
JOURNAL OF DIFFERENTIAL EQUATIONS 11, 376-384 (1972) 

Solutions of Linear Nonautonomous Functional Differential 
Equations Which Are Exponentially Bounded for t--f - 00 

JAROSLAV KURZWEIL 

Matematick$ tistaw CSAV, Praha 1, Czechoslovakia 

Received May 4, 1971 

1. INTRODUCTION 

For y E R1, denote by 9”(y) the set of such solutions of 

$(t) = A(t) x(t) + B(t) x(t - l), 

which are defined on R- (the set on nonnegative reals) and fulfil 

(l-1) 

lim sup eYt 1 x(t)1 < cc (1.2) 

(x(t) E Rn; 1 x(t)1 is the norm of x(t); A(t), B(t) are n x n-matrices). It was 
proved in [2] that Z(y) is a finite-dimensional linear space provided that 
A, B are locally integrable, / B I-the norm of B-is locally square integrable, 
and 

s 

t+1 

I A(T)I dT < a, 
t s 

t+1 
I B(7)12 dr < b2 for t < -1, (1.3) 

t 

a, b being any positive reals. Moreover, there were established estimates 
of dim 9(y) in terms of y, a, b. In this paper, these results are extended 
to the linear functional differential equation 

dx gj (t> = w xt (1.4) 

(xt E C((- 1,O) + Ra), xt(u) = x(t + u) for u E (- 1,O)). The proce- 
dure is as follows: x : R- -+ RQ is a solution of (1.1) fulfilling (1.2) iff 
(x, 1 s = 0, -1, -2,...} fulfils 

X s+l = Qsxs 9 s = -1, -2, -3 )..., 

(QS being the shifting operator of (1.3); cf. Definition 2.1) and 

hl&up eys I/ x, I/ < co 

376 

(1.5) 

(1.6) 
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and to this problem Corollary 3.1 of [3] applies. In Section 2, there are 
summed up some auxiliary results on equation (1.4), and in Section 3, 
there are established estimates of the shifting operators of (1.4) and it is 
proved that these operators are uniformly completely continuous (cf. [3, 
Note 2.21). In Section 4, it is proved that dim Z(r) is finite and there is 
found an estimate for dim 5?(y) (cf. Theorems 4.1 and 4.2). In the special 
case of Eq. (l.l), it need not be assumed that 1 B I2 is locally integrable 
and (I .3) may be replaced by 

1 

t+1 

I 

t+1 

14~)l d7 d a, I B(4 d7 < b for t < -1, (1.7) 
t t 

u, b being any positive reals. Moreover, if ea+Y b is sufficiently large, 
bea+y bn(a + y + lg b + lg n) is an upper bound for dim T(y). If there 
exists such a continuous function 5, t(O) = 0 such that 

then 6 eYbn(y + Ig b + lg n) is an upper bound for dim Z?(r) provided that 
ryb is large enough. 

It was shown in [2]-under the assumption of (1.3)- that e2v( 1 + aea)2b2n 
is an upper bound for dim B(y), ey(1 + aea)b being sufficiently large. This 
is a better result with respect to n in comparison with the estimates from 
this paper, but a worse result with respect to y, a, b. 

Let 01 , /I E R1, j3 # 0. For the characteristic roots zk that correspond 
to equation 

$(t) = WC(t) + #h(t - 1) (1.9) 

(x(t) E Rl), the following asymptotic formulas are well known (cf. [4, 
Section 12.91): 

xR = lg 1 /I 1 - lg(2Kn) + i (2k* + arg /3 - i sgn k) + o(l), (1.10) 

k being an integer such that 1 K 1 is large, i being the imaginary unit. For 
y E R1 let N(y) be the number of such zlc that Re zk 3 -y. It follows from 
(1 .lO) that for every E > 0 there exists a A(E) > 0 such that N(y) >, 
(1 - c) v-ley I p I, provided that ey I /3 1 > A(E). Hence, if 7t = 1, any upper 
bound for dim b(y) in case of Eq. (1.1) must be greater than (1 - e) rr-leyb, 
if eyb is sufficiently large. For n > 1, replace ~1, /3 in (1.9) by 01 id, g id, id 
being the n x n identity matrix (x(t) E R”). It follows that any upper bound 
for dim Z?(y) in the case of Eq. (1.1) must be greater than (1 - c) +eYbn 
if eyb is sufficiently large. 
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2. LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS 

Let 71 be a positive integer, let C be the linear space of continuous functions 
from (-1,O) to Rn; it is assumed that R” is provided with some norm, 
the norm of y being denoted by / y 1 for y E Rn; /I x Ij = ~up~~(-i,~> / x(t)1 
for x E C. Let 9 be the linear space of linear maps from C to Rn with the 
usual norm. Let R- = {t E R1 / t < O}. Let F : R1 + L? fulfil 

F(.)Y is measurable for any y E C, (2.1) 

II F(.>ll is locally integrable. (2.2) 

If u:(s-l,T)+Rn, s < T < 0 is continuous, define ut E C for 
t E (s, T) by ~~(0) = u(t + a), u E (- 1,O). u is called a solution of 

$(t) = F(t) xt (2.3) 

(on (s, T)), ‘f t . 1 i is continuous on (S - 1, T), if the restriction of u to (s, T) 
is absolutely continuous, and if (2.3) is fulfilled almost everywhere on (s, T), 
x being replaced by u. u : (-co, T) -+ Rn is a solution of (2.3), if the 
restriction of u to (S - 1, T) is a solution of (2.3) for any s E (-co, T). As in 
the theory of ordinary differential equations u : (S - 1, T) --f R” is a 
solution of (2.3), if it is continuous and if 

u(t) = u(s) + j)‘b) u, da, t E (s, T). (2.4) 

From (2.4) the existence theorem may be obtained (by means of successive 
approximations) in the following form: if w E C, s E R-, then there exists 
u : (s - 1,O) --f Rn such that u is a solution of (2.3) and u, = w. 

If u fulfils (2.4), then 

I u(t)1 < II us II + jt llF(dl . II u, II do, s<t<T, 
s 

and, by Gronwall’s inequality, 

I 49 < II us II exp jr IIF(dl do, s<t<T 
s 

((2.5) implies uniqueness of solutions.) Moreover, if s < 7 < t < T, then 

I u(t) - 40 = /I j$) uo da /I 

< II u, II [exp It II F(u)11 da - exp ST II F(u)11 du]. (2.6) s s 
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DEFINITION 2.1. For s = -1, -2,..., define QS : C -+ C as follows: if 
w E C, find the solution u of (2.4), w : (s - 1, 0) -+ R” such that W, = w 

(U exists and is unique) and define QSw = u,+~. [QS are called shifting 
operators of Eq. (2.4).] 

Let AVT(n) be the set of n x TZ matrices; M(n) is a linear normed space, 
the norm being introduced in the usual way. For T E (-1, 0), define 

j’s,, : C -f- R1 by Ps,r~ = (QSw)(7). By (2.5), P,,, is continuous and, by the 
representation of linear functionals on C, there exists V3,, : (-1,O) -+ M(n) 
such that 

V 8.7 is of bounded variation, (2.7) 

l/J-l) = 0 and s.7 V is left continuous at any h E (-1, 0), (2.8) 

and 

(Saw)(~) = Pow = s O Vs,,W) 44 (2.9) 
-1 

(i.e., in components (PS,7w)i = CF=, JII wj(X) d((V,,,(A))i,j). 
Moreover, it may be deduced from (2.5) and (2.6) that 

and 

5 
s+1+r 

var V,,, < exp II F(u)ll du (2.10) 
s 

WV,,, - V,?,,) < exp j:‘l’T /I F’(u)11 da - exp /yl@ II F(a)11 da (2.11) 

for -1 < 8 < 7 < 0, s = -1, -2 ,... . 

3. A SPECIAL SET Sz 

DEFINITION 3.1. Let M(n) be the set of n x n matrices, let p, u E RI, 
0 < v < p. Define W(P, v) to be the set of such Q : C + C which can be 
represented in the following way: for any T E (- 1, 0), there exists 
V, : (- 1,O) --f M(n) such that V, is of bounded variation and 

var V, < CL, (3.1) 

there exists x : (- 1,O) -+ RI, continuous, nondecreasing, 

x(-l) = 0, x(0) = v, var(VT - VJ G X(T) - x(4 
(3.2) 

for-l <u<7<0, 

(QY)(T) = c” V&WY@) [cf. (2.9)]. (3.3) 
J -1 
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THEOREM 3.1. W(P, v> C Q({k>, lpi>>, Ai , pi being defined by 

k, = 0, k, = n, ki = (1 + 2i-2)n, i = 2, 3,..., 

PO = I% pi = ,241 i = 1, 2, 3 ,... . 
(3.4) 

(For the definition of SZ({k,}, {pi}) see [3, Definition 2.11 for X = C.) 

Proof. Let 9 : (0, V) -P (- 1,O) be such that x 0 9(h) = h for h E (0, V) 
(if x is strictly increasing, then B is the inverse). Let Q E w(p, v). Define 

X(0’ z c, X(l) = (y E C 1 (Qy)(-1) = 0}, (3.5) 

X(i) = IYE C / (Qy) (19 (6)) = 0 for j = 0, I,..., 2”2/, 

i = 2, 3,... . (3.6) 

It is easy to see that 

codim(Xo) 1 C) < n = k, , codim(Xo) 1 C) < n(2i-2 + 1) = ki 

for i = 2, 3,... . 

Let y E Xu), i > 2, 7 E (- 1,O). There exists an Y, r = 0, I,..., 2i-1, such 
that 

Find an integer i such that 2r” = Y or 2r” = r + 1. (Qy)(8(k#-7) = 0, as 
VEX and it follows from (3.2) and (3.3) that 

ll(Qy)(~)ll = I/(W)(T) - (vJ’) (8 (+),a d (1 Xc’) - X (&ii G $I = Pi- 

The cases i = 1,2 are similar; the proof is complete. 

LEMMA 3.1. Let ki , pi be defined by (3.4) and let m, p be positive integers. 

If m < Pn, then [S(m, ~)]ll”~ = (g(m))“mpp. (3.7) 

If pn < m < 2pn, then [E(m,p)]ll”p = (g(m))l’“~~‘/l”P’mv’m-“P”m. (3.8) 

If pn(2+-2 + 1) -c m < p$P1 + I>, Y = 2, 3, 4 ,..., then 

CL 
( ) 

m/m 
F~“(mP>l l/mP = v . (g(m))lh” . - . 2-7+l+pnln(zr-l+r-2). (3.9) 

v 
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For the definition of S(m,p), see [3, Definition 2.21; g(m) is defined in 
[3, Definition 1.21; formulas (3.7), (3.8), and (3.9) are obtained from (3.4). 

LEMMA 3.2. Put Y(6) = E/([ - 1)[$(5 - l)]lltfor E >, 2. Let 0 < v < p 
and let ki , pi be defined by (3.4), m > 2np, m, p being positive integers. Then, 

[S(m, p)]l/l”p < 4~ ns ( g(m))l’nLp . ($)“‘“l!P (5). (3.10) 

Proof. By the first inequality in (3.9) pn/m(2T-1 + 2) < 2; hence, 

npfnr 
. 2-l . 2(r--4)(-l+n~/ni) 

By the second inequality in (3.9) 2T-4 3 8-l(m/np - 1); hence, 

2+4)(-ltPn/nl) < 8 ?tt. .? 

and (3.10) holds. 

THEOREM 3.2. To every E > 0 and E > 1 there exists A(,, E) > 0 such 
that the following assertion holds: 

Let 1 < P/V < E, let k, , pi be Wined by (3.4), Qi E Q(&>, {pi}), 
j = -1, -2,... . For c > 0, /et Z(c) be de$ned by [3, DeJinition 3.11. If 
cv 2 h(~, E), thePt 

dim Z(c) < (1 + C) 2ecvn Ig(cvn). (3.11) 

Proof. Let m be the whole part of (1 + l ) 2ecvn lg(cvn) and let p be 
the whole part of $lg(cvn). It may be verified that m > 2np if cv > e so 
that (3.10) holds. Replace in the right side of (3.10) (g(m))l’““” by rnli2p 
(cf. [3, (1.16) and (1.20)]). Th en, there may be found such a X = A(E, E) 
that the right side of (3.10) . 1 1s ess than l/c, if cv 3 X and (3.11) follows by 
[3, Theorem 3.21. 

4. ESTIMATES OF dimZ(y) 

Equation (2.3) and its special case 

dx 
z(t) = A(t) x(t) + B(t) x(t - 1). 

will be discussed. 

(4.1) 

505/11/2-II 
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Let C, F, Qs , M(n), etc., have the same meaning as in Sections 2 and 3. 
It will be assumed that F fulfils (2.1) and (2.2) and that there exists K > 0 
such that 

s 

stl 

llF(t)!l dt < K for s = -1, -2,... . (4.2) 
s 

A : R- + R”, B : R- + R” are assumed locally integrable and 

s s+1 

.r 

3+1 

I A(t)I dt < a, I B(t)! dt ,< b, 
I s 

a, b being any positive reals. 

DEFINITION 4.1. For any y E RI, let T(y) be the set of solutions u of 
(2.3), which are defined on R- and fulfil 

1irnn;p eyt 1 u(t)1 < c-0. 

Let %o(y, (4, 1)) have the analogous meaning with respect to (4.1). 

DEFINITION 4.2. If u : R- + Rn is a solution of (2.3), define 

W(u) = (z& 1 s = -1, -2 )... }. 

LEMMA 4.1. The restriction of W to Z(y) is a bijection of 3(“(y) on Z(eY) 
for any y E RI. 

This follows from (4.2) and (2.5). 
It follows from (4.2), (2.9), (2.10), and (2.11) that Qzs E W(eK, eK - 1), 

s = -1, -2,... . Hence by Theorem 3.1, Lemma 4.1, and [3, Corollary 3.11 
we obtain 

THEOREM 4.1. dim b(y) < cc fog y E R1. 

Moreover, Theorems 3.1 and 3.2 imply 

THEOREM 4.2. Let 6 > 0, E = es(es - 1)-l. If K > 6, eY(eK - 1) 3 X(E, E), 
then dim Z(y) < (1 + c) 2eeV(eK - l)n Ig(eY(@ - 1)n). 

Theorem 4.2 applies to Eq. (4.1); in this case, more detailed results may 
be obtained, as an explicit formula is available for V,,, in (2.9). 

LEMMA 4.2. Q8 E sZ({hi}, (pi}) for s = -I, -2,..., Qs being the shifting 
operators of (4.1), ki and pi being dejined by (3.4) with p = ea(b + I), Y = e@b. 
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Proof. Let U : R- --t M(n) be a fundamental matrix of dx/dt = A(t)x. 
Then, 

(Q,y)(t) = Yt + 1 + 4 WS)Y(O) 

+ jy U(t + 1 + S) U-l(u + S) B(u + s)y(a - 1) do. (4.4) 

By Gronwall’s lemma 

) U(T) U-l(X)1 < ea for s<A<~<s+l, s=-I,-2 ,.... (4.5) 

Put s”s” 1 B(a)1 da = b, and assume that b, > 0. Find such 8, : (0, b,) -+ 
~-l,O)that~~~A’jB(s+1+o)~do=Xforh~(-l,0)anddefinelinear 
subspaces Xci) of C by (3.5) and 

*Y(i) = 1 y E c / (Qsy) (9,$ (g-jj = 0,j = 0, I)..., 2’9, i = 2, 3 ,... . 

Obviously, codim(X(i) 1 C) < ki , and the estimate /I QSy j/ < pi 11 y // for 
y E Xi) is obtained from (4.3), (4.4), and (4.5). Theorem 3.2 and Lemma 4.2 
imply 

THEOREM 4.3. Let 6 > 0, E = 1 + S-l, E > 0. If b > 6, evtab 3 X(E, E), 
then 

dim S“(y, (3, 1)) < (1 + c) 2eeYtabn(y + a + lg b + lg a). 

Let 5 : (0, a) ---f R1 be continuous and increasing, t(O) = 0, l(u) = a 
for u 3 1, and assume in addition that 

I ST 1 A( dh < <(T - u) for T--l<u<~<O. (4.6) 
-CT 

The following Lemma may be proved by a slight modification of the proof 
of Lemma 4.2. 

LEMMA 4.3. Q, E Q({h,}, {pi}) for s = -1, -2,..., QS being shifting 
operators of (4.1), hi being de$ned by (3.4), p0 = ea(b + I), pr = cab, 
pi = (1 + q)b 2++l exp(c((1 + 3-l)2ei+7), i = 2, 3,..., 0 < 9 < 1, 7 being 
arbitrary. 

THEOREM 4.4. There exists A, > 0, which depends on 5, 6, E only, 6 > 0, 
0 < E < 1, such that if eyb 3 A, , a < 6-l, then 

dim ?.Z(y, (3, I)) < (1 + c) 2eeYbn(y + lg b + lg n). 
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The proof makes use of Lemma 4.3 and depends on estimates similar 
to those from Section 3 and is omitted. 
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