9.9% 10.2% 14.5%
Standard deviation 14.4% 12.3% 13.7% 18.2% 12.8% 17.6% 17.4% 25.3%

Each column gives probability that calculated BG has relative error less than or equal to the relative error on a respective row.
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Fig. 2 – Empirical cumulative distribution function of relative error per each scenario and CGMS.
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measuring in the night hours. BG and IG are not necessarily
the same, and a patient has no BG for a physician to improve
evaluation of that patient’s night condition.

3. Discussion

This study has shown that we can successfully calculate BG
with the k, h and cg parameters equal to zero. Originally, we
were able to predict IG with the k and h parameters equal to
zero [23] on hypertriglyceridemic rats, but with a non-zero cg-
parameter. We attribute this finding to the use of the meta-
differential evolution method, which identifies such a solution
that cannot be determined analytically. Perhaps, the evolu-
tion algorithm adapted to the calibration procedure of CGMS.
A patient may calibrate CGMS in such a manner so that IG vir-
tually copies BG. Then, modeling the concentration gradient
becomes counterproductive, because such a way of CGMS cali-
bration erased the information needed to determine the effect

of the gradient. In such a case, there is only one viable option—
to calculate with zero cg-parameter.

While we were able to predict IG with zero k and h param-
eters, the prediction accuracy improved as we considered them
as non-zero. As they are frequently zero with the Maahs et al.
[38] experimental setup, there may have not been enough rapid
glucose level changes to determine these parameters—contrary
to a hyperglycemic clamp experimental setup [22].

Koutny [22] has demonstrated a priori determination of pa-
rameters of our model. Table 2 indicates that determinedmodel
parameters do not vary to a significant degree among the sce-
narios, although some variation is necessary due to the different
scenario arrangements. Scenarios #1–#4 determined the pa-
rameters per segment, while Scenarios #5–#6 determined
uniform parameters for all segments. For example, the
c-parameter varies between Scenarios #3 and #5, but the dif-
ference is still less than the allowed 20% relative error of
4.17 mmol/L—see ISO 15197:2003 standard. This proves that
model parameters can be determined using a training set of
measured BG to successfully calculate BG of the validation set.

Table 5 – Clarke Error Grid analysis.

Zone Analytical method, Scenario #1 Differential evolution scenario CGMS’ IG as BG

#1 #2 #3 #4 #5 #6

A 80.2% 81.5% 77.9% 70.8% 79.9% 77.3% 76.7% 65.2%
B 17.3% 15.8% 19.1% 25.9% 17.0% 19.3% 20.2% 30.4%
A+B 97.4% 97.3% 97.0% 96.7% 96.9% 96.6% 96.9% 95.6%
C 0.1% 0.1% 0.2% 0.3% 0.1% 0.4% 0.4% 0.3%
D 2.4% 2.6% 2.7% 3.0% 2.9% 3.0% 2.6% 3.9%
E 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.1%
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Fig. 3 – An example of BG reconstruction, Scenario #1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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4. Conclusion

We successfully applied meta-differential evolution to make
the diabetes treatment less obtrusive to the patient while giving
more details to the physician. Fig. 2 depicts that any of the
testing Scenarios gives more accurate estimation of BG than
considering IG to be close to BG. Even Scenario #2, which used
as little as 10 first BGs, performed better than CGMS in as-
sessing BG. Scenarios #5 and #6 demonstrated that it is possible
to use the model with pre-calculated parameters until enough
BGs are collected to personalize the parameters.

While this paper does not update the physiological model
of glucose dynamics, it is important as it verifies the entire
framework (includingmodel and parameter determination) with
subjects with type 1 diabetes. Finally, we let other research-
ers examine our method on-line at a newly developed portal.
To a diabetic patient, the portal would also serve as an edu-
cational tool to explain importance of the treatment, especially
the continuous monitoring of glucose levels.The portal accepts
DiaSend and Medtronic exported files. The portal’s URL is
https://diabetes.zcu.cz.
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