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Objective:

 

 The purpose of this study is to develop a
cost-effectiveness methodology in the context of a si-
multaneous modeling framework that provides consis-
tent point and interval estimates.

 

Methods:

 

 A simultaneous model of cost and effective-
ness functions was developed to measure the incremen-
tal cost-effectiveness ratio for competing medical inter-
ventions. A feasible nonlinear least-squares method was
suggested to estimate the simultaneous model. Using a
series of hypothetical data, a simulation analysis was
performed to show the superior performance of the
proposed model, relative to the average-effect model, a
widely used approach to cost-effectiveness estimation.

 

Results:

 

 The traditional average-effect approach has two
shortcomings. First, it assumes two strong conditions:
truly random distributions of all the significant nontreat-
ment variables (both observed and unobserved) across
study groups, and the independence of cost and effective-
ness variables. Second, it does not give the confidence in-

terval, an important measure to assess the stochastic na-
ture and robustness of point estimates. In contrast, the
simultaneous modeling approach provides marginal-
effect estimates, imposing no restrictions on the random
distributions of the individual characteristics across study
groups. Furthermore, it takes into account the simulta-
neity of cost and effectiveness functions being estimated.
The simulation analysis showed that the simultaneous
modeling approach is significantly more unbiased and ef-
ficient in predicting the true cost-effectiveness ratio.

 

Conclusion:

 

 The simultaneous modeling approach is su-
perior to the average-effect approach in the estimation
of incremental cost-effectiveness ratios using data with
significant nontreatment confounding factors. The ad-
vantages of the simultaneous modeling approach are
particularly appealing for evaluative studies dealing
with large-scale retrospective data at the patient level.
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Introduction

 

Under the increasing challenges for more efficient
allocation and utilization of healthcare resources all
around the world, economic assessment of compet-
ing alternatives in medical practice has become a vi-
tal step in improving the economic efficiency of
medical decision-making. As a result, various meth-
ods have been developed to help assess the cost-
effectiveness of alternative healthcare products and
services [1–6].

Conceptually, a cost-effectiveness analysis (CEA)
can be performed in two ways, depending on the
relationship between the competing alternatives un-
der consideration [7]. If the competing alternatives

are not therapeutic substitutes, a treatment-specific
cost-effectiveness ratio (C/E ratio) can be estimated,
giving an average cost of achieving one unit of a
health outcome associated with each treatment in-
tervention. Medical decisions about the use of cost-
effective treatment options can then be made using
the relative comparison of the treatment-specific C/E
ratios. If the treatment alternatives are therapeuti-
cally substitutable, however, an incremental C/E ra-
tio should be computed based on the across-group
changes in cost and health outcomes. Since most
evaluative studies seek to compare substitutable in-
terventions within the same therapeutic area, this
study discusses some methodological issues associ-
ated with the use of incremental CEA.

In this study, two fundamental issues concern-
ing the validity (degree of bias) and robustness (ef-
ficiency) of incremental CEA were investigated.
First, the most widely used technique in estimating
an incremental C/E ratio is based conventionally
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on an average-effect approach, which is referred
to as the method that estimates a C/E ratio using
the across-group mean changes in cost and health
outcome measures. In this study, it is argued that
the average-effect approach is valid on two strong
assumptions: 1) Neither cost nor outcome mea-
sures are determined systematically by any con-
founding factors other than treatment interventions;
2) If cost and/or health outcomes are determined
by study interventions as well as other factors,
then the other factors must be distributed in a
truly random fashion across study groups. In
other words, the average-effect approach assumes
that the observed across-group differences in cost
and outcome measures can be attributable entirely
to treatment effects. This would be the case if
treatment interventions are the only determinants;
or if there are any other factors in the determina-
tion, they must be identical across study groups.
These assumptions, however, are seldom the case
in retrospective studies. Even in some randomized
controlled trials (RCTs), they may not hold due to
the effects of unobserved factors [3,8]. An unob-
served factor may introduce a bias to the estimate
of the average C/E ratio when its impact on cost
and outcomes was not random across the study
groups. On the other hand, a random unobserved
factor, while it may not bias the estimate, could
influence the efficiency of the estimate when it is
present as an error term simultaneously in both
cost and outcome functions [9].

The second issue this study addresses is the ro-
bustness of C/E ratio measures given by the aver-
age-effect approach. In particular, a major problem
with the average-effect approach is the lack of in-
formation on the stochastic nature and confidence
interval for its C/E ratio estimates. Generally, the
average-effect approach does not lend itself to con-
fidence interval estimation. For this reason, there
has recently been a growing literature that ad-
dresses the issues of confidence interval estimations
in cost-effectiveness studies [10–19].

There are five major approaches suggested in
previous research dealing with the stochastic confi-
dence of cost-effectiveness estimates. O’Brien and
colleagues suggested a method based upon the Tay-
lor series [10]. Wakker and Klaassen [13] offered a
one-sided Bonferroni confidence interval proce-
dure. Willan and O’Brien [15] and Chaudhary and
Stearns [14] proposed the application of Fieller’s
Theorem for the estimation of confidence intervals.
Recently, Laska et al. [16] further extended the
Bonferroni method to a two-sided confidence inter-
val and established a relationship between the Bon-

ferroni method and the Fieller Method. Polsky et
al. [18], Obenchain et al. [17], and Tambour and
Zethraeus [19] discussed the estimation of C/E ra-
tios using bootstrap approaches. While the boot-
strap approach seems to perform somewhat better
overall in comparison with other methods accord-
ing to Polsky et al. [18], the effectiveness of the
bootstrap method is uncertain due to concerns with
its stability as noted in previous studies [20,21]. Fi-
nally, a stochastic decision model was also pro-
posed to assess the uncertainty of cost-effectiveness
estimation [22]. This is a simulation-based model,
and can be estimated using either Bayesian infer-
ence or resampling approach. Yet the modeling
performance of this method, relative to others, was
not well documented.

In the study, a simultaneous modeling approach
is proposed that makes three major contributions
to the estimation methodology of C/E ratios. First,
as opposed to the conventional average-effect ap-
proach, the simultaneous model measures treatment
effects on cost and outcome functions while control-
ling for the across-group differences in terms of other
confounding factors. This approach generally pro-
vides unbiased marginal-effect estimates of C/E ra-
tios that otherwise may be confounded by observed
nontreatment factors. Second, the simultaneous
model takes into account the possibility that cost
and outcome functions may be influenced by a
common set of unobserved factors. In the conven-
tional average-effect model, cost and effectiveness
measures are estimated independently, ignoring any
possible correlation between the underlying unob-
served error terms. When such a correlation exists,
estimation of the simultaneous model improves the
efficiency of C/E ratio estimates [9]. A formal expo-
sition on the distinction between the simultaneous
model approach and average-effect approach is
provided below. Third, this study presents a statis-
tical method that estimates the simultaneous model
obtaining both the point and interval estimates of
C/E ratios. Specifically, a feasible nonlinear least-
squares estimator is suggested to obtain consistent
estimates of C/E ratios and their confidence inter-
vals. Finally, a simulation analysis has been con-
ducted to demonstrate the different performance of
the marginal-effect model vs. the average-effect
model in predicting a given true C/E ratio.

 

Analytical Framework

 

Average-Effect Approach

 

To demonstrate the estimation bias associated
with the C/E ratio given by the traditional average-
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effect approach, assume that two alternative med-
ications, drug 1 and drug 0, are assessed on the
basis of cost-effectiveness. Subjects on drug 1 are
defined as being in the treatment group and those
on drug 0 as being in the control group. Two ma-
jor investigation variables for each individual 

 

i

 

are considered, the cost variable C

 

i

 

 and the health
outcome variable E

 

i

 

 (effectiveness). Further, assume
that both the cost and outcome variables are de-
termined by the two study medications indexed by
a treatment dummy variable T

 

i

 

, defined as being 1
for drug 1 and 0 for the alternative drug 0. To
maintain generality, it must also be assumed that
some nontreatment variables may also influence
the cost function by 

 

X

 

ci

 

 and the outcomes function
by 

 

X

 

ei

 

. This assumed relationship can be described
formally in a system of equations:

(1) 

(2) 

where 

 

�

 

 and 

 

�

 

 measure the true treatment effects
on the cost and outcomes functions respectively;

 

�

 

c

 

�

 

 and 

 

�

 

e

 

�

 

 are the vectors of parameters to be esti-
mated, representing the effects of other confound-
ing factors in addition to the treatment effects;
and 

 

u

 

ci

 

 and 

 

u

 

ei

 

 are used to capture random unob-
served factors in each function.

To determine the cost-effectiveness of drug 1 in
comparison with the competing drug 0, an incre-
mental C/E ratio can be computed to measure the
average cost of obtaining one unit of a health out-
come (e.g., cost per quality adjusted life year
(QALY)) as if patients were switched from the con-
trol group to the treatment group. Using the pa-
rameters in Equations (1) and (2), the true C/E ratio
is 

 

r

 

 

 

�

 

 

 

�

 

/

 

�

 

. In practice, however, the true C/E ratio
value is not known, and therefore must be estimated
using various data sources from clinical, claim, or
survey instruments. With regard to the estimation
method, the average-effect approach has been widely
used that estimates C/E ratio on the basis of across-
group mean differences in cost and outcome mea-
sures. Following the model specifications in equa-
tions (1) and (2), the average-effect C/E ratio  can
be expressed as follows:

(3) 

(4) 

(5) 

(6) 

Ci αTi γ c
′ Xci uci+ +=

Ei βTi γ e
′ Xei uei+ +=

r

ΣiC1i n1 α γ c′ΣiXci n1 Σiuci n1⁄+⁄+=⁄

ΣiC0i n0 γ c′ΣiXci n0 Σiuci n0⁄+⁄=⁄

ΣiE1i n1 β γ e+=⁄ ′ΣiXei n1 Σiuei n1⁄+⁄

ΣiE0i n0 γ e=⁄ ′ΣiXei n0 Σiuei n0⁄+⁄

 

(7) 

For simplicity, assume the last random term con-
verges to 0 asymptotically, then

(8) 

Apparently, the average-effect C/E ratio estimator
 will consistently converge to the true C/E ratio
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 only if either the across-group mean dif-
ference 
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X

 

c

 

,
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X
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, or the coefficients 
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c
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 and 
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e

 

�

 

 are
not significantly different from 0. That is, patients
in both study groups must be either distributed in a
truly random fashion in terms of all observed and
unobserved nontreatment factors, or else all non-
treatment variables should have no influence on the
changes in cost and health outcomes. If these condi-
tions are not met, there would be a systematic bias
associated with the average-effect estimator . In
most retrospective studies, however, these condi-
tions are rarely met. This is a potential problem
even in prospective RCT studies. For instance, in
some RCT studies, the samples of subjects may be
poorly representative of the general population due
to self selection, the subjects may have dropped out
in a nonrandom fashion across study groups over
time, or the subjects may differ systematically
across the study groups with respect to observed
compliance or health behaviors [3]. Furthermore,
the average-effect estimator contains another type
of bias. To illustrate this, a strong assumption is
made for the sake of simplicity that there is no sta-
tistical bias in estimating the true across-group
mean difference in cost and effectiveness, i.e.,

 

E(

 

�

 

C)

 

��

 

; and 

 

E(

 

�

 

E)

 

��

 

. Even with such a strong
assumption, however, one cannot take for granted
that the expected value of the estimated C/E ratio is
equal to the true counterpart 

 

�

 

/

 

�. More formally,
this can be shown as follows:

(9) 

Equation (9) holds on a well-established statistical
foundation that the expectation of a random-vari-
able ratio is not necessarily equal to the ratio of
the expectations [23]. As a consequence, without

r ΔC
ΔE
--------

ΣiC1i n1 Σi–⁄ C0i n0⁄
ΣiE1i n1 Σi–⁄ E0i n0⁄
----------------------------------------------------

α γ c′ Xc1 Xc0–( ) uc1 uc0–( )++

β γ e′ Xe1 Xe0–( ) ue1 ue0–( )++
--------------------------------------------------------------------------------

= =

=

lim
n1 n0 ∞→,

r ΔC
ΔE
--------

α γ c′ Xc1 Xc0–( )+

β γ e′ Xe1 Xe0–( )+
----------------------------------------------

α γ c′ΔXc+

β γ e′ΔXe+
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β
--- r=≠=

≅=

r

r

E r( ) E ΔC
ΔE
--------⎝ ⎠

⎛ ⎞ E ΔC( )
E ΔE( )
----------------- α

β
--- r= =≠=
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making some strong assumptions, the widely used
average-effect approach is unlikely to provide sta-
tistically unbiased C/E ratio estimates.

Marginal-Effect Approach

In contrast with the conventional average-effect
approach that is likely to produce biased estimates
of C/E ratios, an alternative approach is to esti-
mate the incremental C/E ratio in the context of a
simultaneous modeling framework. This simulta-
neous model gives a marginal-effect estimate of C/E
ratio because it is a direct marginal product of the
model system (1) and (2) with respect to treatment
effect. The following presentation shows that such
a marginal-effect C/E ratio estimate is statistically
consistent, as it is measured in a model controlling
for the impact of nontreatment variables and the
simultaneity of cost and outcomes functions. Let a
random vector ui � (uci,uei)� be independently dis-
tributed across individuals i with a variance-cova-
riance matrix:

(10) 

Define r � �/�, then substitute � � r� into equa-
tions (1) and (2):

(11) 

(12) 

It is worth noting that the C/E ratio r � �/� can
only be measured conditional on the nonzero
treatment effect on health outcome function, i.e.,
��0. In order to ensure this condition, a null hy-
pothesis testing should be conducted:

Null Hypothesis Testing: ��0. i) This test can be
conducted using a standard OLS t-test. If the null
hypothesis cannot be rejected in the test, it sug-
gests that the effectiveness outcomes are indiffer-
ent across the study groups of patients. As a result,
it is appropriate to conduct a cost-minimization
analysis. In such a case, the basic decision rule is
that the treatment option with the least cost
should be chosen over its alternative. ii) If the null
hypothesis is rejected significantly, it then suggests
the treatment effect to be significant and thus sta-
tistically there exists r � �/�, which can be esti-
mated as follows.

Nonlinear Generalized Least Squares Estima-
tion. Equations (1) and (2) are rewritten together
in vector:

Σ
σc

2 σce

σec σe
2⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Ci rβTi γ c′Xci uci+ +=

Ei βTi γ e′Xei uei+ +=

(13) 

Assume for now that a variance-covariance matrix
� is known with a 2 	 2 nonsingular matrix P
such that P��P � I. Multiply the left of equation
(13) by P:

(14) 

For convenience, denote:

Equation (14) then becomes

(15) 

Note that the variance-covariance matrix of PUi is
identity, the nonlinear least-squares estimates of r,
� and � can be obtained by minimizing:

(16) 

Solving the first order conditions of equation (16)
produces consistent estimates of r, �, �.

(17) 

(18) 

(19) 

where 
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Confidence Interval Estimation
Equations (17), (18), and (19) give point estimates
of r, �, �. To assess the robustness of these estima-
tors, confidence intervals for each point estimate
must be derived. Equation (15) is rearranged as
follows:

(20) 

Defining  � ( , , ), its distribution is derived
according to statistical theory [24,25]:

(21) 

In the case of a finite sample, the asymptotic ma-
trix can be estimated by:

(22) 

Thus, the distribution of  � ( , , ) can be writ-
ten as:

(23) 

Denoting w11 as the [1,1] element of

the variance-covariance matrix of , it follows that
an asymptotic 100(1-�)% confidence interval for
C/E ratio  can be obtained by:

B1 bi′
i 1=
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⎜ ⎟
⎛ ⎞
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1
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(24) 

where Z�/2 is the critical value of a standardized
normal distribution. Apparently, confidence inter-
vals for ,  can also be computed similarly as
equation (24).

A Feasible Two-Step Estimation Method
While equation (24) provides a conceptual frame-
work for the confidence interval estimation of C/E
ratio , it is estimable only upon a known vari-
ance-covariance matrix � of the error terms in the
model system. In practice, however, � is usually
not known. To accomplish this task, a feasible
two-step method can be employed:

Step I. Applying OLS separately to equations (1)
and (2), consistent estimates can be obtained for
the residuals  for i � 1,2, . . . , N:

(25) 

Step II. Substituting the above estimated vari-
ance-covariance matrix  into equations (17)
(18) and (19), a feasible estimate of  � ( , , )
can be obtained. Similarly, the confidence interval
for C/E ratio  can be obtained from equation
(24) with the substitution of , yielding a feasible
estimate of (  � Z�/2 ), in which the estimated
variance-covariance matrix  has the following
form:

(26) 
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ŵ
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Simulation

Following the theoretical discussions on the simul-
taneous marginal-effect model versus the average-
effect model, a simulation assessment of the two
models is now provided using hypothetical data to
show their relative performances in predicting a
given set of population parameters.

Experimental Design
For the purpose of clarification, the model specifi-
cation was simplified to include only four determi-
nants: treatment effect, income effect, sex effect,
and a stochastic disturbance term that measures
the effects of unobserved factors. More formally,
the data generating process (DGP) for the simula-
tion was based upon the following model:

(27) 

(28) 

where:

Ci � continuous variable for total cost;
Ei � continuous variable for outcomes (e.g., QALY);
X1i � dummy variable being 1 for male, and 0 for
female;
X2i � continuous variable for individual annual
income, assumed to range from $5,000 to
$100,000, i.e., X2i � ($5,000, $100,000);
Ti � dummy variable being 1 for treatment group,
and 0 for control group;
� � treatment effect on the effectiveness function,
assumed to be 0.5;
r � incremental cost-effectiveness ratio, assumed
to be 10,000/QALY;
�1, �3 � sex effects on the cost and effectiveness
functions, assumed to be 0.5 in both functions;
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Zei ;
i 1=

N

∑

+
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a33 Xi′Σ̂

1

Xi
i 1=

N

∑=

Ci rβTi γ1X1i γ2X2i uci+ + +=

Ei βTi γ3X1i γ4X2i ueI+ + +=

�2, �4 � income effects on the cost and effective-
ness functions, assumed to be 0.1 and 0.0001 re-
spectively;
uci, uei � unobserved terms, assumed to follow a
joint normal distribution with a variance-covari-
ance matrix as:

Simulation Results
Based on the assumed model specifications, 11
sets of cost and outcomes data were randomly
generated by varying the sample size N from 25
through 20,000. The mean C/E ratios were then
estimated using the conventional average-effect
model and simultaneous model (Table 1). For av-
erage-effect C/E ratio measures, upper and lower
bounds were computed using the Taylor Series
method, a popular approach for average interval
estimates [10]. As expected, measured against the
true population C/E ratio, r � 10,000/QALY, the
mean bias of the average-effect C/E ratio estimate
is substantial as a result of failing to control for
the effects of the confounding variables (income
and sex). To be more specific, the simulated mean
C/E ratio is systematically biased downward from
its true value and such a bias is particularly signif-
icant when the sample size is relatively small.
Moreover, the estimation bias always persists,
while becoming smaller, even as sample size in-
creases (Figure 1).

In contrast, the estimates of C/E ratios using the
simultaneous model with the same data series
were simulated. Upper and lower bounds for the
mean C/E ratio using the suggested feasible two-
stage method were computed. The simulation re-
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Table 1 Simulation results for the marginal-effect model 
versus the average-effect model (true C/E ratio r � 
$10,000/QALY)

Average-effect Approach Marginal-effect Approach

N L Bound U Bound L Bound U Bound

25 8335 3044 13626 10522 6083 14960
50 8568 5379 11756 10279 7391 13166
75 8255 5673 10837 10191 7863 12518
100 8336 6146 10526 10105 8144 12066
150 8279 6449 10109 10030 8449 11611
200 8288 6642 9934 10068 8683 11454
500 8209 6996 9422 9998 9136 10861
1000 8209 7162 9256 10006 9395 10618
2000 8206 7335 9078 10009 9816 10202
10000 8195 7326 9065 9998 9805 10191
20000 8200 7340 9059 9998 9861 10134

r̂ r̂
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sults show that the simultaneous model performs
superior to the average-effect model in capturing
the true C/E ratio. First, the estimated C/E ratios
from the simultaneous model are statistically con-
sistent. That is, the estimated C/E ratios quickly
converge onto the true C/E ratio. Second, the si-
multaneous model estimates are more efficient
than the average-effect results in terms of estima-
tion variance. It has been shown that the simulta-
neous model gives more precise confidence inter-
val at any sample size than that of the average-
effect model.

Conclusion

This study raises two fundamental questions con-
cerning the validity (degree of bias) and efficiency
of the incremental C/E ratio estimates. It has been
shown in the study that the widely used average-
effect approach is likely to give biased and ineffi-
cient C/E ratio estimates by failing to control for
significant confounding factors when present. Al-
ternatively, the simultaneous modeling approach
suggests that a marginal-effect C/E ratio can be
obtained by controlling for observed confounding
factors and the simultaneity of cost and outcomes
functions. A feasible two-step method was discussed
to obtain consistent confidence interval estimates

of C/E ratios from the simultaneous model. Fol-
lowing the demonstration of the two approaches
on theoretical grounds, simulation work was shown
using a series of hypothetical data that gave strong
empirical evidence in support of the simultaneous
model. In summary, the simulation results suggest
that the simultaneous model is highly superior over
the average-effect model in terms of lack of bias
and efficiency of the estimated C/E ratio measures
in relation to the assumed true C/E ratio.

It must be noted, however, that our discussions
on the simultaneous model and its advantages
over the average-effect model have some limita-
tions. First, the advantages of the simultaneous
model can be realized only in studies that analyze
retrospective data or randomized controlled data
that were confounded by some nonrandom distur-
bance such as patient self-selection effects in pro-
gram participation or dropouts. In the cases where
nontreatment effects are not significant, the simul-
taneous model and average-effect model should
give statistically similar results.

Second, the estimation of the simultaneous
model requires individual data at patient level so
that any across-group differences due to observed
patient characteristics can be explicitly controlled
for in the model. However, aggregate data by pa-
tient group or region, for example, may not allow
the model to be estimated.

Figure 1 Simulated estimates of C/E Ratio (true C/E ratio � $10,000/QALY).
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Third, while observed confounding factors can
be well controlled for in the simultaneous model,
it is not by any means immune from estimation
bias due to possible unobserved factors. For ex-
ample, variables of patient health status, health
behavior, or clinician’s diagnostic and treatment
behavior are usually not observable. These hard-
to-measure variables often influence both patient
treatment selection and health outcomes mea-
sures. As a result, failing to control for such unob-
served factors could lead to biased estimates, and
these problems are particularly significant in most
nonexperimental studies. Recent development in
methodology suggests that the instrumental-vari-
ables method appears to be a promising approach
to dealing with selection bias issues when appro-
priate instruments can be identified [26–29].

Fourth, a simulation analysis of the two ap-
proaches was conducted using hypothetical data
that were generated from a set of assumed param-
eters and distributions of the variables and model
specifications. While varying these assumed pa-
rameters and distributions was not expected to al-
ter the basic findings as ensured by our theoretical
discussions, future simulation studies are neces-
sary to further test the performance of the two ap-
proaches by employing more justified parameters
and distributions from real data. It is suggested
that conducting such a simulation analysis using
disease-specific data with distribution parameters
obtained from previous empirical studies would
be a good exercise to test this model.

We are grateful to Dick Ernst for his insightful conversa-
tions with us on the earlier development of this study,
and to the journal editor, guest editor and referees for
their helpful comments. This study has also benefitted
from the assistance and suggestions of Francesco Ven-
turini and the seminar participants at the USC Depart-
ment of Pharmaceutical Economics and Policy.
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