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Abstract

As is well known, the n-point Szegö quadrature formula integrates correctly any Laurent polynomial in the subspace
span{1/zn−1, . . . , 1/z, 1, z, . . . , zn−1}. In this paper we enlarge this subspace. We prove that a set of 2n linearly independent
Laurent polynomials are integrated correctly. The obtained result is used for the construction of Szegö quadrature formulas. Illus-
trative examples are given.
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1. Introduction

In this paper we are concerned with the study of the domain of validity and with the construction of Szegö quadrature
formulas introduced by Jones et al. [5]. They are used for the approximation of integrals over the unit circle in the
complex plane, that is, integrals of the form,

I [f ] =
∫ �

−�
f (eit )�(t) dt , (1)

where �(t) is a weight function on t ∈ [−�, �], that is, �(t)�0, t ∈ [−�, �], 0 <
∫ �
−� �(t) dt < ∞.

Some properties of Szegö quadrature formulas are analogous to the ones of classical Gauss quadrature formulas for
integrals on the real line. For example, nodes on the region of integration and positive coefficients. Nevertheless, unlike
classical Gauss quadrature formulas, Szegö quadrature formulas are based on the zeros of para-orthogonal polynomials.
We next describe the Szegö quadrature formulas.

Let p and q be integers where p�q. We denote by �p,q the linear space of all functions of the form
∑q

j=pcj z
j , cj ∈

C. The functions of �p,q are called Laurent polynomials. We write � for the linear space of all Laurent polynomials.
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Consider the inner product on � × � given by

〈f, g〉 =
∫ �

−�
f (eit )g(eit )�(t) dt . (2)

Let {�n}∞0 be the sequence of monic polynomials obtained by orthogonalization of {zn}∞0 with respect to the inner
product (2). The sequence {�n}∞0 is called the sequence of Szegö polynomials with respect to the weight function �.
It is well known, see, e.g. [6, Theorem 11.4.1] that �n has its zeros in the region |z| < 1. Thus, they are not adequate
as nodes for a general purpose quadrature formula to approximate integrals over the unit circle. Let T denotes the unit
circle T = {z ∈ C : |z| = 1}.

Theorem 1 (See Jones et al. [5]). Let {�n}∞0 be the sequence of Szegö polynomials (monic orthogonal polynomials)
with respect to the weight function �. Let {�n}∞1 be a sequence of complex numbers satisfying |�n| = 1, n�1.
Let the para-orthogonal polynomials be defined by Bn(z, �n) = �n(z) + �n�∗

n(z) where �∗
n(z) = zn�n(1/z), and �n

denotes the operation of conjugate the coefficients to the polynomials �n. Then Bn(z, �n) has n distinct zeros �(n)
m (�n),

m = 1, 2, . . . , n, n�1, located on T. Let

�(n)
m (�n) =

∫ �

−�

Bn(eit , �n)

(eit − �(n)
m (�n))B ′

n(�
(n)
m (�n), �n)

�(t) dt, 1�m�n, n�1.

Then

I [f ] =
∫ �

−�
f (eit )�(t) dt = Qn[f ] =

n∑
m=1

�(n)
m (�n)f (�(n)

m (�n)) (3)

for all f ∈ �−(n−1),n−1. It holds that �(n)
m (�n) > 0, 1�m�n, n�1, and there cannot exist an n-point quadrature

formula G[f ] =∑n
m=1�mf (	m), 	m ∈ T which correctly integrates every function f ∈ �−(n−1),n or every function

f ∈ �−n,n−1.

The quadrature formula Qn given by the two last terms of (3) is called the n-point Szegö quadrature formula with
respect to the weight function � and the parameter �n. We sometimes briefly call it the n-point Szegö quadrature
formula.

The paper is arranged as follows. In Section 2, we will prove the main result of this paper. As is stated in
Theorem 1, the n-point Szegö quadrature formula integrates correctly every Laurent polynomial in the subspace
�−(n−1),n−1 = span{1/zn−1, . . . , 1, z, . . . , zn−1}. We will prove that an additional linearly independent Laurent poly-
nomial, an appropriate linear combination of both z−n and zn, is integrated correctly. The obtained result is applied in
Section 3 for the computation of the n-point Szegö quadrature formula by means of moment fitting.

2. Domain of validity of Szegö quadrature formulas

Let 
n = �n(0), n = 1, 2, . . . , be the so-called reflection coefficients. It is well known that |
n| < 1, n = 1, 2, . . . .
See, e.g. [5]. (This is an straightforward consequence of Theorem 3.1 (A) there, for positive definite linear functionals as
the linear functional (1)). In the following, take into account that 
n +�n �= 0, and 1+
n�n �= 0, for �n ∈ C, |�n|=1
since |
n| < 1, n = 1, 2, . . . .

From here on and for simplicity, we sometimes write Bn=Bn(z)=Bn(z, �n)=�n(z)+�n�∗
n(z) for the para-orthogonal

polynomials.
It holds that

zn − Bn

1 + 
n�n

∈ �0,n−1, n�1.
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Since I [f ] = Qn[f ], f ∈ �−(n−1),n−1 we get

I

[
zn − Bn

1 + 
n�n

]
= Qn

[
zn − Bn

1 + 
n�n

]
= Qn[zn] − 1

1 + 
n�n

Qn[Bn].

The nodes �(n)
m (�n) of the n-point Szegö quadrature formula Qn are the roots of Bn = Bn(z, �n). Then it holds

Qn[Bn] = Qn[Bn(z, �n)] =
n∑

m=1

�(n)
m (�n)Bn(�

(n)
m (�n), �n) = 0.

Thus,

I [zn] = Qn[zn] + 1

1 + 
n�n

I [Bn]. (4)

On the other hand,

1

zn

(
1 − Bn


n + �n

)
∈ �−(n−1),0, n�1.

Since I [f ] = Qn[f ], f ∈ �−(n−1),n−1 we get

I

[
1

zn
− Bn

(
n + �n)zn

]
= Qn

[
1

zn
− Bn

(
n + �n)zn

]

= Qn

[
1

zn

]
− 1


n + �n

Qn

[
Bn

zn

]
.

Again, since Bn(�
(n)
m (�n), �n) = 0, one gets Qn[Bn/z

n] = 0. Thus

I

[
1

zn

]
= Qn

[
1

zn

]
+ 1


n + �n

I

[
Bn

zn

]
. (5)

Observe that

I [Bn] = 〈Bn, 1〉 = 〈�n, 1〉 + �n〈�∗
n, 1〉 = �n〈�n, z

n〉. (6)

The last equality follows from 〈�n, 1〉= 0 by orthogonality, and taking into account that 〈�∗
n, 1〉= 〈�n, z

n〉= 〈�n, �n〉=
〈�n, �n〉 = 〈�n, z

n〉. Furthermore,

I

[
Bn

zn

]
= 〈Bn, z

n〉 = 〈�n, z
n〉 + �n〈�∗

n, z
n〉 = 〈�n, z

n〉. (7)

The last equality follows from 〈�∗
n, z

n〉 = 〈�n, 1〉 = 0.
From (4)–(7), one can write

(1 + 
n�n)I [zn] − �n(
n + �n)I

[
1

zn

]
= (1 + 
n�n)Qn[zn] − �n(
n + �n)Qn

[
1

zn

]
.

Thus,

I

[
(1 + 
n�n)z

n − �n(
n + �n)
1

zn

]
= Qn

[
(1 + 
n�n)z

n − �n(
n + �n)
1

zn

]
,

or what is the same since |�n| = 1, n�1,

I

[
zn


n + �n

− 1

(
n + �n)zn

]
= Qn

[
zn


n + �n

− 1

(
n + �n)zn

]
.

This means that the n-point Szegö quadrature formula with respect to the weight function � and the parameter �n

integrates correctly the Laurent polynomial zn/(
n + �n) − 1/(
n + �n)z
n. Thus one has established the following
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Theorem 2. Let Qn be the n-point Szegö quadrature formula with respect to the weight function � and the parameter
�n as defined in Theorem 1. Then it holds that

Qn[f ] = I [f ] for f (z) = zn


n + �n

− 1

(
n + �n)zn
, n�1.

If we combine Theorems 1 and 2 we get the following

Corollary 1. Let Qn be the n-point Szegö quadrature formula with respect to the weight function � and the parameter
�n as defined in Theorem 1. Then for n�1 it holds that

Qn[f ] = I [f ] for f (z) = zj , −(n − 1)�j �n − 1 and f (z) = zn


n + �n

− 1

(
n + �n)zn
.

Remark 1. Let �n denote a not necessarily monic Szegö polynomial. Then �n, �
∗
n and Bn(z, �n) are of the form

�n(z) = �nz
n + · · · + �n
n,

�∗
n(z) = �n
nz

n + · · · + �n,

Bn(z, �n) = �n(�n(z) + kn�
∗
n(z))

= �n(�n + �n
nkn)z
n + · · · + �n(�n
n + �nkn),

where �n = 1/�n and kn =�n�n/�n. Thus the para-orthogonal polynomials may also be written in the form bn(z, kn)=
�n(�n(z) + kn�∗

n(z)) with |kn| = 1 and �n �= 0.
Now consider a para-orthogonal polynomial of the form

bn(z, kn) = �n(z) + kn�
∗
n(z) = (�n + �n
nkn)z

n + · · · + (�n
n + �nkn).

In the argument leading to Theorem 2 we find that

I [zn] = Qn[zn] + 1

�n + �n
nkn

I [bn],

I [1/zn] = Qn[1/zn] + 1

�n
n + �nkn

I [bn/z
n],

I [bn] = kn〈�n, z
n〉 = kn〈�n, �n〉/�n = kn〈�n, �n〉/�n,

I [bn/z
n] = 〈�n, z

n〉 = 〈�n, �n〉/�n.

Hence

I [(�n + �n
nkn)�nknz
n − (�n
n + �nkn)�n/z

n]
= Qn[(�n + �n
nkn)�nknz

n − (�n
n + �nkn)�n/z
n],

or equivalently

I [zn − 
n/z
n] = Qn[zn − 
n/z

n],
where


n = �n
n + �nkn

�n
n + �nkn

�n

�n

.
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We note that bn(0, kn) = �n
n + �nkn, and thus


n = bn(0, kn)

bn(0, kn)

�n

�n

.

In particular


n = bn(0, kn)

bn(0, kn)

when �n is the monic polynomial �n.

In the following example, we illustrate Theorem 2.

Example 1. Consider the Poisson weight function �(t) given by

�(t) = 1 − r2

1 − 2r cos(t) + r2
, −�� t ��, 0�r < 1.

The moments �k = I [zk] = ∫ �
−� eikt�(t) dt are given by �k = 2�r |k|, k = 0, ±1, ±2, . . . . The corresponding monic

orthogonal polynomials �n(z) are given by �0(z) = 1, �n(z) = zn − rzn−1, n�1, see [8]. Hence the para-orthogonal
polynomials Bn(z) are given by Bn(z)=Bn(z, �n)= �n(z)+�n�∗

n(z)= zn − rzn−1 +�n(1 − rz), n�1. Observe that
the reflection coefficients 
n = �n(0) are given by 
1 = −r, and 
n = 0, n�2. Thus, for n�1,

I

[
zn


n + �n

− 1

(
n + �n)zn

]
= 2�rn

(
1


n + �n

− 1


n + �n

)
. (8)

On the other hand, since the nodes of the n-point Szegö quadrature Qn are the zeros the para-orthogonal polynomial
Bn(z) we get Qn[Bn(z)] = Qn[zn − rzn−1 + �n(1 − rz)] = 0. Thus Qn[zn] = Qn[rzn−1 − �n(1 − rz)]. Taking into
account that Qn[f ] = I [f ] for f (z) = zj , −(n − 1)�j �n − 1, see Theorem 1, we deduce for n�2 that

Qn[zn] = Qn[rzn−1 − �n(1 − rz)] = 2�(rn − �n(1 − r2)).

Furthermore, from Theorem 1 and after some calculations one gets that for the Poisson weight function

Q1[f ] = 2�f

(
r − �1

1 − �1r

)
.

Thus, Q1[z] = 2�(r − �1)/(1 − �1r).
Note that Qn[1/zn] = Qn[zn], n�1, since the coefficients of the Szegö quadrature formula are positive and the

nodes lie on the unit circle. Thus, for n�1, (recall that 
n = 0, n�2)

Qn

[
zn


n + �n

− 1

(
n + �n)zn

]
= 1


n + �n

Qn[zn] − 1


n + �n

Qn[zn]

= 2�rn

(
1


n + �n

− 1


n + �n

)
. (9)

Thus, from (8) and (9) we deduce

I

[
zn


n + �n

− 1

(
n + �n)zn

]
= Qn

[
zn


n + �n

− 1

(
n + �n)zn

]
, n�1,

which confirms Theorem 2.
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3. Application to the construction of Szegö quadrature

The n-point classical Gauss quadrature formula Qn[f ] =∑n
j=1 Ajf (xj ), for the approximation of integrals on the

real line I [f ] = ∫ b

a
f (x)�(x) dx, where �(x) is a weight function on x ∈ [a, b], depends on 2n parameters, the n

coefficients Aj and the n nodes xj , j = 1, 2, . . . , n. As is well known, classical Gauss quadrature formulas integrates
correctly every algebraic polynomials of degree �2n − 1. So, if the 2n parameters, the nodes and the coefficients,
are considered as unknowns then they can be determined by moment fitting, that is, by solving the non-linear system
I [f ]=Qn[f ], f =1, x, . . . , x2n−1 of 2n equations. See [2, section 2.7.2] for this algebraic approach to classical Gauss
quadrature formulas.

Similarly, the n-point Szegö quadrature formula (3) for the approximation of integrals over the unit circle depends on
2n parameters, the n coefficients and the n nodes. So, if they are considered as unknowns and if the reflection coefficient

n is known, then one can compute the n-point Szegö quadrature formula with respect to a given weight function �
and parameter �n by moment fitting using Corollary 1, that is, by solving the non-linear and non-algebraic system of
2n equations with 2n unknowns given by

Qn[f ] = I [f ], f (z) = zj , −(n − 1)�j �n − 1, f (z) = zn


n + �n

− 1

(
n + �n)zn
.

Example 2. Consider the Jacobi weight function �(t) on the unit circle given by

�(t) = |eit − 1|2�1 |eit + 1|2�2 , t ∈ [−�, �], �1, �2 > 1
2 .

It is known, see [4], that the reflection coefficients are given by 
n = (�1 + (−1)n�2)/(n + �1 + �2).
We take as example �1 = 1, �2 = 2, and n = 2. Then 
2 = 3

5 .
It holds that I [1] = 8�, I [z] = I [1/z] = 2�, and I [z2] = I [1/z2] = −4�.
Consider the construction of the 2-point Szegö quadrature formula Q2[f ],

I [f ] =
∫ �

−�
f (eit )�(t) dt

.= Q2[f ] =
2∑

m=1

�(2)
m (�2)f (�(2)

m (�2))

with respect to the particular Jacobi weight function considered and the parameter �2 = i, the imaginary unity.
Let �m = �(2)

m (�2) and zm = �(2)
m (�2), m = 1, 2. In order to determine the nodes z1, z2, and the coefficients �1, �2,

we require that

Q2[f ] = I [f ] for f (z) = 1, z,
1

z
,

z2


2 + �2
− 1


2 + �2z2
.

Then, we obtain the following system of non-linear and non-algebraic equations

�1 + �2 = I [1],
�1z1 + �2z2 = I [z],

�1
1

z1
+ �2

1

z2
= I

[
1

z

]
,

�1

(
z2

1


2 + �2
− 1

(
2 + �2)z
2
1

)
+ �2

(
z2

2


2 + �2
− 1

(
2 + �2)z
2
2

)
= I

[
z2


2 + �2
− 1

(
2 + �2)z2

]
.

The command solve of Maple gives two solutions

�1
.= 11.780972450961724644,

�2
.= 13.351768777756621264,

z1
.= i,

z2
.= 0.47058823529411764706 − 0.88235294117647058824i, (10)
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and

�1
.= 10.309383824786804833,

�2
.= 14.823357403931541074,

z1
.= −0.57097054535375274026 − 0.82097054535375274026i,

z2
.= 0.82097054535375274026 + 0.57097054535375274026i. (11)

The solution of the system given by Eq. (10) gives the nodes and weights for the considered 2-point Szegö quadrature
formula Q2[f ] corresponding to the parameter �2=i. Indeed, observe that the value of the para-orthogonal polynomials
Bn(z, �n) = �n(z) + �n�∗

n(z) = (−1)n(1 + �n
n)
∏n

i=1(z − zi), at zero, admits the expressions 
n + �n and (−1)n(1 +
�n
n)

∏n
i=1zi . For the solution given by Eq. (10) both values are equal. For the solution given by Eq. (11) they are

different. The solution in Eq. (11) gives the weights and the nodes of the 2-point Szegö quadrature formula corresponding
to �2

.= −0.88235294117647058824 − 0.47058823529411764706i.

Observe that in the case that the reflection coefficient 
n is not known, one can still compute the n-point Szegö
quadrature formula by moment fitting, if 
n is real and one takes �n =1 or �n =−1. Indeed, in such a case, the function
f (z) = zn/(
n + �n) − 1/(
n + �nz

n) can be replaced by f (z) = zn − 1/zn.
Note that for a given weight function �(t), if its moments

∫ �
−� eikt�(t) dt, k = 0, ±1, ±2, . . . , are real then the

coefficients of the orthogonal polynomials �n(z) are real, so, in particular, the reflection coefficient 
n = �n(0) is real,
n = 1, 2, . . . .

Alternatively, we do not need to know the value of the reflection coefficients 
n to compute the n-point Szegö
quadrature formula. Indeed, one can compute the n-point Szegö quadrature formula with respect to the weight function
� and parameter �n,

Qn[f ] =
n∑

m=1

�(n)
m (�n)f (�(n)

m (�n))
.= I [f ] =

∫ �

−�
f (eit )�(t) dt

by solving two algebraic systems of linear equations. The para-orthogonal polynomials satisfy the following orthogo-
nality equations, see [5],

〈Bn, z
k〉 = 0, k = 1, 2, . . . , n − 1, n�2.

Next, we obtain an additional orthogonality equation for the para-orthogonal polynomials. Indeed, it holds

I

[
Bn(z, �n)

(
1

zn
− �n

)]
= I

[
Bn(z, �n)

zn

]
− �nI [Bn(z, �n)] .

From (6) and (7) one can write

I

[
Bn(z, �n)

(
1

zn
− �n

)]
= 〈�n, z

n〉 (1 − �n�n) .

Since the expression in brackets is equal to zero (|�n| = 1, n�1) we get

I

[
Bn(z, �n)

(
1

zn
− �n

)]
= 0,

or what is the same

〈Bn, z
n − �n〉 = 0.

Thus one can establish the following

Theorem 3. Let the para-orthogonal polynomials Bn(z, �n), �n ∈ C, |�n| = 1, n�1, be defined as in Theorem 1.
Then, they satisfy

〈Bn, z
k〉 = 0, k = 1, . . . , n − 1 and 〈Bn, z

n − �n〉 = 0, n�2.
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Hence, from Theorem 3 we get a linear system of n equations with n unknowns, the coefficients c0, c1, . . . , cn−1 of
the nth monic para-orthogonal polynomial Bn(z, �n) = c0 + c1z + c2z

2 + · · · + cn−1z
n−1 + zn. This linear system

takes the form

m−1c0+ m0c1+ · · · +mn−2cn−1 +mn−1 = 0
m−2c0+ m−1c1+ · · · +mn−3cn−1 +mn−2 = 0

...
...

. . .
...

...
...

m−(n−1)c0+ m−(n−2)c1+ · · · +m0cn−1 +m1 = 0
d0c0+ d1c1+ · · · +dn−1cn−1 +dn = 0

(12)

where

mk =
∫ �

−�
eikt�(t) dt, −n�k�n and dj = m−n+j − mj�n, 0�j �n. (13)

Recall, see Theorem 1, that the nodes �(n)
m (�n), 1�m�n, of the n-point Szegö quadrature formula with respect to a

weight function � and parameter �n are the zeros of Bn(z, �n).
Once the nodes are computed, one can compute the weights �(n)

m (�n), 1�m�n, by solving the linear system

Qn[zj ] = I [zj ], 0�j �n − 1. (14)

As illustration of the computation of the Szegö quadrature formula through the resolution of the two linear systems
(12) and (14) we give the next example.

Example 3. We compute again the n = 2 points Szegö quadrature formula

Q2[f ] =
2∑

m=1

�(2)
m (�2)f (�(2)

m (�2))
.= I [f ] =

∫ �

−�
f (eit )�(t) dt

for the Jacobi weight function

�(t) = |eit − 1|2|eit + 1|4, t ∈ [−�, �], (15)

considered in Example 2.

Recall from Example 2 that m0 = I [1] = 8�, m1 = I [z] = 2�, m−1 = I [1/z] = 2�, m2 = I [z2] = −4�, m−2 =
I [1/z2] = −4�, and �2 = i. (The value of the reflection coefficient 
2 is not used now.)

We first determine the coefficients c0 and c1 of the monic para-orthogonal polynomial B2(z, �2) = z2 + c1z + c0 by
solving the linear system (12) for this particular case, which takes the form

m−1c0 + m0c1 + m1 = 0,

d0c0 + d1c1 + d2 = 0,

where

dj = m−2+j + imj , 0�j �2.

The solution of this linear system is given by c0 = 15
17 + 8

17 i and c1 = − 8
17 − 2

17 i.

Thus,

B2(z, �2) = z2 + c1z + c0 = z2 −
(

8

17
+ 2

17
i

)
z + 15

17
+ 8

17
i.
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The nodes zm = �(2)
m (�2), m = 1, 2 are the zeros of B2(z, �2). Hence,

z1 = i,

z2 = 8

17
− 15

17
i

.= 0.47058823529411764706 − 0.88235294117647058824 i.

Once we have computed the nodes, we can compute the weights �m = �(2)
m (�2), m = 1, 2 by solving the linear system

(14) for this particular case, which takes the form

�1 + �2 = m0,

z1�1 + z2�2 = m1.

The solution is given by

�1 = 15

4
�

.= 11.780972450961724644,

�2 = 17

4
�

.= 13.351768777756621264.

So, we have completely determined again the 2-point Szegö quadrature formula for the particular Jacobi weight function
(15) and the parameter �2 = i.

The computation of the para-orthogonal polynomials by means of the linear system (12) is a competitive way to
compute them under certain conditions. In the following we compare with other frequently used methods for the
computation of the para-orthogonal polynomials.

A well-known procedure to obtain the para-orthogonal polynomial Bn(z, �n) is based on the computation of the
monic orthogonal polynomial �n(z) = zn + a

(n)
n−1z

n−1 + · · · + a
(n)
1 z + a

(n)
0 by solving the linear system of equations

n−1∑
j=0

a
(n)
j m−k+j = −m−k+n, k = 0, 1, . . . , n − 1, (16)

obtained from,

〈�n, z
k〉 = 0, k = 0, 1, . . . , n − 1,

and then compute the para-orthogonal polynomial by its definition Bn(z, �n) = �n(z) + �n�∗
n(z).

If the reflection coefficient 
n = �n(0) = a
(n)
0 is known then one can skip one equation in the linear system (16). In

order to retain as much as possible the valuable properties of the coefficient matrix in (16), the equation corresponding
to k = 0 is skipped. So one obtains the linear system

n−1∑
j=1

a
(n)
j m−k+j = −m−k+n − a

(n)
0 m−k, k = 1, 2, . . . , n − 1. (17)

On the other hand, if the reflection coefficient 
n = �n(0) = a
(n)
0 is known then the coefficient c

(n)
0 of the monic para-

orthogonal polynomial Bn(z, �n)=�n(z)+�n�∗
n(z)=zn+cn−1z

n−1+· · ·+c1z+c0=zn+c
(n)
n−1z

n−1+· · ·+c
(n)
1 z+c

(n)
0

is also known since c
(n)
0 = (
n + �n)/(1 + �n
n). Hence, one can skip one equation in the linear system (12). If the

last equation is skipped, the system

n−1∑
j=1

c
(n)
j m−k+j = −m−k+n − c

(n)
0 m−k, k = 1, 2, . . . , n − 1 (18)

is obtained.
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The coefficient matrix of the linear systems (17) and (18) is the same. It is a Toeplitz and positive definite matrix.
Furthermore, it is also a symmetric matrix if the moments are real. A numerical method for solving real positive definite
Toeplitz systems is given in [1]. This method requires O(n log2

2(n)) arithmetic operations. See also [3,7].
Observe that with the objective of computing the para-orthogonal polynomial Bn(z, �n), monic or not, the solution

of the linear system (18), based on the linear system (12), uses at least an order of O(2n) arithmetic operations less
than the procedure composed of the solution of the linear system (17) to compute the orthogonal polynomial �n(z) and
then the computation of the para-orthogonal polynomial through �n(z) + �n�∗

n(z). This is due precisely to the need of
the computation of this last expression that defines the para-orthogonal polynomials. The difference in the number of
arithmetic operations can be greater, of order O(3n). Indeed, this holds in the particular case that 
n is real and �n takes
the frequently encountered value �n = 1 or −1 since then c

(n)
0 = 1 or −1, respectively, and hence the computation of

the right-hand side of (18) needs only O(n) arithmetic operations previous to the solution but the computation of the
right-hand side of (17) needs O(2n) arithmetic operations.

We compare next with another usual method to compute the orthogonal polynomials, and hence the para-orthogonal
polynomials through �n(z) + �n�∗

n(z). It is well known that the monic orthogonal polynomials satisfy the recurrence
relation, see [6, Theorem 11.4.2],

�0(z) = 1, �n(z) = z�n−1(z) + 
n�
∗
n−1(z), n = 1, 2, . . . . (19)

From this recurrence, the reflection coefficients can be computed by


k = −〈z�n−1, 1〉
〈�∗

n−1, 1〉 , k = 1, 2, . . . .

(So, computing both expressions appropriately one can generate the sequence of monic orthogonal polynomials.)
Observe that under the assumption that the reflection coefficients are know then solely the recurrence (19) completely
serves as a method for the computation of the orthogonal polynomials. The order of arithmetic operations needed to
compute the nth orthogonal polynomial �n(z) is O(n2). Hence, also the order of arithmetic operations to compute the
para-orthogonal polynomial Bn(z, �n) is O(n2). This is a greater order than the method proposed above based on the
solution of the linear system (18) obtained from (12) for the case of real moments. Observe that (19) computes the
sequence �1(z), �2(z), . . . , �n(z) and then one computes Bn(z, �n) and not only Bn(z, �n) directly as in (18).
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