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Theorems on the localization of the conditions of G. A. Dirac (Proc. London 
Math. Sot. (3) 2, 1952, 69-Sl), 0. Ore (Amer. Math. Monthly 67, 1960, 55), and 
Geng-hua Fan (J. Combin. Theory Ser. B 37, 1984, 221-227) for a graph to be 
hamiltonian are obtained. It is proved, in particular, that a connected graph G on 
p > 3 vertices is hamiltonian if d(u) > IM3(u)[/2 for each vertex u in G, where M’(u) 
is the set of vertices v  in G that are a distance at most three from u. ij 1990 Academic 

Press. Inc. 

1. INTRODUCTION 

Our notation and terminology follows Harary [4]. Let k be a positive 
integer. For each vertex u of a graph G = (V, X) we will denote by Mk(u) 
and N(u) the sets of all u E V with d(u, u) 6 k and d(u, v) = 1, respectively. 
The subgraph of G induced by Mk(u) is denoted by Gk(u). The degree in 
Gk(u) of a vertex UE M“(U) is denoted by d,,(,,(u). 

The closure C(G) of G is the graph obtained from G by recursively 
joining pairs of nonadjacent vertices whose degree-sum is at least 1 VJ, until 
no such pair remains. 

The following results are known. A graph G = ( V, X) on p > 3 vertices is 
hamiltonian if: 

d(u) 3 P/2 for each u E V (Dirac [2]). (1.1) 

uu~x*d(u)+d(u)>p (Ore C61). (1.2) 

d(u)=k<(p-1)/2*I{ue V/d(u)dk}j<k (Posa [7]). (1.3) 
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and 

4u)=h7-1)/2=II VE V/4v)G(p- 1)/2}/ G(P- 1)/2. 

C(G) is a complete graph (Bondy and Chvkal [ 1 ] ). (1.4) 

G is 2-connected and d(v) < p/2, d(u, u) = 2 =s. d(u) > p/2 

(Geng-hua Fan [3]). (1.5) 

In [S] the following theorem on a localization of condition (1.3) is 
proved: 

THEOREM. A connected graph G on p > 3 vertices is hamiltonian if 

d(u)=k<(p-l)/2*~{v~M2(u)/d(v)<k}~<k 

and 

In this paper we obtain the theorems on localizations of conditions (l.l), 
(1.2), and (1.5). 

2. RESULTS 

LEMMA. Let G be a graph with d(u, v) = 2, w E N(u) n N(v), and 
d(u) + d(v) b [N(u) u N(v) u N(w)l. Then IN(w)\(N(u) u N(v))/ < 
W(u) n Wu)l* 

Prooj 

INw)\(Nu) ” No))1 

= INw)l - IN(w) n (N(u) u Wo))l 

= IN(w)I - (IN( + IN(u) u Nu)l - IN(u) VNV) u NW)1 1 

= INU) u NV) u Nw)l - (INu)l + IWv)l - IMu) fl NVII) 

= IN(u) n N(v)1 - (d(u) + d(v) - IN(u) u N(u) u N(w)l) 

d IN(u) n N(v)l. 

THEOREM 1. Let G = (V, X) be a connected graph with at least three 
vertices. If 

d(u) + d(u) 2 IN(u) u N(v) u N(w)/ 

for each triple of vertices u, v, w with d(u, v) = 2 and w E N(u) n N(u), then 
G is hamiltonian. 
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Proof. Let G satisfy the hypothesis of Theorem 1. Clearly, G contains 
a circuit; let C be the largest one. If G has no hamiltonian circuit, then 
there is a vertex u outside of C that is adjacent to at least one vertex in C. 
Let (wi, . . . . w,} be the set of vertices in C that are adjacent to U, and for 
each i= 1, . . . . n let vi be the successor of uji in a fixed cyclic ordering of C. 

Note, that if 1 d i < j< n then u,u,$ X. Otherwise delete the edges M-‘~u~, 
u;vl from C and add the edges viui, u’~u, UW.~. In this way we obtain a 
circuit longer than C, which is a contradiction. 

For each i= 1, . . . . n let F, and T, denote the sets N(u) n N(u,) and 
N(w,)\(N(u) u N(u,)), respectively. Since C is the longest circuit, UC),+ X, 
i= 1, . . . . n. Then d(u, vi) = 2 and from the Lemma we have (T,J d 1 F,I for 
each i= 1, . . . . n. 

We shall show that there is a vertex u’ such that U’ $ C and U’ E Fj for 
some i, 1 <iQn. 

Consider the following iterated algorithm. 

Step 1. k := 1, m := 1, and Z,! := {u, u,], Y,! := {NJ,} for each 
i = 1, . . . . n. 

Step 2. If the set F,,,\Y: contains a vertex u’ $ C, then stop. 
Otherwise, choose an arbitrary vertex w  in F,,,\ YL. Clearly, w  = w, for 
some r, 1 < r < n. 

Set 

yk+' := r;u {wr};z;+' :=z;; m 
ykfl ._ yk. zk+' ._ 

i- .-- r, i- .-z;u {urn}; 

yF+' := y;;y+ :=z; for i#m,r and ldidn. 

Step 3. k:=k+l, m:=r and go to Step 2. 

It is not difficult to see that before the kth iteration of the algorithm we 
have 

(a) Z~C Ti, Yfs Fi, IZfl > I Y,kl for each i, 1 d ifn. 

(b) F,\Yi#@, because IT,,,1 d [FJ and lZLl> lY;l. 
(c) r; G {M”) . ..) wn> for each i, 1 < i<n. 

(d) IY~I=IY~-‘[+l ifk>,2. 

From (b), (c), (d) it follows that if k> 2 then C:=, I Y,“-‘1 < 
C:= I I Ykl < n’. Hence there exists k such that 1 d k < n* and the set F,,,\ YL 
contains a vertex U’ 4 C. Delete the edge w,u, from C and add the edges 
w,,,u, uu’, u’u,. In this way we obtain a circuit longer than C, which is a 
contradiction. The proof is complete. 



290 HASRATIAN AND KHACHATRIAN 

Note that for every t> 5 there exists a graph G,= (V,, X,) with 
V, = {u,, v2, . . . . vzr} and 

t-2 

Xl= IJ (UiUj/2k+ 1 <i<j<Zk+4}, 
k=O 

which fulfills the condition in Theorem 1 and does not fulfill conditions 
(l.l)-( 1.5). Clearly, C(G,) = G,, IV,l=2t, and 1X,1=5?-4=(5/2)- 
IV*1 -4. 

COROLLARY 1. Let G be a connected graph on p 2 3 vertices. If 
d(u) + &z(u)(v) 2 lM*(~)l f or each pair of vertices u, v with d(u, v) = 2, then 
G is hamiltonian. 

ProoJ: Clearly, 

Then 

d(u) + d(o) - IWu)\M*(u)l = d(u) + dc+,u)(v) 2 IM*(u)l. 

d(u) + d(o) B lM’(u)l + IN(v)\M*(~)l >, IN(u) u N(u) u N(w)1 

for each vertex w  E N(u) n N(v). Hence, Corollary 1 follows from Theorem 1. 

COROLLARY 2. Let G be a connected graph on p 2 3 vertices. Zf 
d(u) + d(v) > IM3(u)l for each pair of vertices U, v with d(u, v) = 2, then G is 
hamiltonian. 

Corollary 2 follows from Theorem 1 because IM3(u)l > IN(u)u 
N(v) u N(w)1 for each vertex w  E N(u) n N(v). 

COROLLARY 3. Let G be a connected graph on p 2 3 vertices. If 
d(u) > 1M3(u)l/2 for every vertex u in G then G is hamiltonian. 

Proof: Let G # K,, d(u, a) = 2, and d(u) < d(v). Since d(u) > IM3(u)1/2, 
then d(u) + d(v) 2 IM3(u)l 2 IN(u) u N(u) u N(w)1 for each vertex w  E 
N(u) n N(v). Therefore Corollary 3 follows from Theorem 1. 

COROLLARY 4. Let G be a connected graph on p > 3 vertices. If 

d o~cwq(~) + dclcwj(v) 2 W’(w)l 
or 

d(u) + d(u) 2 Ihf’(w)l 

for each triple of vertices u, v, w with d(u, v) = 2 and w E N(u) n N(v), then 
G is hamiltonian. 
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Proof. Let d(u, v) = 2 and w  E N(U) n N(u). 
If d(u) + d(u) 3 \M*(w)l, then d(u) + d(u) 3 IN(u) u N(u) u N(w)1 

because IM’(w)l 2 IN(u) u N(u) u N(w)J. 

Suppose that &,cwj(~) + &l~w.j (u)> IM’(w)l. Clearly, d,,,,,(u)=d(u)- 
INu)\M’(w)l and &,w (u) = d(v) - IN(u)\M’(w)l. Hence 

d(u) + 40) 2 W’(w)l + IMu)\M’(w)l + INu)\M’(w)l 
2 IN(u) u N(u) u N(w)/ 

and Corollary 4 follows from Theorem 1. 

COROLLARY 5. Let G be a connected graph on p 2 3 vertices. If for each 
uertex u in G at least one of the graphs G,(u) or G,(u) satisfies Ore’s 
condition, then G is hamiltonian. 

Corollary 5 follows from Corollary 4. 

THEOREM 2. Let G = ( V, X) be a 2-connected graph on p > 3 uertices and 
let v and u be distinct vertices of G. If 

d(u) < p/2, d(u, u) = 2 *d(u) 2 IM3(u)1/2, (2.1) 

then G is hamiltonian. 

ProoJ Let A = {P’, . . . . P”} be the set of all longest paths in G. For each 
i = 1, . . . . j let p’=vbu;...ui and f (Pi) be the smallest r from 
10, 4 . . . . m - 1 } such that i&vi, E X. We denote by A, the set of all P’ E A 
with d(ub) = max, <jgh d(u/J. 

Suppose that G is a graph satisfying the condition of Theorem 2 and that 
G has no hamiltonian circuit. We shall arrive at a contradiction. 

Let P=uOu, ... u, be some longest path in G of length m, chosen so that 
f(P) = m&,., f(Pi). Clearly, d(u,) 2 d(u,). If d(u,) + d(v,,) 2 p then there 
are at least two consecutive vertices on P, vi, and vi+ i, such that u,v, E X 
and u. 1 + i uO E X, and so we obtain a circuit of length m + 1. By the connected- 
ness of G, we have either a hamiltonian circuit or a path of length m + 1. 
Each leads to contradictions. Consequently d(u,) + d(u,) < p. Since 
44 2 4vmh d(u,) <p/2. 

From the proof above we can also suppose that 

(a) G has no circuit of length m + 1. 

Since G is 2-connected, d(v,) 2 2. Let N(v,) = {v,,, . . . . vi,} and 
j, < . . <il. Clearly, j, > 1, otherwise G has a circuit of length m + 1, 
which is contrary to (a). We show now that 
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(b) ifu,viEXandj,<i<m-1 thenN(~,+~)~ 

(c) v,u,$X for some i, j, < i<m, 

(d) v,,-,u,,+,$Xfor every i, 1 <igt. 

Proof: (b) Clearly, we have N(v, + i) E { vO, ui, . . . . v,} otherwise G has a 
path of length m + 1. Suppose that there is s such that 1 $s <j, and 
vsv ~+,EX. Then 

P’=v,u, . ..ll.vl+iv~+i...v,uivi~,“~v,+l 

is the longest path in G with f( P’) <f(P). This contradicts the choice of P. 
Therefore N(u,+,)& {u,,, v,+~,, . . . . u,}. 

(c) If v, vi E X for every i, j, < i < m, then UT=;.,’ N(v, + i) s 
fvji’ ’ i +i,, . . . . u,}. This c ontradicts the 2-connectedness of G. 

(d) It is obvious that (d) follows from (b). 

From (c) it follows that there is a k such that ji <k < m - 1, v,vk#X, 
and v, vi E X for every i, j, < i 6 k - 1. Thus we have 

(e) there is no i such that j, < i< m- 1, vj,- lvi~ X, and vkvl +i~ X. 

Indeed, if uiv,, _ i E X and vkvl + i E X then from (d) it follows that i > k. 
Then G has the longest path P’, 

with f(P’) <f(P). This contradicts the choice of P. 
Clearly, d(v,, u,) = 2 and d(v,, _ r, u,) = 2. Since d(v,) <p/2, it follows 

from (2.1) that d(uj,-i) 2 IM3(v,)1/2 and d(vk) 2 IM3(~,)1/2. 

Since ukuj, _ i $X and the degree-sum of vertices uk and uj, ~ i in G3(v,) 
is at least IM’(u,)l, d(u,, u,,-,)=2. 

From (d) it follows that d(u,,- ,) < IM3(v,)l - d(v,). Since d(v,,- i) B 
IM3(v,)1/2, then d(u,) < IM3(v,)l/2. Therefore d(vj,- 1) > d(v,) and 
4Uk) > d(%J. 

Case 1. d(uk) <p/2. Since d(vk, 0,) = d(uk, uj, _ ,) = 2, it follows from 
(2.1) that d(v,) 2 IM3(v,)1/2 and d(vj,- ,) > IM3(v,)(/2. Together with 
d(vk) > d(v,) this implies that 

d(uk) + d(uj,- I) 2 IM3(vk)I. (2.2) 

From (d) it follows that viol, ~ i $ X for each i, 1 +j, < i < k. From (e) it 
follows that vivj, _ i $ X for every i such that i > j, and vpvi+ , E X. Besides, 
v,,,uj,-i$Xand ~,,,,Uj,~l E M3(vk). Thus d(v,, _ ,) < IM3(vk)l - d(vJ - 1. 

This contradicts (2.2). 

Case 2. d(u,)>p/2. If d(u,,-,)<p/2 then (2.1) and d(v ,,-,, u,)= 
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d(uj,-i, a,)=2 imply that d(a,)> IM3(Uj,-i)1/2 and d(rk)> IM3(aj,-1)l/2. 
Since d(u,, ~ ,) > d(u,), we have 

d("~,~~~,)+d(u,)31M3(uj,-I)I. (2.3) 

If d(uj,_,)ap/2 then d(u,,-,)+d(u,)>p> IA43(u,,P,)l, so (2.3) holds 
again. 

From (b) it follows that ukvjlP i # X and uk is not adjacent to every 
vertex UEN(Vj,-,)\{Vj,, Vl+jl, . . . . V,}. 

From (e) it follows that ukvl +i# X f or every i such that vi E N(u,, ~ i) n 

{V l+jl' u2+j13 ...2 vm>. Besides, we have vj, _ 1, uk E M3( vi, ~ 1 ). Therefore 
d(“k)< IM3(vj,-,)l -d(uj,-,)- l. 

This contradicts (2.3). The proof is complete. 

Note that for every r 22 there exists a graph G,= (I’,, A’,) with 
v,= {WI, w*> u {b . . . . V3r-l} u {Ul, ..., u3,-i} and X,= {w,vi, w,v,/i= 
1 2 .*., 2r)u{uiuj,uiuj/l<i<j<3r-1}u{viuj/l+2r<i, j<3r-1) that 
satisfies the condition of Theorem 2 and does not satisfy the condition 
(1.5). 

Besides, for every n > 5 there exists a graph G,= (V,, X,) with 
vn= {Ul, . . . . on> and X,={u,uj/l~i~j~n-2}u{u,~,v,,v,~,~~)u 
{ u,u,/i = 2, 3, . . . . n - 2) that satisfies the condition of Theorem 2 and does 
not satisfy the condition of Theorem 1. 

Let G = (I’, X). It is shown in [ 1) (by paraphrasing Ore’s proof [6]) 
that if G + uv is hamiltonian and d(u) + d(v) 2 1 VI then G itself is 
hamiltonian. 

THEOREM 3. If G + uv is hamiltonian, d(u, u) = 2, and 

d(u) + dcdv) 2 IM’(u)l, (2.4) 

then G itself is hamiltonian. 

Proof: Suppose G + MU is hamiltonian but G is not. Then G has a 
hamiltonian path ui, u2, . . . . up with u1 = v and up = U. Let N(u) = 
{“il, ...3 q,}. If uu,+&X for every j, 1 <j< t, then dc2(Uj(v) < IM’(u)l - 
d(u). This contradicts (2.4). Hence there is m such that 1 bm d t - 1, 
vu l+jm~X, and uu,~X. 
But then G has the hamiltonian circuit 

u,u,+imu2+i ...upui*uim~l”‘ul. m 

This contradicts the hypothesis. 

COROLLARY 6. rf G + uu is hamiltonian, d(u, v) = 2, and d(u) + d(v) > 
IM3(u)l, then G itself is hamiltonian. 

582b.‘49/2-I I 
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