COMMUNICATION

HAMILTONIAN PANCYCLIC GRAPHS

Denise AMAR

Université de Bordeaux I, Mathématiques, 351, Cours de la Libération, 33405 Talence, France

Evelyne FLANDRIN, Irène FOURNIER and Anne GERMA

L.R.I., Université Paris-Sud, Bât. 490, 91405, Orsay Cedex, France

Communicated by J.-C. Bermond
Received 31 May 1983
R. Häggkvist [1] and J. Mitchem \& E. Schmeichel [2] gave the same conjecture:

Conjecture. Let G be a hamiltonian graph on n vertices. If $\delta(G) \geqslant \frac{1}{5}(2 n+1)$, then G is pancyclic or bipartite, and the bound is best possible.

We prove this conjecture (at least for $n \geqslant 162$).
Our proof is too long to be given here and will be published later. It is divided into 2 parts:

- For $3 \leqslant k \leqslant 9 n / 10$ we prove that there exists either a $C_{k-1} \nabla C_{k}$ or a $C_{k} \nabla C_{k+1}$ where $C_{r} \nabla C_{r+1}$ denotes the union of 2 cycles of length r and $r+1$ having a path of length $r-1$ in common.
- For $9 n / 10 \leqslant k \leqslant n-1$ we prove the existence of a C_{k}, the proof uses heavily the existence of a C_{3}; this fact was already proved by Häggkvist [1].

References

[1] R. Häggkvist, Odd cycles of specified length in non-bipartite graphs, in: B. Bollobás, ed., Proc. Cambridge 1980, Annals Discrete Math. 13 (1982) 89-100.
[2] J. Mitcham and E. Schmeichel, Pancyclic and bipancyclic graphs, in: Proc. Colorado Symposium on Graph Theory, to appear.

