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Theorems on the localization of the conditions of G. A. Dirac (Proc. London
Math. Soc. (3) 2, 1952, 69-81), O. Ore (Amer. Math. Monthly 67, 1960, 55), and
Geng-hua Fan (J. Combin. Theory Ser. B 37, 1984, 221-227) for a graph to be
hamiltonian are obtained. It is proved, in particular, that a connected graph G on
p >3 vertices is hamiltonian if d(x) > | M>(u)|/2 for each vertex u in G, where M*(u)
is the set of vertices v in G that are a distance at most three from u. & 1990 Academic

Press, Inc.

1. INTRODUCTION

Our notation and terminology follows Harary [4]. Let k be a positive
integer. For each vertex u of a graph G = (V, X) we will denote by M*(u)
and N(u) the sets of all ve V with d(u, v) <k and d(u, v) = 1, respectively.
The subgraph of G induced by M*(u) is denoted by G,(u). The degree in
G (u) of a vertex ve M*(u) is denoted by dg, (,,(v).

The closure C(G) of G is the graph obtained from G by recursively
joining pairs of nonadjacent vertices whose degree-sum is at least | V|, until
no such pair remains.

The following results are known. A graph G = (V, X) on p =3 vertices is
hamiltonian if:

div)=p/2 for each veV (Dirac [2]). (1.1)

we¢ X=>du)+dv)=p (Ore [6]). (1.2)

du)y=k<(p—1)2=1{veV/dv)<k} <k (Posa [7]). (1.3)
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and
du)=(p—1)2=|{veV/dv)<(p—1)2}|<(p—1)/2.

C(G) is a complete graph (Bondy and Chvatal [1]). (1.4)
G is 2-connected and d(v) < p/2, d(u, v)=2=d(u) = p/2
(Geng-hua Fan [3]). (1.5)

In [5] the following theorem on a localization of condition (1.3) is
proved:

THEOREM. A connected graph G on p >3 vertices is hamiltonian if

d(u)=k<(p—1)/2:|{veM2(u)/d(v)<k}| <k
and

dw)=(p—1)/2=1{ve M*(u)/dv) < (p—1)/2}|<(p— D)2

In this paper we obtain the theorems on localizations of conditions (1.1),
(1.2), and (1.5).

2. RESULTS

LEMMA. Let G be a graph with d(u,v)=2, we N(u)n N(v), and
d(u) + d(v) = |N(u) v N(v) v N(w)|. Then [NwWN\(N(u) v N@))| <
[N(u) " N(v)|.

Proof.
IN(wW)\(N(u) U N(v))|
=|N(w)| — IN(w) n (N(u) U N(v))|
= |[N(w)| = (IN(w)] + [N(u) v N(v)| — [N(u) L N(v) U N(w)])
=|N(u) U N(v) v N(w)| — (IN(u)| + |N(v)| — | N(u) ~ N(v)[)
=|N(u) N N(v)| — (d(u) + d(v) — |[N(u) © N(v) W N(w)|)
<|N(u)n N()|.

THeOREM 1. Let G=(V, X) be a connected graph with at least three
vertices. If

d(u)+ d(v) = [N(u) v N(v) U N(w))

for each triple of vertices u, v, w with d(u, v)=2 and we N(u)~ N(v), then
G is hamiltonian.
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Proof. Let G satisty the hypothesis of Theorem 1. Clearly, G contains
a circuit; let C be the largest one. If G has no hamiltonian circuit, then
there is a vertex u outside of C that is adjacent to at least one vertex in C.
Let {w,, .., w,} be the set of vertices in C that are adjacent to u, and for
each i=1, .., n let v, be the successor of w; in a fixed cyclic ordering of C.

Note, that if 1<i<j<n then v,v,¢ X. Otherwise delete the edges w,v,,
w;v; from C and add the edges v,v;, w,u, uw, In this way we obtain a
circuit longer than C, which is a contradiction.

For each i=1,..,n let F, and T, denote the sets N(u)n N(v;) and
N(w N\ (N(u)w N(v;)), respectively. Since C is the longest circuit, uv;¢ X,
i=1,..,n Then d(u, v;)=2 and from the Lemma we have |T,| <|F,| for
each i=1, .., n

We shall show that there is a vertex u’' such that ' ¢ C and u' € F, for
some I, 1 <ign.

Consider the following iterated algorithm.

Step 1. k:=1, m:=1, and Z!:={u,v,}, Y/:={w;} for each
i=1,..n
Step 2. If the set F,\Y* contains a vertex u'¢C, then stop.
Otherwise, choose an arbitrary vertex w in F,\Y*. Clearly, w=w, for
some r, | <r<n.
Set

YEri=YE O {w,}; ZE =25,
Yirl=YhZE =270 (v, ),

Yitl=Yk Z5t ' =ZF  for i#m,r and 1<i<n
Step 3. k:=k+1, m:=r and go to Step 2.

It is not difficult to see that before the kth iteration of the algorithm we
have

(@) ZFcT, YFcF, |Z >|Y" foreach i, 1<ign.
(b) F,\Y%#, because |T,| <|F,| and |ZX|>|Y%].
() Yic{w,, .., w,} foreachi 1<i<n.

@) Y5 = Y5 +1if k=2

From (b), (c), (d) it follows that if k>2 then Y7_,|Y ! <

?_1 1Yl <n® Hence there exists k such that 1 <k <n? and the set F,\Y*
contains a vertex u’ ¢ C. Delete the edge w,,v,, from C and add the edges
w,u, u', u'v,,. In this way we obtain a circuit longer than C, which is a
contradiction. The proof is complete.
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Note that for every ¢>5 there exists a graph G,=(V,, X,) with
V,={vy, vy, ..., 05,} and

t—2
X,= | {vw,/2k+1<i<j<2k+4},
k=0

which fulfills the condition in Theorem 1 and does not fulfill conditions
(L1¥(LS). Clearly, C(G,)=G,, [V,|=2t, and |X,|=5t—4=(52)-
|V, —4.

CorOLLARY 1. Let G be a connected graph on p=3 vertices. If
d(u) + dg, (v} = I1M?(u)| for each pair of vertices u, v with d(u, v) =2, then
G is hamiltonian.

Proof. Clearly,
d(u) +d(v) — INN\M ()| = d(1) + dg,.,(v) = | M ().
Then
d(u) + d(v) > |M*(u)| + |N(o\M ()] > |N(u) U N(v)  N(w)|
for each vertex w e N(u) n N(v). Hence, Corollary 1 follows from Theorem 1.
COROLLARY 2. Let G be a connected graph on p>3 vertices. If

d(u)+ d(v) = |M?>(u)| for each pair of vertices u, v with d(u, v) =2, then G is
hamiltonian.

Corollary 2 follows from Theorem 1 because |M3(u)|>|N(u)u
N(v)u N(w)| for each vertex we N(u) ~ N(v).
COROLLARY 3. Let G be a connected graph on p=3 vertices. If

d(u) = |M3(u)\|/2 for every vertex u in G then G is hamiltonian.

Proof. Let G#K,, d(u, v)=2, and d(u) <d(v). Since d(u) > |M>3(u)|/2,
then d(u)+d(v)=|M3u)| = |N(u)u N@v)u N(w)| for each vertex we
N(u) n N(v). Therefore Corollary 3 follows from Theorem 1.

COROLLARY 4. Let G be a connected graph on p =3 vertices. If

A, ow)(t) + dg, () (v) = |M(w)|
or

d(u)+d(v) = | M*(w)]

for each triple of vertices u, v, w with d(u, v)=2 and we N(u) ~ N(v), then
G is hamiltonian.
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Proof. Let d(u,v)=2 and we N(u)n N(v).

If d(u) + d(v) = |M*w)|, then d(u) + d(v) = |[N(u) U N(v) U N(w)|
because |M2(w)] = |N(u)u N(v) u N(w)|.

Suppose that dg, () (1) + dg, () (0) = IM (w)]. Clearly, dg, . (1) =d(u)—
IN(u)\M*(w)| and dg, (,(v) = d(v) — |[IN(w)\M '(w)|. Hence

d(u) + d(v) > | M (W) + IN@\M ' (w)] + IN(0\M ' (w)]
= |[N(u)u N(v)u N(w)l

and Corollary 4 follows from Theorem 1.

COROLLARY 5. Let G be a connected graph on p = 3 vertices. If for each
vertex u in G at least one of the graphs G,(u) or G,(u) satisfies Ore’s
condition, then G is hamiltonian.

Corollary 5 follows from Corollary 4.

THEOREM 2. Let G=(V, X) be a 2-connected graph on p = 3 vertices and
let v and u be distinct vertices of G. If

d(u) < p/2, d(u, v)=2=d(v) = |M>u)|/2, (2.1)
then G is hamiltonian.

Proof. Let A= {P', .., P"} be the set of all longest paths in G. For each
i=1,.,h let P'=vjvi---vi, and f(P) be the smallest r from
{0, 1, .., m—1} such that v} vie X. We denote by A, the set of all P'e 4
with d(v})) = max,  ; <, d(v}).

Suppose that G is a graph satisfying the condition of Theorem 2 and that
G has no hamiltonian circuit. We shall arrive at a contradiction.

Let P=v,v, ---v,, be some longest path in G of length m, chosen so that
S(P)y=minp 4 f(P). Clearly, d(ve) = d(v,,). If d(vy) + d(v,,) = p then there
are at least two consecutive vertices on P, v;, and v,, (, such that v,v,,e X
and v, ,vo€ X, and so we obtain a circuit of length m + 1. By the connected-
ness of G, we have either a hamiltonian circuit or a path of length m + 1.
Each leads to contradictions. Consequently d(vy)+d(v,,)<p. Since
d(vo) 2 d(v,,), d(v,,) <p/2.

\

From the proof above we can also suppose that
(a) G has no circuit of length m + 1.

Since G is 2-connected, d(v,)>2. Let N(v,)={v,,.,v,} and
Ji < ---<J,. Clearly, j, =1, otherwise G has a circuit of length m+1,
which is contrary to (a). We show now that
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(b) ifv,v,eX and j,<i<m—1 then N(v,,,) S {v;, -, U},
(c) v,v;¢X for some i, j, <i<m,
(d) v, v, ¢Xforevery i, I<igt.
Proof. (b) Clearly, we have N(v, , ;)< {vy, v, .., V,,} Otherwise G has a

path of length m+ 1. Suppose that there is s such that 1 <s<j, and
v,v,,;€X. Then

Pr=0vo0; - 001 Uy q o VU0t Vs
is the longest path in G with f(P’) < f(P). This contradicts the choice of P.
Therefore N(v,,,) S {0, Uy 4 jis or Ui -

(c) If v,v,eX for every i, jy<i<m, then U7
{0,» V1 ¢ s = Uy ). This contradicts the 2-connectedness of G.

(d) It is obvious that (d) follows from (b).

N(UI+1)C

From (c) it follows that there 1s a k such that j,<k<m—1, v,,v, ¢ X,
and v,,v;€ X for every i, j, <i<k—1. Thus we have

(e) there is no i such that j,<i<m—1, v, _,v;eX, and v,v,,,€X.

> Y
Indeed, if v,v;,_,€X and v,v,,,€ X then from (d) it follows that i> k.

Then G has the longest path P,
P =00y v, 00Uy U Uk g0 Uy

with f(P')< f(P). This contradicts the choice of P.

Clearly, d(v,,v,,)=2 and a’( U1, V) =2. Since d(v )< p/2, it follows
from (2.1) that d(v;, ,)>|M>(v,)I/2 and d(v,) > (M3(v,,)|/2.

Since vkvj_ ¢ X and the degree-sum of vertices v, and v, ; in Gs(v,,)
is at least |M>(v,,)|, d(v, v, _,)=2.

From (d) it follows that d( ]1_1)<|M3(v,,,)|—d(vm). Since d(v;,_,)>
|M3(v,,)!/2, then d(v,)<|M?(v,)|/2. Therefore d(v;,_,)>d(v,) and
d(ve) > d(v,,)

Case 1. d(v,)<p/2. Since d(vy,v,,)=d(v,,v;,_,)=2, it follows from
(2.1) that d(v,)>|M?@v,)|/2 and d(vjl_1)>|M3(vk)|/2. Together with
d(v,) > d(v,,) this implies that

d(ve) + d(v;, 1) = | M3 (0)]. (22)

From (d) it follows that v,v, ¢ X for each i, 1 + j, <i<k. From (e} it
follows that v,v, _, ¢ X for every i such that i> j, and v,v,,, € X. Besides,
Uy ]1—1¢X and Upes U j1—1 €M3(Uk) Thus d( Jl‘ l) < |M3(vk)l _d(vk) -1

This contradicts (2.2).
Case 2. d(v,)=p/2. If d(v, ,)<p/2 then (2.1) and d(v,_,,v,)=
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d(v;,_, v,) =2 imply that d(v,,) > |M>*(v,,_)l/2 and d(v,) > M3 (v, _1)I/2.

J
Since d(v;, ) >d(v,,), we have

J
d(v;, ) +d(v)= M3, ). (2.3)

If d(v;, ,)=p/2 then d(v,,_,)+d(v,)=p= M v, )|, so (23) holds
again.

From (b) it follows that v,v, ,¢X and v, is not adjacent to every
vertex V€ N(v;, _ )\N{V),, V14 js oor U -

From (e¢) it follows that v, v, , ;¢ X for every i such that v,e N(v; ,)n
{U\4},s V24 jys s U} Besides, we have v, _,,v,€ M*(v, ;). Therefore
d(v,) <M, ) —d(v )~ 1.

This contradicts (2.3). The proof is complete.

Note that for every r>2 there exists a graph G,=(V,, X,) with
V.={w, wy} U{vy, w03, U {uy, .nus_} and X, ={w v, wyv/i=
Lo 2r} o {v;, wu/1 <i<j<3r—1} 0 {vu/1+2r<i, j<3r—1} that
satisfies the condition of Theorem 2 and does not satisfy the condition
(L5).

Besides, for every n>35 there exists a graph G,=(V,, X,) with
Vo={vy,., v,y and X,={v0/1<i<j<n—2}U{v,_ 0,0, 102}V
{v,0,/i=2,3,..,n—2} that satisfies the condition of Theorem 2 and does
not satisfy the condition of Theorem 1.

Let G=(V, X). It is shown in [1] (by paraphrasing Ore’s proof [6])
that if G+ wuv is hamiltonian and d(u)+d(v)=|V| then G itself is
hamiltonian.

THEOREM 3. If G + uv is hamiltonian, d(u, v) =2, and
d(u) + dg.(0) = |M* ()|, (2.4)

then G itself is hamiltonian.

Proof. Suppose G+ uv is hamiltonian but G is not. Then G has a
hamiltonian path u,, u,,..,u, with u,=v and u,=u Let N(u)=
{is ot} I vuy o @ X for every j, 1</ <1, then dg,,)(v) < [M*(u)| -
d(u). This contradicts (2.4). Hence there is m such that 1<m<r—1,
vy ., €X, and uu, € X.

But then G has the hamiltonian circuit

Uy Uy g, U gy, Upld U

Pl Uy

i1

This contradicts the hypothesis.

COROLLARY 6. If G+ uv is hamiltonian, d(u,v)=2, and d(u)+ d(v) =
|M3(v)|, then G itself is hamiltonian.

582b/49/2-11
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