Some Localization Theorems on Hamiltonian Circuits

A. S. Hasratian
Depariment of Applied Mathematics, University of Yerevan, Yerevan, 375049, USSR
AND
N. K. Khachatrian
Computing Center, Academy of Sciences of the Armenian SSR, Yerevan, 375014, USSR
Communicated by the Editors

Received April 13, 1987

Theorems on the localization of the conditions of G. A. Dirac (Proc. London Math. Soc. (3) 2, 1952, 69-81), O. Ore (Amer. Math. Monthly 67, 1960, 55), and Geng-hua Fan (J. Combin. Theory Ser. B 37, 1984, 221-227) for a graph to be hamiltonian are obtained. It is proved, in particular, that a connected graph G on $p \geqslant 3$ vertices is hamiltonian if $d(u) \geqslant\left|M^{3}(u)\right| / 2$ for each vertex u in G, where $M^{3}(u)$ is the set of vertices v in G that are a distance at most three from u. 1990 Academic Press, Inc.

1. Introduction

Our notation and terminology follows Harary [4]. Let k be a positive integer. For each vertex u of a graph $G=(V, X)$ we will denote by $M^{k}(u)$ and $N(u)$ the sets of all $v \in V$ with $d(u, v) \leqslant k$ and $d(u, v)=1$, respectively. The subgraph of G induced by $M^{k}(u)$ is denoted by $G_{k}(u)$. The degree in $G_{k}(u)$ of a vertex $v \in M^{k}(u)$ is denoted by $d_{G_{k}(u)}(v)$.

The closure $C(G)$ of G is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree-sum is at least $|V|$, until no such pair remains.

The following results are known. A graph $G=(V, X)$ on $p \geqslant 3$ vertices is hamiltonian if:

$$
\begin{align*}
& d(v) \geqslant p / 2 \quad \text { for each } \quad v \in V \quad \text { (Dirac [2]). } \tag{1.1}\\
& u v \notin X \Rightarrow d(u)+d(v) \geqslant p \quad \text { (Ore [6]). } \tag{1.2}\\
& d(u)=k<(p-1) / 2 \Rightarrow|\{v \in V / d(v) \leqslant k\}|<k \quad \text { (Posa [7]). } \tag{1.3}
\end{align*}
$$

and
$d(u)=(p-1) / 2 \Rightarrow|\{v \in V / d(v) \leqslant(p-1) / 2\}| \leqslant(p-1) / 2$.
$C(G)$ is a complete graph (Bondy and Chvátal [1]).
G is 2-connected and $d(v)<p / 2, d(u, v)=2 \Rightarrow d(u) \geqslant p / 2$
(Geng-hua Fan [3]).
In [5] the following theorem on a localization of condition (1.3) is proved:

TheOrem. A connected graph G on $p \geqslant 3$ vertices is hamiltonian if

$$
d(u)=k<(p-1) / 2 \Rightarrow\left|\left\{v \in M^{2}(u) / d(v) \leqslant k\right\}\right|<k
$$

and

$$
d(u)=(p-1) / 2 \Rightarrow\left|\left\{v \in M^{2}(u) / d(v) \leqslant(p-1) / 2\right\}\right| \leqslant(p-1) / 2
$$

In this paper we obtain the theorems on localizations of conditions (1.1), (1.2), and (1.5).

2. Results

Lemma. Let G be a graph with $d(u, v)=2, w \in N(u) \cap N(v)$, and $d(u)+d(v) \geqslant|N(u) \cup N(v) \cup N(w)|$. Then $|N(w) \backslash(N(u) \cup N(v))| \leqslant$ $|N(u) \cap N(v)|$.

Proof.

$$
\begin{aligned}
\mid N(w) & \backslash(N(u) \cup N(v)) \mid \\
& =|N(w)|-|N(w) \cap(N(u) \cup N(v))| \\
& =|N(w)|-(|N(w)|+|N(u) \cup N(v)|-|N(u) \cup N(v) \cup N(w)|) \\
& =|N(u) \cup N(v) \cup N(w)|-(|N(u)|+|N(v)|-|N(u) \cap N(v)|) \\
& =|N(u) \cap N(v)|-(d(u)+d(v)-|N(u) \cup N(v) \cup N(w)|) \\
& \leqslant|N(u) \cap N(v)| .
\end{aligned}
$$

Theorem 1. Let $G=(V, X)$ be a connected graph with at least three vertices. If

$$
d(u)+d(v) \geqslant|N(u) \cup N(v) \cup N(w)|
$$

for each triple of vertices u, v, w with $d(u, v)=2$ and $w \in N(u) \cap N(v)$, then G is hamiltonian.

Proof. Let G satisfy the hypothesis of Theorem 1. Clearly, G contains a circuit; let C be the largest one. If G has no hamiltonian circuit, then there is a vertex u outside of C that is adjacent to at least one vertex in C. Let $\left\{w_{1}, \ldots, w_{n}\right\}$ be the set of vertices in C that are adjacent to u, and for each $i=1, \ldots, n$ let v_{i} be the successor of w_{i} in a fixed cyclic ordering of C.

Note, that if $1 \leqslant i<j \leqslant n$ then $v_{i} v_{j} \notin X$. Otherwise delete the edges $w_{i} v_{i}$, $w_{j} v_{j}$ from C and add the edges $v_{i} v_{j}, w_{i} u, u w_{j}$. In this way we obtain a circuit longer than C, which is a contradiction.

For each $i=1, \ldots, n$ let F_{i} and T_{i} denote the sets $N(u) \cap N\left(v_{i}\right)$ and $N\left(w_{i}\right) \backslash\left(N(u) \cup N\left(v_{i}\right)\right)$, respectively. Since C is the longest circuit, $u v_{i} \notin X$, $i=1, \ldots, n$. Then $d\left(u, v_{i}\right)=2$ and from the Lemma we have $\left|T_{i}\right| \leqslant\left|F_{i}\right|$ for each $i=1, \ldots, n$.

We shall show that there is a vertex u^{\prime} such that $u^{\prime} \notin C$ and $u^{\prime} \in F_{i}$ for some $i, 1 \leqslant i \leqslant n$.

Consider the following iterated algorithm.
Step 1. $k:=1, m:=1$, and $Z_{i}^{1}:=\left\{u, v_{i}\right\}, \quad Y_{i}^{1}:=\left\{w_{i}\right\}$ for each $i=1, \ldots, n$.

Step 2. If the set $F_{m} \backslash Y_{m}^{k}$ contains a vertex $u^{\prime} \notin C$, then stop. Otherwise, choose an arbitrary vertex w in $F_{m} \backslash Y_{m}^{k}$. Clearly, $w=w$, for some $r, 1 \leqslant r \leqslant n$.

Set

$$
\begin{aligned}
Y_{m}^{k+1} & :=Y_{m}^{k} \cup\left\{w_{r}\right\} ; Z_{m}^{k+1}:=Z_{m}^{k} ; \\
Y_{r}^{k+1} & :=Y_{r}^{k} ; Z_{r}^{k+1}:=Z_{r}^{k} \cup\left\{v_{m}\right\} ; \\
Y_{i}^{k+1} & :=Y_{i}^{k} ; Z_{i}^{k+1}:=Z_{i}^{k} \quad \text { for } \quad i \neq m, r \text { and } 1 \leqslant i \leqslant n .
\end{aligned}
$$

Step 3. $k:=k+1, m:=r$ and go to Step 2.
It is not difficult to see that before the k th iteration of the algorithm we have
(a) $\quad Z_{i}^{k} \subseteq T_{i}, Y_{i}^{k} \subseteq F_{i},\left|Z_{i}^{k}\right| \geqslant\left|Y_{i}^{k}\right|$ for each $i, 1 \leqslant i \leqslant n$.
(b) $F_{m} \backslash Y_{m}^{k} \neq \varnothing$, because $\left|T_{m}\right| \leqslant\left|F_{m}\right|$ and $\left|Z_{m}^{k}\right|>\left|Y_{m}^{k}\right|$.
(c) $Y_{i}^{k} \subseteq\left\{w_{1}, \ldots, w_{n}\right\}$ for each $i, 1 \leqslant i \leqslant n$.
(d) $\left|Y_{m}^{k}\right|=\left|Y_{m}^{k-1}\right|+1$ if $k \geqslant 2$.

From (b), (c), (d) it follows that if $k \geqslant 2$ then $\sum_{i=1}^{n}\left|Y_{i}^{k-1}\right|<$ $\sum_{i=1}^{n}\left|Y_{i}^{k}\right| \leqslant n^{2}$. Hence there exists k such that $1 \leqslant k \leqslant n^{2}$ and the set $F_{m} \backslash Y_{m}^{k}$ contains a vertex $u^{\prime} \notin C$. Delete the edge $w_{m} v_{m}$ from C and add the edges $w_{m} u, u u^{\prime}, u^{\prime} v_{m}$. In this way we obtain a circuit longer than C, which is a contradiction. The proof is complete.

Note that for every $t \geqslant 5$ there exists a graph $G_{t}=\left(V_{t}, X_{t}\right)$ with $V_{t}=\left\{v_{1}, v_{2}, \ldots, v_{2 t}\right\}$ and

$$
X_{t}=\bigcup_{k=0}^{t-2}\left\{v_{i} v_{j} / 2 k+1 \leqslant i<j \leqslant 2 k+4\right\}
$$

which fulfills the condition in Theorem 1 and does not fulfill conditions (1.1) (1.5). Clearly, $C\left(G_{t}\right)=G_{t}, \quad\left|V_{t}\right|=2 t, \quad$ and $\quad\left|X_{t}\right|=5 t-4=(5 / 2)$. $\left|V_{t}\right|-4$.

Corollary 1. Let G be a connected graph on $p \geqslant 3$ vertices. If $d(u)+d_{G_{2}(u)}(v) \geqslant\left|M^{2}(u)\right|$ for each pair of vertices u, v with $d(u, v)=2$, then G is hamiltonian.

Proof. Clearly,

$$
d(u)+d(v)-\left|N(v) \backslash M^{2}(u)\right|=d(u)+d_{G_{2}(u)}(v) \geqslant\left|M^{2}(u)\right| .
$$

Then

$$
d(u)+d(v) \geqslant\left|M^{2}(u)\right|+\left|N(v) \backslash M^{2}(u)\right| \geqslant|N(u) \cup N(v) \cup N(w)|
$$

for each vertex $w \in N(u) \cap N(v)$. Hence, Corollary 1 follows from Theorem 1.
Corollary 2. Let G be a connected graph on $p \geqslant 3$ vertices. If $d(u)+d(v) \geqslant\left|M^{3}(u)\right|$ for each pair of vertices u, v with $d(u, v)=2$, then G is hamiltonian.

Corollary 2 follows from Theorem 1 because $\left|M^{3}(u)\right| \geqslant \mid N(u) \cup$ $N(v) \cup N(w) \mid$ for each vertex $w \in N(u) \cap N(v)$.

Corollary 3. Let G be a connected graph on $p \geqslant 3$ vertices. If $d(u) \geqslant\left|M^{3}(u)\right| / 2$ for every vertex u in G then G is hamiltonian.

Proof. Let $G \neq K_{p}, d(u, v)=2$, and $d(u) \leqslant d(v)$. Since $d(u) \geqslant\left|M^{3}(u)\right| / 2$, then $d(u)+d(v) \geqslant\left|M^{3}(u)\right| \geqslant|N(u) \cup N(v) \cup N(w)|$ for each vertex $w \in$ $N(u) \cap N(v)$. Therefore Corollary 3 follows from Theorem 1.

Corollary 4. Let G be a connected graph on $p \geqslant 3$ vertices. If

$$
d_{G_{1}(w)}(u)+d_{G_{1}(w)}(v) \geqslant\left|M^{1}(w)\right|
$$

or

$$
d(u)+d(v) \geqslant\left|M^{2}(w)\right|
$$

for each triple of vertices u, v, w with $d(u, v)=2$ and $w \in N(u) \cap N(v)$, then G is hamiltonian.

Proof. Let $d(u, v)=2$ and $w \in N(u) \cap N(v)$.
If $d(u)+d(v) \geqslant\left|M^{2}(w)\right|$, then $d(u)+d(v) \geqslant|N(u) \cup N(v) \cup N(w)|$ because $\left|M^{2}(w)\right| \geqslant|N(u) \cup N(v) \cup N(w)|$.

Suppose that $d_{G_{1}(w)}(u)+d_{G_{1}(w)}(v) \geqslant\left|M^{1}(w)\right|$. Clearly, $d_{G_{1}(w)}(u)=d(u)-$ $\left|N(u) \backslash M^{1}(w)\right|$ and $d_{G_{1}(w)}(v)=d(v)-\left|N(v) \backslash M^{1}(w)\right|$. Hence

$$
\begin{aligned}
d(u)+d(v) & \geqslant\left|M^{1}(w)\right|+\left|N(u) \backslash M^{1}(w)\right|+\left|N(v) \backslash M^{1}(w)\right| \\
& \geqslant|N(u) \cup N(v) \cup N(w)|
\end{aligned}
$$

and Corollary 4 follows from Theorem 1.

Corollary 5. Let G be a connected graph on $p \geqslant 3$ vertices. If for each vertex u in G at least one of the graphs $G_{1}(u)$ or $G_{2}(u)$ satisfies Ore's condition, then G is hamiltonian.

Corollary 5 follows from Corollary 4.

Theorem 2. Let $G=(V, X)$ be a 2 -connected graph on $p \geqslant 3$ vertices and let v and u be distinct vertices of G. If

$$
\begin{equation*}
d(u)<p / 2, d(u, v)=2 \Rightarrow d(v) \geqslant\left|M^{3}(u)\right| / 2 \tag{2.1}
\end{equation*}
$$

then G is hamiltonian.
Proof. Let $A=\left\{P^{1}, \ldots, P^{h}\right\}$ be the set of all longest paths in G. For each $i=1, \ldots, h$ let $P^{i}=v_{0}^{i} v_{1}^{i} \cdots v_{m}^{i}$ and $f\left(P^{i}\right)$ be the smallest r from $\{0,1, \ldots, m-1\}$ such that $v_{m}^{i} v_{r}^{i} \in X$. We denote by A_{1} the set of all $P^{i} \in A$ with $d\left(v_{0}^{i}\right)=\max _{1 \leqslant j \leqslant h} d\left(v_{0}^{j}\right)$.

Suppose that G is a graph satisfying the condition of Theorem 2 and that G has no hamiltonian circuit. We shall arrive at a contradiction.

Let $P=v_{0} v_{1} \cdots v_{m}$ be some longest path in G of length m, chosen so that $f(P)=\min _{P^{i} \in A_{1}} f\left(P^{i}\right)$. Clearly, $d\left(v_{0}\right) \geqslant d\left(v_{m}\right)$. If $d\left(v_{0}\right)+d\left(v_{m}\right) \geqslant p$ then there are at least two consecutive vertices on P, v_{i}, and v_{i+1}, such that $v_{i} v_{m} \in X$ and $v_{i+1} v_{0} \in X$, and so we obtain a circuit of length $m+1$. By the connectedness of G, we have either a hamiltonian circuit or a path of length $m+1$. Each leads to contradictions. Consequently $d\left(v_{0}\right)+d\left(v_{m}\right)<p$. Since $d\left(v_{0}\right) \geqslant d\left(v_{m}\right), d\left(v_{m}\right)<p / 2$.

From the proof above we can also suppose that
(a) G has no circuit of length $m+1$.

Since G is 2-connected, $d\left(v_{m}\right) \geqslant 2$. Let $N\left(v_{m}\right)=\left\{v_{j_{1}}, \ldots, v_{j_{1}}\right\}$ and $j_{1}<\cdots<j_{t}$. Clearly, $j_{1} \geqslant 1$, otherwise G has a circuit of length $m+1$, which is contrary to (a). We show now that
(b) if $v_{m} v_{i} \in X$ and $j_{1} \leqslant i \leqslant m-1$ then $N\left(v_{1+i}\right) \subseteq\left\{v_{j_{1}}, \ldots, v_{m}\right\}$,
(c) $v_{m} v_{i} \notin X$ for some $i, j_{1}<i<m$,
(d) $v_{j_{1}-1} v_{j_{i}+1} \notin X$ for every $i, 1 \leqslant i \leqslant t$.

Proof. (b) Clearly, we have $N\left(v_{1+i}\right) \subseteq\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ otherwise G has a path of length $m+1$. Suppose that there is s such that $1 \leqslant s<j_{1}$ and $v_{s} v_{1+i} \in X$. Then

$$
P^{\prime}=v_{0} v_{1} \cdots v_{s} v_{1+i} v_{2+i} \cdots v_{m} v_{i} v_{i-1} \cdots v_{s+1}
$$

is the longest path in G with $f\left(P^{\prime}\right)<f(P)$. This contradicts the choice of P. Therefore $N\left(v_{1+i}\right) \subseteq\left\{v_{j_{i}}, v_{1+j_{i}}, \ldots, v_{m}\right\}$.
(c) If $v_{m} v_{i} \in X$ for every $i, j_{1} \leqslant i<m$, then $\bigcup_{i=j_{1}}^{m-1} N\left(v_{1+i}\right) \subseteq$ $\left\{v_{j_{1}}, v_{1+j_{1}}, \ldots, v_{m}\right\}$. This contradicts the 2 -connectedness of G.
(d) It is obvious that (d) follows from (b).

From (c) it follows that there is a k such that $j_{1}<k<m-1, v_{m} v_{k} \notin X$, and $v_{m} v_{i} \in X$ for every $i, j_{1} \leqslant i \leqslant k-1$. Thus we have
(e) there is no i such that $j_{1}<i \leqslant m-1, v_{j_{1}-1} v_{i} \in X$, and $v_{k} v_{1+i} \in X$.

Indeed, if $v_{i} v_{j_{1}} \quad \in X$ and $v_{k} v_{1+i} \in X$ then from (d) it follows that $i>k$. Then G has the longest path P^{\prime},

$$
P^{\prime}=v_{0} v_{1} \cdots v_{j_{1}-1} v_{i} v_{i-1} \cdots v_{k} v_{1+i} \cdots v_{m} v_{k-1} \cdots v_{j_{1}}
$$

with $f\left(P^{\prime}\right)<f(P)$. This contradicts the choice of P.
Clearly, $d\left(v_{k}, v_{m}\right)=2$ and $d\left(v_{j_{1}-1}, v_{m}\right)=2$. Since $d\left(v_{m}\right)<p / 2$, it follows from (2.1) that $d\left(v_{j_{1}-1}\right) \geqslant\left|M^{3}\left(v_{m}\right)\right| / 2$ and $d\left(v_{k}\right) \geqslant\left|M^{3}\left(v_{m}\right)\right| / 2$.

Since $v_{k} v_{j_{1}-1} \notin X$ and the degree-sum of vertices v_{k} and $v_{j_{1}-1}$ in $G_{3}\left(v_{m}\right)$ is at least $\left|M^{3}\left(v_{m}\right)\right|, d\left(v_{k}, v_{j_{1}-1}\right)=2$.

From (d) it follows that $d\left(v_{j_{1}-1}\right)<\left|M^{3}\left(v_{m}\right)\right|-d\left(v_{m}\right)$. Since $d\left(v_{j_{1}-1}\right) \geqslant$ $\left|M^{3}\left(v_{m}\right)\right| / 2$, then $d\left(v_{m}\right)<\left|M^{3}\left(v_{m}\right)\right| / 2$. Therefore $d\left(v_{j_{1}-1}\right)>d\left(v_{m}\right)$ and $d\left(v_{k}\right)>d\left(v_{m}\right)$.

Case 1. $d\left(v_{k}\right)<p / 2$. Since $d\left(v_{k}, v_{m}\right)=d\left(v_{k}, v_{j_{1}-1}\right)=2$, it follows from (2.1) that $d\left(v_{m}\right) \geqslant\left|M^{3}\left(v_{k}\right)\right| / 2$ and $d\left(v_{j_{1}-1}\right) \geqslant\left|M^{3}\left(v_{k}\right)\right| / 2$. Together with $d\left(v_{k}\right)>d\left(v_{m}\right)$ this implies that

$$
\begin{equation*}
d\left(v_{k}\right)+d\left(v_{j_{1}-1}\right) \geqslant\left|M^{3}\left(v_{k}\right)\right| \tag{2.2}
\end{equation*}
$$

From (d) it follows that $v_{i} v_{j_{1}-1} \notin X$ for each $i, 1+j_{1} \leqslant i<k$. From (e) it follows that $v_{i} v_{j_{1}-1} \notin X$ for every i such that $i>j_{1}$ and $v_{k} v_{i+1} \in X$. Besides, $v_{m} v_{j_{1}-1} \notin X$ and $v_{m}, v_{j_{1}-1} \in M^{3}\left(v_{k}\right)$. Thus $d\left(v_{j_{1}-1}\right) \leqslant\left|M^{3}\left(v_{k}\right)\right|-d\left(v_{k}\right)-1$.

This contradicts (2.2).
Case 2. $d\left(v_{k}\right) \geqslant p / 2$. If $d\left(v_{j_{1}-1}\right)<p / 2$ then (2.1) and $d\left(v_{j_{1}-1}, v_{m}\right)=$
$d\left(v_{j_{1}-1}, v_{k}\right)=2$ imply that $d\left(v_{m}\right) \geqslant\left|M^{3}\left(v_{j_{1}-1}\right)\right| / 2$ and $d\left(v_{k}\right) \geqslant\left|M^{3}\left(v_{j_{1}-1}\right)\right| / 2$. Since $d\left(v_{j_{1}-1}\right)>d\left(v_{m}\right)$, we have

$$
\begin{equation*}
d\left(v_{j_{1}-1}\right)+d\left(v_{k}\right) \geqslant\left|M^{3}\left(v_{j_{1}-1}\right)\right| . \tag{2.3}
\end{equation*}
$$

If $d\left(v_{j_{1}-1}\right) \geqslant p / 2$ then $d\left(v_{j_{1}-1}\right)+d\left(v_{k}\right) \geqslant p \geqslant\left|M^{3}\left(v_{j_{1}-1}\right)\right|$, so (2.3) holds again.
From (b) it follows that $v_{k} v_{j_{1}-1} \notin X$ and v_{k} is not adjacent to every vertex $v \in N\left(v_{j_{1}-1}\right) \backslash\left\{v_{j_{1}}, v_{1+j_{i}}, \ldots, v_{m}\right\}$.

From (e) it follows that $v_{k} v_{1+i} \notin X$ for every i such that $v_{i} \in N\left(v_{j_{1}-1}\right) \cap$ $\left\{v_{1+j_{1}}, v_{2+j_{1}}, \ldots, v_{m}\right\}$. Besides, we have $v_{j_{1}-1}, v_{k} \in M^{3}\left(v_{j_{1}-1}\right)$. Therefore $d\left(v_{k}\right) \leqslant\left|M^{3}\left(v_{j 1-1}\right)\right|-d\left(v_{j 1-1}\right)-1$.

This contradicts (2.3). The proof is complete.
Note that for every $r \geqslant 2$ there exists a graph $G_{r}=\left(V_{r}, X_{r}\right)$ with $V_{r}=\left\{w_{1}, w_{2}\right\} \cup\left\{v_{1}, \ldots, v_{3 r-1}\right\} \cup\left\{u_{1}, \ldots, u_{3 r-1}\right\}$ and $X_{r}=\left\{w_{1} v_{i}, w_{2} v_{i} / i=\right.$ $1, \ldots, 2 r\} \cup\left\{v_{i} v_{j}, u_{i} u_{j} / 1 \leqslant i<j \leqslant 3 r-1\right\} \cup\left\{v_{i} u_{j} / 1+2 r \leqslant i, j \leqslant 3 r-1\right\}$ that satisfies the condition of Theorem 2 and does not satisfy the condition (1.5).

Besides, for every $n \geqslant 5$ there exists a graph $G_{n}=\left(V_{n}, X_{n}\right)$ with $V_{n}=\left\{v_{1}, \ldots, v_{n}\right\} \quad$ and $\quad X_{n}=\left\{v_{i} v_{j} / 1 \leqslant i<j \leqslant n-2\right\} \cup\left\{v_{n-1} v_{1}, v_{n-1} v_{2}\right\} \cup$ $\left\{v_{n} v_{i} / i=2,3, \ldots, n-2\right\}$ that satisfics the condition of Theorem 2 and does not satisfy the condition of Theorem 1.

Let $G=(V, X)$. It is shown in [1] (by paraphrasing Ore's proof [6]) that if $G+u v$ is hamiltonian and $d(u)+d(v) \geqslant|V|$ then G itself is hamiltonian.

Theorem 3. If $G+u v$ is hamiltonian, $d(u, v)=2$, and

$$
\begin{equation*}
d(u)+d_{G_{2}(u)}(v) \geqslant\left|M^{2}(u)\right|, \tag{2.4}
\end{equation*}
$$

then G itself is hamiltonian.
Proof. Suppose $G+u v$ is hamiltonian but G is not. Then G has a hamiltonian path $u_{1}, u_{2}, \ldots, u_{p}$ with $u_{1}=v$ and $u_{p}=u$. Let $N(u)=$ $\left\{u_{i 1}, \ldots, u_{i,}\right\}$. If $v u_{1+i j} \notin X$ for every $j, 1 \leqslant j \leqslant t$, then $d_{G_{2}(u)}(v)<\left|M^{2}(u)\right|-$ $d(u)$. This contradicts (2.4). Hence there is m such that $1 \leqslant m \leqslant t-1$, $v u_{1+i_{m}} \in X$, and $u u_{i_{m}} \in X$.
But then G has the hamiltonian circuit

$$
u_{1} u_{1+i_{m}} u_{2+i_{m}} \cdots u_{p} u_{i_{m}} u_{i_{m}-1} \cdots u_{1} .
$$

This contradicts the hypothesis.
Corollary 6. If $G+u v$ is hamiltonian, $d(u, v)=2$, and $d(u)+d(v) \geqslant$ $\left|M^{3}(v)\right|$, then G itself is hamiltonian.

References

1. J. A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976), 111-135.
2. G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69-81.
3. Geng-hua Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984), 221-227.
4. F. Harary, "Graph Theory," Addison-Wesley, Reading, MA, 1969.
5. A. S. Hasratian and N. K. Khachatrian, A two theorems on a hamiltonian graphs (Russian), Math. Zametki 35, No. 1 (1984), 55-61.
6. O. Ore, Note on Hamiltonian circuits, Amer. Math. Monthly 67 (1960), 55.
7. L. Posa, A theorem concerning Hamilton lines, Magyar Tud. Acad. Mat. Kutató Int. Közl. 7 (1962), 225-226.
