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Abstract--We consider an operator theoretic formulation for distributed damped second-order (in 
time) forced linear elastic systems. A brief summary of previous well-posedness results is presented 
along with new results which allow relaxed spatial regularity (which is important in smart material 
systems applications) on the forcing or input function. Extensions to nonlinear systems are also 
indicated. The results are presented in a variational format for easy development of finite element 
approximation methods. (~) 1999 Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

In this note, we revisit the well-posedness results for damped second-order systems with un- 

bounded input operators  as discussed in [1; 2, Chapter  4]. In those references, we considered 
systems of the form 

ib(t) + A2fv(t) + AlW(t) = f(t), in VI* , 
(1) 

w(O) = WO, ?J.)(O) = Wl ,  

in the context of a Gelfand quintuple of Hilbert spaces 

VI~-~ V2c--, H~-~ V~ c--~ V~, 

where Ai E £(Vi, V~*), i = 1, 2. Under certain assumptions on the stiffness and damping opera- 
tors, A1, A2, respectively, we gave well-posedness results (which we shall s ta te  precisely below) 
under the assumption f E L2(O, T; V~). This assumption, while satisfied in some cases of strong 
damping or in applications with strengthened regularity in the input, does not hold for certain 
impor tant  classes of problems encountered in actuation of smar t  material  structures. Here, we 
improve these results so as to include those classes of problems. First we recall the results of [1]. 

2. P R E V I O U S  R E S U L T S  

We assume tha t  the differential equation in (1) is defined via sesquilinear forms al,a2 and 
make the following standing assumptions throughout this note (these are the same as in [1,2]). 
The  sesquilinear forms ai : V/× Vi --~ C are V~ continuous with 

la,(~,¢)l < c~l~l~l¢l~, for all ~ , ¢  e V~, i = 1,2. 
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Thus, the operators Ai E L:(V/, V/*) in (1) are given by 

= e ¼ ,  

where the duality pairings (., ")y~*,y~ are extensions by continuity of the H inner product (., ")H 
from H × V/ to  V/* × V~. We further assume that  at  is symmetric and VI elliptic, satisfying for 
some kl > 0, 

aeal(qO, ~) = a l (~ ,~ )  _> kl[~[~,  for (p E V 1. 

Moreover, a2 is V2 coercive satisfying for some k2 > 0, 

Re a2( , + ),oI I  k21 1 2, for e Y2. 

Under these conditions, the following theorem was proved in [1] and appears as Theorem 4.1 
of [2], 

THEOREM 1. Suppose at is symmetric, V1 continuous and Vt elliptic, a2 is V2 continuous and V2 
coercive. Then for w0 E Vt, Wl E H, f E L2(0, T; V~), system (1), which can equivalently be 
written 

+ o2 (w(t), v) + ot(w(t) ,  v) = (I(t),  v)v -,v2, 

w(0) = w0, w(0) = wt 

for ~ E V1, 
(2) 

has a unique solution w in the sense of L2(O, T; 1/i)* ~ L2(0, T; V~) satisfying w E C(O, T; Vz), 
zb E L2(0, T; V2) MC(0, T; H),  0) E L2(0, T; VI* ). This solution depends continuously on the initial 
data  (wo, wl) and input f in the sense that the mapping (wo, Wl, f )  -~ (w, (v) is continuous from 
V1 X H x L2(O,T; V~) to L2(O,T; V1) x L2(O,T; V2). 

The above theorem is adequate to treat many systems of interest. For example (see [2]), for 
a smart material structure such as clamped strongly damped beams or plates with piezoceramic 
actuators, one has V2 = V1 = Ho 2 and V2* = VI* = H -2 while f ( t)  E H -2 for each t. However, 
for a similar structure with only weak internal damping (such as spatial hysteretic damping or 
so-called structural (square root) damping, see [2, p. 116]), one has V2* = (H~)* = H -1 so that  
f will not be in L 2 ( 0, T; V2* ). 

3.  N E W  R E S U L T S  

For the new results we present here, one can relax the spatial regularity on f at the expense 
of added regularity in time. Such results are quite useful in control of smart material structures 
such as those discussed in [2] where f ( t ,  x) = g(t)h(x) and g has some smoothness, e.g., g E C 1 
or at least g E H 1. 

The shifting of smoothness in the spatial variable to additional smoothness in the time variable 
is very much similar to classical results in the treatment of distributed systems using semigroup 
theory (e.g., see [3, Chapter 4.2]). In that  case, one attempts to represent solutions of systems 
such as (1) or (2) in terms of a variation-of-parameters formula employing the homogeneous 
system semigroup and questions under what conditions such a representation provides a strong 
solution of the equation (1). Our results in this spirit can be stated as follows. 

THEOREM 2. Under the assumptions of Theorem 1 with f E L2(0,T;V2 *) replaced by f E 
H 1 (0, T; V~), we have existence of a unique solution of (2) which depends continuously in the sense 
that (wo, Wl, f )  -"4 (W, ~3) is continuous from Y 1 × H x H i (0, T; V~ ) to L2(0, T; V1) x L2(0, T; 1/2). 

PROOF. We sketch the proof which differs from that  for Theorem 1 (see [2, pp. 98-104]) in only 
one essential aspect which, of course, makes strong use of the modified conditions on f .  
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(3o As in [2, p. 99], we choose {~}~=i a linearly independent total subset of V1 and let Vi m = 
span{~l , . . .  ,~m}. We choose worn, wire E Vim such that Won --* wo in Vl,wim --* Wl in H as 

m 
m -~ c~. Let win(t) - ~-:~i=l ~]im(t)~i be the unique solution of the m-dimensional linear system 

( ,~ ( t ) ,  ¢~) + ~d~. , ( t ) ,  ¢~) + ~(~. , ( t ) ,¢~)  = (/(t) ,~)vr,v, ,  
(3) 

wmt0) = w0m, ~.~(0) = wire, 

for i = 1, 2 , . . . ,  m. Multiplying the equation in (3) by ~im(t) and summing over i, we obtain 

(~m(t), win(t)).  + ~2 (win(t), ~m(t)) + o~ (w.~(t), win(t)) = (f(t), ~ ( t ) ) ~ r , v  ' . (4) 

Using the fact that  ~al(Wm(t) ,  win(t)) = 2 Real(win(t) ,  d~m(t)), we may take the Re part of (4), 
integrate over t and obtain 

• 2 Iw~(t)lH + al(Wm(t),wm(t)) + 2Rea2 (wm(s),~Vm(S)) ds 
(~) // ---- [ W m ( 0 ) ] ~  +O'l(Wm(O),Wm(O)) + 2Re(f(s) , (Vm(S)}v{ ,v  ~ ds 

exactly as in the arguments of [2]. 
At this point, we consider the last term in (5) and differ from the estimates in [2]• Using the 

fact that  f e H*(0 ,T;  VI*), we observe that  

fot (I(s),  (vm(S))v;,v ~ ds = jfo t d (f(s),  Wm(S)) - ( ](S), Wm(S)> ds 

> = - ](s), w,n(s) ds + (f(t) ,  Wm(t)) - (f(O), win(O)), 

where all (., .) are interpreted in the duality pairing for VI* x V1 sense. Thus, we find 

t 2 1 2 

(~) 
1 2 1 2 1 

+ ~ I f ( t ) I v  r + ¢lwm(t)l~ + ~If(O)Ivr + 51w,,(O)l~, 

where ¢ is chosen so that  k~ - 2~ > O. Using (6) in (5) along with ellipticity and coercivity 
conditions on al  and a2, respectively, we obtain 

I~t)rn(t)[2I-i -{- ( k l  - 2~)lwm(t)l~, 

_< Iw.,,l~ + (el + 1)lwo.~l~, + I.f(O)l~7 

~* {2,Xo I'w~(.~)l~ + + 

This estimate replaces (4.13) 

~0 t + 2k21~,~(8)1~ ds 

i 2 f o ' ] ( s ) : r d s  + ~l/(t)lv~* + 

} 
in [2]. Arguing as in 

< ]C (Iwo}v,,IWlJH, IflH'(O,T;Vr)) + fO t 

[2], we see that  (7) implies 

+ 2k2 Iw~(s)l~: ds 

÷ 

(7) 

(8) 

Use of the usual Gronwall arguments with (8) guarantees that  {~bm} is bounded in both C(0, T; H)  
and L2(0,T; V2) while {win} is bounded in C(0,T;  Vi), exactly as in [2]. The remainder of the 
proof follows precisely the arguments in [2] using these a priori bounds to extract subsequences 
that  converge to the unique solution of (2). As in [2], one also uses the estimate (8) to establish 
the appropriate continuous dependence as stated in the theorem. 
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4. C O N C L U D I N G  R E M A R K S  

The same type of arguments given here can be used to improve the results for nonlinear second- 
order systems given in [4]. The resulting enhanced applicability of the well-posedness theorems 
for nonlinear systems under the replacement of f 6 L2(0,T; V2) by f 6 H I ( 0 , T ;  VI* ) is exactly 
the same as discussed above for linear systems. (The fact tha t  one still requires the embedding 
V2 ~-~ H be compact in the nonlinear theory of [4] does not affect the relevance and importance 
of the new results for nonlinear systems.) 

The conditions and arguments given here can also be used for nonlinear systems with hystere- 
sis (e.g., see [5]). 
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