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We prove an inhomogeneous analogue of W. M. Schmidt's theorem on the
Hausdorff dimension of the set of badly approximable systems of linear forms. The
proof is based on ideas and methods from the theory of dynamical systems, in par-
ticular, on abundance of bounded orbits of mixing flows on homogeneous spaces
of Lie groups � 1999 Academic Press

1. INTRODUCTION

1.1. For m, n # N, we will denote by Mm, n (R) the space or real matrices
with m rows and n columns. Vectors will be denoted by lowercase boldface
letters, such as x=(x1 , ..., xk)T. A 0 will mean zero vector in any dimen-
sion, as well as zero matrix of any size. The norm & }& on Rk will be always
given by &x&=max1�i�k |x i |.

All distances (diameters of sets) in various metric spaces will be denoted
by ``dist'' (``diam''), and B(x, r) will stand for the open ball of radius r cen-
tered at x. To avoid confusion, we will sometimes put subscripts indicating
the underlying metric space. If the metric space is a group and e is its iden-
tity element, we will write B(r) instead of B(e, r). The Hausdorff dimension
of a subset Y of a metric space X will be denoted by dim(Y), and we will
say that Y is thick (in X) if for any nonempty open subset W of X,
dim(W & Y)=dim(W) (i.e., Y has full Hausdorff dimension at any point of X).

A system of m linear forms in n variables given by A # Mm, n (R) is called
badly approximable if there exists a constant c>0 such that for every
p # Zm and all but finitely many q # Zn the product &Aq+p&m &q&n is
greater than c; equivalently, if

cA =
def

lim inf
p # Zm, q # Zn, q � �

&Aq+p&m &q&n>0.
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Denote by BAm, n the set of badly approximable A # Mm, n (R). It has been
known since the 1920s that BAm, n is infinite (Perron, 1921) and of zero
Lebesgue measure in Mm, n (R) (Khintchine, 1926), and that BA1, 1 is thick
in R (Jarnik, 1929; the latter result was obtained using continued frac-
tions). In 1969 W. M. Schmidt [S3] used the technique of (:, ;)-games to
show that the set BAm, n is thick in Mm, n (R).

1.2. The subject of the present paper is an inhomogeneous analogue of
the above notion. By an affine form we will mean a linear form plus a real
number. A system of m affine forms in n variables will be then given by a
pair (A, b), where A # Mm, n (R) and b # Rm. We will denote by M� m, n (R)
the direct product of Mm, n (R) and Rm. Now say that a system of affine
forms given by (A, b) # M� m, n (R) is badly approximable if

c~ A, b =
def

lim inf
p # Zm, q # Zn, q � �

&Aq+b+p&m &q&n>0, (1.1)

and well approximable otherwise. We will denote by BA@m, n the set of badly
approximable (A, b) # M� m, n (R).

Before going further, let us consider several trivial examples of badly
approximable systems of affine forms.

1.3. Example. For comparison let us start with the homogeneous case.
Suppose that Aq0 # Zm for some q0 # Zn"[0]. Then clearly there exist
infinitely many q # Zn (integral multiples of q0) for which Aq # Zm, hence
such A is well approximable. On the other hand, the assumption

Aq0+b+p0=0 (1.2)

does not in general guarantee the existence of any other q # Zn with
Aq+b # Zm, and, in view of the definition above, just one integral solution
is not enough for (A, b) to be well approximable. We will say that
(A, b) # M� m, n (R) is rational if (1.2) holds for some p0 # Zm and q0 # Zn,
and irrational otherwise.

Because of the aforementioned difference of the homogeneous and
inhomogeneous cases, rational systems of forms will have to be treated
separately. In fact, as mentioned in [C, Chap. III, Sect. 1], (1.2) allows one
to reduce the study of a rational system (A, b) # M� m, n (R) to that of A.
Indeed, for all q{q0 one can write

&Aq+b+p&m &q&n=&A(q&q0)+p&p0&m &q&n

=&A(q&q0)+p&p0&m &q&q0&n &q&n

&q&q0&n ,
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which shows that for rational (A, b) # M� m, n (R) one has c~ A, b=cA ; in
particular, (A, b) is badly approximable iff A is.

1.4. Example. Another class of examples is given by

Kronecker's Theorem (see [C, Chap. III, Theorem IV]). For (A, b)
# M� m, n (R), the following are equivalent:

(i) there exists =>0 such that for any p # Zm and q # Zn one has
&Aq+b+p&�=;

(ii) there exists u # Zm such that ATu # Zn but bTu is not an integer.

The above equivalence is straightforward in the m=n=1 case; if
a=k�l # Q, then |aq+b+ p|�dist(b, (1�l ) Z), and a � Q implies that
[(aq+b) mod 1] is dense in [0, 1]. In general, it is easy to construct
numerous examples of systems (A, b) satisfying (ii), and for such systems
one clearly has c~ A, b=+� in view of (i). Here one notices another
difference from the homogenous case: in view of Dirichlet's Theorem, one
has cA<1 for any A # Mm, n (R).

1.5. It follows from the inhomogeneous version of the
Khintchine�Groshev Theorem (see [C, Chap. VIII, Theorem II]) that the

set BA@m, n has Lebesgue measure zero. (See Sect. 5 for a stronger statement
and other extensions.) A natural problem to consider is to measure the
magnitude of this set in terms of the Hausdorff dimension. One can easily
see that the systems of forms (A, b) which are badly approximable by
virtue of the two previous examples (that is, either are rational with
A # BAm, n or satisfy the assumption (ii) of Kronecker's Theorem) belong
to a countable union of proper submanifolds of M� m, n (R) and, conse-
quently, form a set of positive Hausdorff codimension. Nevertheless, the
following is true and constitutes the main result of the paper:

Theorem. The set BA@m, n is thick in M� m, n (R).

This theorem will be proved using results and methods of the paper
[KM1]. More precisely, we will derive Theorem 1.5 from Theorem 1.6
below. Before stating the latter, let us introduce some notation and ter-
minology from the theory of Lie groups and homogeneous spaces.

1.6. Let G be a connected Lie group, g its Lie algebra. Any X # g gives
rise to a one-parameter semigroup F=[exp(tX) | t�0], where exp stand
for the exponential map from g to G. We will be interested in the left action
of F on homogeneous spaces 0 =

def G�1, where 1 is a discrete subgroup of G.
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Many properties of the above action can be understood by looking at
the adjoint action of X on g. For * # C, we denote by g* (X) the generalized
eigenspace of ad X corresponding to *, i.e., the subspace of the com-
plexification gC of g defined by

g* (X)=[Y # gC | (ad X&*I ) j Y=0 for some j # N].

We sill say that X is semisimple if gC is spanned by eigenvectors of ad X.
Further, we will define the X- (or F-) expanding horospherical subgroup of
G s follows: H=exp h, where h is the subalgebra of g with complexification
hC =�Re *>0 g* (X).

Say that a discrete subgroup 1 of G is a lattice if the quotient space
0=G�1 has finite volume with respect to a G-invariant measure. Note that
0 may or may not be compact. Any group admitting a lattice is
unimodular; we will choose a Haar measure + on G and the corresponding
Haar measure +� on 0 so that +� (0)=1. The F-action on 0 is said to be
mixing if

lim
t � +�

+� (exp(tX) W & K)=+� (W) +� (K) (1.3)

for any two measurable subsets K, W of 0.
The last piece of notation comes from the papers [K2, K3]. Consider

the one-point compactification 0* =
def 0 _ [�] of 0, topologized so that

the complements to all compact sets constitute the basis of neighborhoods
of �. We will use the notation Z* =

def Z _ [�] for any subset Z of 0. Now
for a subset W of 0* and a subset F of G define E(F, W) to be the set of
points of 0 with F-orbits escaping W, that is,

E(F, W) =
def [x # 0 | Fx & W=<],

with the closure taken in the topology of 0*. In particular, if Z is a subset
of 0, E(F, Z*) stands for the set of x # 0 such that orbits Fx are bounded
and stay away from Z.

We are now ready to state

Theorem. Let G be a real Lie group, 1 a lattice in G, X a semisimple
element of the Lie algebra of G, H the X-expanding horospherical subgroup
of G such that the action of F=[exp(tX) | t�0] on 0=G�1 is mixing.
Then for any closed F-invariant null subset Z of 0 and any x # 0, the set
[h # H | hx # E(F, Z*)] is thick in H.

1.7. The reduction of Theorem 1.5 to the above theorem is described in
Section 4 and is based on a version of S. G. Dani's (see [D1, K3, Sect. 2.5])
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correspondence between badly approximable systems of linear forms and
certain orbits of lattices in the Euclidean space Rm+n. More precisely, let
G0=SLm+n (R) and let G be the group Aff(Rm+n) of measure-preserving
affine transformations of Rm+n, i.e. the semidirect product of G0 and Rm+n.
Further, put 10=SLm+n (Z) and let 1=Aff(Zm+n) =

def 10 _ Zm+n be the
subgroup of G leaving the standard lattice Zm+n invariant. It is easy to
check that 1 is a non-cocompact lattice in G, and that 0 =

def G�1 can be
identified with the space of free unimodular lattices in Rm+n, i.e.,

0$[4+w | 4 a lattice in Rm+n of covolume 1, w # Rm+n].

One can show that the quotient topology on 0 coincides with the natural
topology on the space of lattices, so that two lattices are close to each other
if their generating elements are. We will also consider 00 =

def G0 �10 and
identify it with the subset of 0 consisting of ``true'' lattices, i.e., those
containing 0 # Rm+n.

We will write elements of G in the form (L, w) , where L # G0 and
w # Rm+n, so that (L, w) sends x # Rm+n to Lx+w. If w=0, we will
simply write L instead of (L, 0); the same convention will apply to
elements of the Lie algebra g of G. We will fix an element X of
slm+n (R)/g of the form

X=diag \ 1
m

, ...,
1
m

,&
1
n

, ..., &
1
n+ ,

m times
n times

and let F=[exp(tX) | t�0].
Recall that in the standard version of Dani's correspondence, to a system

of linear forms given by A # Mm, n (R) one associates a lattice LA Zm+n in
Rm+n, where LA stands for ( Im

0
A
In

). It is proved in [D1] that A # BAm, n if
and only if the trajectory FLAZm+n/00 is bounded (see Subsection 4.3 for
more details). From this and the aforementioned 1969 result of Schmidt,
Dani deduced in [D1] that the set of lattices in 00 with bounded F-trajec-
tories is thick.

It was suggested by Dani and then conjectured by G. A. Margulis [Ma,
Conjecture (A)] that the abundance of bounded orbits is a general feature
of nonquasiunipotent (see Subsection 2.3) flows on homogeneous spaces of
Lie groups. This conjecture was settled in [KM1], thus giving an alter-
native (dynamical) proof of Dani's result, and hence of the thickness of the
set BAm, n .

Our goal in this paper is to play the same game in the inhomogeneous
setting. Given (A, b) # M� m, n (R) one can consider a free lattice in Rm+n of
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the form L� A, bZm+n, where L� A, b is the element of G given by (LA , (b, 0)T).
In Section 4 we will prove the following

Theorem. Let G, 1, 0, 00 , and F be as above. Assume that L� A, b Zm+n

belongs to E(F, (00)*). Then a system of affine forms given by (A, b) is
badly approximable.

To see that this theorem provides a link from Theorem 1.6 to
Theorem 1.5, it remains to observe that the F-action on 0 is mixing (all the
necessary facts related to mixing of actions on homogeneous spaces are
collected in Section 2), and that [L� A, b | (A, b) # M� m, n (R)] is the
F-expanding horospherical subgroup of G. In fact, Theorem 1.7 is obtained
as a corollary from a necessary and sufficient condition for an irrational
system of affine forms to be badly approximable, an inhomogeneous
analogue of Dani's correspondence [D1, Theorem 2.20] and the man result
of Section 4 of the present paper.

For the sake of making this paper self-contained, in Section 3 we present
the complete proof of Theorem 1.6, which is basically a simplified version
of the argument from [KM1]. The last section of the paper is devoted to
several concluding remarks and open questions.

2. MIXING AND THE EXPANDING HOROSPHERICAL
SUBGROUP

2.1. Throughout the next two sections, we let G be a connected Lie
group, g its Lie algebra, X an element of g, gt=exp(tX), F=[gg | t�0],
1 a lattice in G and 0=G�1. For x # 0, denote by ?x the quotient map
G � 0, g � gx. The following restatement of the definition of mixing of the
F-action on 0 is straightforward:

Proposition (cf. [KM1, Theorem 2.1.2]). The action of F on 0 is mixing
iff or any compact Q/0, any measurable K/0 and any measurable U/G
such that ?z is injective on U for all x # Q, one has

\=>0 _T>0 such that

|+� (gt Ux & K)&+(U) +� (K)|�= for all t�T and x # Q. (2.1)

Proof. To get (1.3) from (2.1), take any x # 0, put Q=[x] and take U
to be any-to-one ?x -preimage of W. For the converse, one considers the
family of sets Wx=Ux and observes that the difference +� (gt Wx & K)
&+� (Wx) +� (K) goes to zero uniformly when x belongs to a compact subset
of 0. K
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2.2. If G is a connected semisimple Lie group without compact factors
and 1 an irreducible lattice in G, one has C. Moore's criterion [Mo] for
mixing of one-parameter subgroups of G: the F-action on 0 is mixing iff
F is not relatively compact in G. Since the group Aff(Rm+n) is not semi-
simple, we need a reduction to the semisimple case based on the work [BM]
of Brezin and Moore. Following [Ma], say that a homogeneous space G�2
is a quotient of 0 if 2 is a closed subgroup of G containing 1. If 2 contains
a closed normal subgroup L of G such that G�L is semisimple (resp.
Euclidean2) then the quotient G�2 is called semisimple (resp. Euclidean). It
is easy to show that the maximal semisimple (resp. Euclidean) quotient of
0 exists (by the latter we mean the quotient G�2 of 0 such that any other
semisimple (resp. Euclidean) quotient of 0 is a quotient of G�2).

The following proposition is a combination of Theorems 6 and 9 from
[Ma]:

Proposition. Suppose that

(i) there are no nontrivial Euclidean quotients of 0, and

(ii) F acts ergodically on the maximal semisimple quotient of 0.

Then the action of F on 0 is mixing.

2.3. Choose a Euclidean structure on g=Lie(G), inducing a right-
invariant Riemannian metric on G and a corresponding Riemannian metric
on 0. We will fix a positive _0 such that

the restriction of exp : g � G to Bg (4_0) is one-to-one
(2.2)

and distorts distances by at most a factor of 2.

Denote by h� the subalgebra of g with complexification h� C =
�Re *>0 g* (X), and put H� =exp h� . Clearly g=h�h� , which implies that
the multiplication map H� _H � G is one-to-one in a neighborhood of the
identity in H� _H.

We now assume that the X-expanding horospherical subgroup H of G is
nontrivial (in the terminology of [Ma], F is not quasiunipotent). Denote by
/ the trace of ad X|h and by * the real part of an eigenvalue of ad X| h with
the smallest real part. Denote also by 8t the inner automorphism
g � gt gg&t of G. Since Ad gt=ead tX is the differential of 8t at the identity,
the Jacobian of 8t |H is equal to e/t, and local metric properties of 8t are
determined by eigenvalues of ad tX. In particular, the following is true:
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Lemma. For all t>0 one has

(a) dist(8&1
t (g), 8&1

t (h))�4e&*t dist(g, h) for all g, h # BH(_0);

(b) if X is semisimple, dist(8t (g), 8t (h))�4 } dist(g, h) for all g, h #
BH� (_0).

In other words, 8t acts as an expanding map of H and as a non-expanding
map of H� .

2.4. We now turn to a crucial application of mixing of F-action on 0.
Choose a Haar measure & on H. Roughly speaking, our goal is to replace
a subset U of G in the formula (2.1) with a &-measurable subset V of H.

Proposition. Let V be a bounded measurable subset of H, K a bounded
measurable subset of 0 with +� (�K)=0, Q a compact subset of 0. Assume
that X is semisimple and that the F-action on 0 is mixing. Then for any =>0
there exists T1=T1 (V, K, Q, =)>0 such that

t�T1 O \x # Q &([h # V | gthx # K])�&(V) +� (K)&=. (2.3)

Proof. Since V is bounded, Q is compact, and 1 is discrete, V can be
decomposed as a disjoint union of subsets Vj of H with ?x injective on
some neighborhood of Vj for all x # Q and for each j. Hence one can
without loss of generality assume that the maps ?x are injective on some
neighborhood U$ of V for all x # Q. Similarly, one can safely assume that
V/BH(_0) and &(V)�1.

Choose a subset K$ of K such that +� (K$)�+� (K)&=�2 and the distance
_1 between K$ and �K is positive. Then choose _�min(_0 , _1 �4). After
that, pick a neighborhood V� /BH� (_) of the identity in H� such that

U =
def V� V is contained in U$.
Given x # 0 and t>0, denote by V$ the set [h # V | gt hx # K] that we

need to estimate the measure of.

Claim. The set Ux & g&1
t K$ is contained in V� V$x.

Proof. For any h # H and h� # V� , gth� hx=8t (h� ) gt hx # B(gt hx, 4_)/
B(gthx, _1) by Lemma 2.3(b) and the choice of V� . Therefore gthx belongs
to k whenever gth� hx # K$. K

Now, using Proposition 2.1, find T1>0 such that |+� (gtUx & K$)&
+(U) +� (K$)|�=�2 for all t�T1 and x # Q. In order to pass from U to V,
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choose a left Haar measure &~ on H� such that + is the product of & and &~
(cf. [Bou, Chap. VII, Sect. 9, Proposition 13]). Then for all t�T1 and
x # Q one can write

&~ (V� ) &(V$) = +(V� V$)=+� (V� V$x)

�
(Claim)

+� (Ux & g&1
t K$)=+� (gt Ux & K$)

�
(if t�T1)

+(U) +� (K$)&=�2�&~ (V� ) &(V)(+� (K)&=�2)&=�2

� &~ (V� )(&(V) +� (K)&=),

which immediately implies (2.3). K

Note that similarly one can estimate &(V$) from above, see [KM1,
Proposition 2.2.1] for a more general statement.

It will be convenient to denote the 8t-image of V$ by V(x, K, t), i.e., to
let

V(x, K, t) =
def 8t ([h # V | gthx # K])=[h # 8t (V) | hgt x # K].

Roughly speaking, Proposition 2.4 says that the relative measure of
V(x, K, t) in 8t (V) is big when t is large enough: indeed, (2.3) can be
rewritten in the form

t�T1 O \x # Q &(V(x, K, t))�e/t (&(V) +� (K)&=). (2.4)

3. PROOF OF THEOREM 1.6

3.1. Following [KM1], says that an open subset V of H is a tessella-
tion domain for the right action of H on itself relative to a countable subset
4 of H if

(i) &(�V)=0,

(ii) V#1 & V#2=< for different #1 , #2 # 4, and

(iii) X=�# # 4 V� #.

The pair (V, 4) will be called a tessellation of H. Note that it follows
easily from (ii) and (iii) that for any measurable subset A of H one has

&(A)
&(V)

�*[# # 4 | V# & A{<]

�
&([h # H | dist(h, A)�diam(V)])

&(V)
. (3.1)

91APPROXIMABLE SYSTEMS OF AFFINE FORMS



Let k stand for the dimension of H. We will use a one-parameter family
of tessellations of H defined as follows: if [X1 , ..., Xk] is a fixed orthonor-
mal strong Malcev basis of h (see [CG; KM1, Sect. 3.3] for the definition),

we let I=[�k
j=1 xjXj | |x j |<1�2] be the unit cube in h, and then take Vr=

exp((r�- k) I ). It was proved in [KM1] that Vr is a tessellation domain of
H; let 4r be a corresponding set of translations. It is clear from (2.2) that
Vr is contained in B(r) provided r�_0 , where _0 is as in Subsection 2.3.

The main ingredient of the proof of Theorem 1.6 is given by the follow-
ing procedure: we look at the expansion 8t (Vr) of the set Vr by the
automorphism 8t , and then consider the translates Vr # which lie entirely
inside 8t (Vr). It was shown in [KM1] (see also [K2, Proposition 2.6])
that when t is large enough, the measure of the union of all such translates
is approximately equal to the measure of 8t (Vr); in other words, boundary
effects are negligible. More precisely, the following is what will be needed
for the proof of the main theorem:

Proposition. For any r�_0 and any =>0 there exists T2=T2 (r, =)>0
such that

t�T2 O *[# # 4r | Vr# & �(8t (Vr)){<]�=e/t.

Proof. One can write

*[# # 4r | Vr# & �(8t (Vr)){<]=*[# # 4r | 8&1
t (Vr#) & �Vr {<].

Observe that (8&1
t (Vr), 8&t

t (4r)) is also a tessellation of H, and, in view
of Lemma 2.3(a), the diameter of 8&1

t (Vr) is at most 8re&*t. Therefore, by
(3.1), the number in the right hand side is not greater than the ratio of the
measure of the 8re&*t neighborhood of �Vr (which, in view of condition (i)
above, tends to zero as t [ �) and &(8&1

t (Vr))=e&/t&(Vr). This shows
that limt � � e&/t*[# # 4r | Vr # & �(8t (Vr)){<]=0, hence the proposi-
tion. K

3.2. Suppose a subset K of 0, a point x # 0, t>0 and positive r�_0

are given. Consider a tessellation (Vr , 4r) of H, and recall that we defined
Vr (x, K, t) as the set of all elements h in 8t (Vr) for which hgt x belongs to
K. Our goal now is to approximate this set by the union of translates of
Vr . More precisely, let us denote by 4r (x, K, t) the set of translations # # 4r

such that Vr# lies entirely inside Vr (x, K, t); in other words, if
Vr#/8t (Vr) and Vr#gt x= gt8&1

t (Vr#) x is contained in K. Then the
union

.
# # 4r (x, K, t)

Vr#= .
# # 4, Vr #/Vr(x, K, t)

Vr#
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can be thought of as a ``tessellation approximation'' to Vr (x, K, t). We can
therefore think of the theorem below as of a ``tessellation approximation''
to Proposition 2.4.

Theorem. Let K be a subset of 0 with +� (�K)=0, Q a compact subset
of 0. Then for any =>0 there exists r0=r0 (K, =) # (0, _0) such that for any
positive r�r0 one can find T0=T0 (K, Q, =, r)>0 with the property

t�T0 O \x # Q *4r (x, K, t)�e/t (+� (K)&=). (3.2)

Proof. If +� (K)=0, there is nothing to prove. Otherwise, pick a compact
subset K$ of K with +� (�K$)=0, which satisfies +� (K$)�+� (K)&=�3 and lies
at a positive distance from the complement of K. Take r0�_0 such that
Vr0

V &1
r0

K$/K (hence VrV &1
r K$/K for any positive r�r0). Then for any

t>0 and x # 0 one has

Vr#gt x/K o vr#gt x/Vr V &1
r K$ o #gtx # V &1

r K$

o Vr#gt x & K${<.

Therefore

*4r (x, K, t)=*[# # 4r | Vr#/8t (Vr) 6 Vr#gt x/K]

�*[# # 4r | Vr#/8t (Vr) 6 V#gt x & K${<]

�*[# # 4r | Vr# & Vr (x, K$, t){<]

&*[# # 4r | Vr# & �(8t (Vr)){<].

Now take

T0 =max \T1 \Vr , K$, Q,
=&(V)

3 + from Proposition 2.4,

T2 \r,
=
3+ from Proposition 3.1+ .

Then the number of # # 4r for which Vr# has nonempty intersection with
Vr (x, K$, t) is, in view of (2.4) and (3.1), for all x # Q and t�T0 not less
than

e/t (&(Vr) +� (K$)&=&(Vr)�3)
&(Vr)

=e/t (+� (K$)&=�3)�e/t (+� (K)&2=�3).

On the other hand, the number of translates Vr # nontrivially intersecting
with �(8t (Vr)) is, by Proposition 3.1, not greater than =e/t�3, and (3.2)
follows. K
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3.3. We now describe a construction of a class of sets for which there
is a natural lower estimate for the Hausdorff dimension. Let X be a
Riemannian manifold, & a Borel measure on X, A0 a compact subset of X.
Say that a countable collection A of compact subsets of A0 of positive
measure & is tree-like relative to & if A is the union of finite nonempty sub-
collections Aj , j=0, 1, ..., such that A0=[A0] and the following two condi-
tions are satisfied:

(TL1) \j # N \A, B # Aj either A=B or &(A & B)=0;

(TL2) \j # N \B # Aj _A # Aj&1 such that B/A.

Say also that A is strongly tree-like if it is tree-like and in addition

(STL) dj (A) =
def

supA # Aj
diam(A) � 0 as j � �.

Let A be a tree-like collection of sets. For each j=0, 1, ..., let
Aj=�A # Aj

A. These are nonempty compact sets, and from (TL2) it
follows that Aj /Aj&1 for any j # N. Therefore one can define the (non-
empty) limit set of A to be

A�= ,
�

j=0

Aj .

Further, for any subset B of A0 with &(B)>0 and any j # N, define the
jth stage density $j (B, A) of B in A by

$j (B, A)=
&(Aj & B)

&(B)
,

and the jth stage density $j (A) of A by $ j (A)=infB # Aj&1
$ j (B, A).

The following estimate, based on an application of Frostman's Lemma,
is essentially proved in [Mc, U]:

Lemma. Assume that there exists k>0 such that

lim inf
r � 0

log &(B(x, r))
log r

�k (3.3)

for any x # A0 . Then for any strongly tree-like (relative to &) collection A of
subsets of A0

dim(A�)�k&lim sup
j � �

� j
i=1 log $i (A)
log dj (A)

.
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3.4. Now everything is ready for the

Proof of Theorem 1.6. Let x # 0 and a nonempty open subset V of H
be given. We need to prove that the Hausdorff dimension of the set
[h # V | hx # E(F, Z*)] is equal to k=dim(H). Replacing x by hx for some
h # V we can assume that V is a neighborhood of identity in H.

Pick a compact set K/0"Z with +� (�K)=0, and choose arbitrary
=>0, =<+(K). Then, using Theorem 3.2, find r�r0 (K, =) such that the
corresponding tessellation domain V� r is contained in V, and then take t�
max(T0 (K, K _ [x], =, r), 1�=). We claim that

dim([h # Vr | hx # E(F, Z*)])�k&
log(1�(+� (K)&=))

*t&log 4
. (3.4)

Since Vr /V, = is arbitrary small and t is greater than 1�=, it follows from
(3.4) that dim([h # V | hx # E(F, Z*)]) is equal to k.

To demonstrate (3.4), for all y # K _ [x] let us define strongly tree-like
(relative to the Haar measure & on H) collections A( y) inductively as
follows. We first let A0 ( y)=[Vr ] for all y, then define

A1 ( y)=[8&t (Vr#) | # # 4r ( y, K, t)]. (3.5)

More generally, if Ai ( y) is defined for all y # K _ [x] and i< j, we let

Aj ( y)=[8&t (A#) | # # 4r ( y, K, t), A # Aj&1 (#gt y)]. (3.6)

By definition, # # 4r ( y, K, t) implies that #gt y # K; therefore Aj&1 (#gt y) in
(3.6) is defined and the inductive procedure goes through. The properties
(TL1) and (TL2) follow readily from the construction and Vr being a
tessellation domain. Also, by Lemma 2.3(a), the diameter of 8&t (A#) is not
greater than 4e&*t diam(A), which implies that dj (A( y)) is for all j # N and
y # K not greater than 2r } (4e&*t) j, and therefore (STL) is satisfied.

Let us now show by induction that the j th stage density $j (A( y)) of
A( y) is for all y # K _ [x] and j # N bounded from below by +� (K)&=.
Indeed, by definition

$1 (Vr , A( y))=
&(A1( y))

&(V� r)
=

(by (3.5))

&(�# # 4r ( y, K, t) 8&1
t (Vr #))

&(Vr)

=e&/t*4r ( y, K, t) �
(by (3.2))

+� (K)&=.
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On the other hand, if j�2 and B # Aj&1 ( y) is of the form 8&1
t (A#) for

A # Aj&2 (#gt y), the formula (3.6) gives

$j (B, A( y))=
&(B & Aj ( y))

&(B)
=

&(8&1
t (B & Aj ( y)))
&(8&1

t (B))

=
&(A# & Aj&1 (#gt y) #)

&(A#)
=

&(A & Aj&1 (#gt y))
&(A)

=$j&1 (A, A(#gt y)),

and induction applies. Finally, the measure & clearly satisfies (3.3) with
k=dim(H), and an application of Lemma 3.3 yields that for all y # K _ [x]
one has

dim(A� ( y))�k&lim sup
j � �

j log(+� (K)&=)
log(2r } (4e&*t) j)

,

which is exactly the right hand side of (3.4).
To finish the proof it remains to show that A� (x) x is a subset of

E(F, Z*). Indeed, from (3.5) and the definition of 4r ( y, K, t) it follows that
gt A1 ( y) y/K for all y # K _ [x]. Using (3.6) one can then inductively
prove that gjtAj ( y) y/K for all y # K _ [x] and j # N. This implies that

gjtA� (x) /K for all j # N. (3.7)

It remains to define the set C=�0
s=&t gsK, which is compact and disjoint

from Z due to the F-invariance of the latter. From (3.7) it easily follows
that for any h # A� (x), the orbit Fhx is contained in C, and therefore is
bounded and disjoint from Z. K

4. DIOPHANTINE APPROXIMATION AND ORBITS OF LATTICES

4.1. We return to the notation introduced in Section 1, i.e., put
G=SLm+n (R) _ Rm+n, 1=SLm+n (Z) _ Zm+n, G0=SLm+n (R), 10=
SLm+n (Z), 0=G�1, the space of free lattices in Rm+n, LA=( Im

0
A
In

), L� A, b=
(LA , (b, 0)T),

X=diag \ 1
m

, ...,
1
m

,&
1
n

, ..., &
1
n+ ,

m times n times

gt=exp(tX) and F=[gt | t�0].
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As is mentioned in the introduction to [KM1], [LA | A # Mm, n (R)] is the
F-expanding horospherical subgroup of G0 . Similarly, one has

Lemma. [L� A, b | (A, b) # M� m, n (R)] is the F-expanding horospherical
subgroup of G.

Proof. It is a straightforward computation that ad X sends ( ( B
C

A
D),

( b
c)) # g (here A # Mm, n (R), B # Mm, m (R), C # Mn, m (R), D # Mn, n (R),

b # Rm, c # Rn) to the element

�\ 0

&\ 1
m

+
1
n+ C

\ 1
m

+
1
n+ A

0 + , \
1
m

b

&
1
n

c+� . K

4.2. We also need

Lemma. The action of F on 0 is mixing.

Proof. Since Rm+n is the only nontrivial closed normal subgroup of G,
the homogeneous space 0 has no nontrivial Euclidean quotients and its
maximal semisimple quotient is equal to G�2, where 2=10 _ Rm+n. Denote
by p the quotient map G � G0 $G�Rm+n. Then G�2, as a G-space, is
p-equivariantly isomorphic to G0�10 , and clearly p(F) is not relatively com-
pact in G0 . It follows from Moore's theorem that the F-action on G�2 is
mixing, therefore, by Proposition 2.2, so is the F-action on 0. K

4.3. We are now going to connect Diophantine properties of (A, b) #
M� m, n (R) with orbit properties of L� A, bZm+n. For comparison, let us first
state Dani's correspondence [D1, Theorem 2.20] for homogeneous
approximation.

Theorem. A # Mm, n (R) is badly approximable iff there exists =>0 such
that &gtLAv&�= for all t�0 and v # Zm+n"[0].

In view of Mahler's compactness criterion, the latter assertion is equivalent
to the orbit FLAZm+n being bounded (in other words, to LAZm+n being an
element of E(F, [�])). Therefore, as is mentioned in [K3], one can use the
result of [KM1] to get an alternative proof of Schmidt's theorem on thick-
ness of the set of badly approximable systems of linear forms. In order to
move to affine forms, we need an inhomogeneous analogue of the above
criterion:
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4.4. Theorem. (A, b) # M� m, n (R) is irrational and badly approximable iff

_=>0 such that &gtL� A, bv&�= for all t�0 and v # Zm+n. (4.1)

Proof. We essentially follow the argument of [K1, Proof of Proposi-
tion 5.2(a)]. Write v=(p, q)T, where p # Zm and q # Zn. Then

gtL� A, bv=(et�m (Aq+b+p), e&t�nq)T.

This shows that (4.1) does not hold iff there exist sequences tj�0, pj # Zm

and q j # Zn such that

etj �m(Aq j+b+pj) � 0 (4.2a)

and

e&tj �nq j � 0 (4.2b)

as j � �. On the other hand, (A, b) is well approximable iff there exist
sequences pj # Zm and q j # Zn, j # N, such that q j � � and

&Aq j+b+pj&m &q j&n � 0 as j � �. (4.3)

We need to prove that (4.1) doe snot hold if and only if (A, b) is either
rational or well approximable. If (A, b) is rational, one can take pj=p0

and q j=q0 , with p0 and q0 as in (1.2), and arbitrary tj � �; then the
left hand side of (4.2a) is zero, and (4.2b) is satisfied as well. On the
other hand, for irrational and well approximable (A, b) one can define etj =

def

- &q j&n�&Aq j+b+pj&m and check that (4.2a), (4.2b) holds.
Conversely, multiplying the norm of the left hand side of (4.2a) risen to he

mth power and the norm of the left hand side of (4.2b) risen to the n th
power, one immediately sees that (4.3) follows from (4.2a), (4.2b). It remains
to observe that either (A, b) is rational or Aq j+b+pj is never zero, there-
fore (4.2a) forces the sequences q j to tend to infinity. K

4.5. Recall that we denoted by 00 the set of ``true'' (containing the zero
vector) lattices in Rm+n. It is now easy to complete the

Proof of Theorem 1.7. Take a well approximable (A, b) # M� m, n (R) such
that L� A, bZm+n belongs to E(F, (00)*). In view of the above criterion,

_ a sequence 4j # FL� A, bZm+n and vectors vj # 4j with vj � 0. (4.4)

Since FL� A, bZm+n is relatively compact, one can without loss of generality
assume that there exists 4 # 0 with 4j � 4 in the topology of 0. Clearly the
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presence of arbitrarily small vectors in the lattices 4j forces 4 to contain 0,
i.e., belong to 00 , which is a contradiction. K

4.6. Remark. Note that the converse to Theorem 1.7 is not true: by vir-
tue of Theorem 4.4, any rational (A, b) # M� m, n (R) satisfies (4.4), hence
L� A, bZm+n is not in E(F, (00)*). Restriction to the irrational case gives a
partial converse: indeed, the above proof basically shows that the existence
of a limit point 4 # 00 of the orbit FL� A, bZm+n violates (4.1); hence
L� A, bZm+n belongs to E(F, 00) whenever (A, b) is irrational and badly
approximable. But the orbit FL� A, bZm+n does not have to be bounded, as
can be shown using the explicit construction given by Kronecker's Theorem
(see Example 1.4). Perhaps the simplest possible example is the irrational
badly approximable form (A, b)=(0, 1�2) (here m=n=1): it is easy to
see that the orbit

diag(et, e&t) L� A, bZ2=[(et ( p+1�2), e&tq)T | p, q # Z]

has no limit points in the space of free lattices in R2.

4.7. We conclude this section with the

Proof of Theorem 1.5. Observe that 00=G0Zm+n is the orbit of a proper
subgroup of G containing F, which makes it null and F-invariant subset of
0. The fact that 00 is closed is also straightforward. From Theorem 1.6 and
Lemmas 4.1 and 4.2 it follows that the set [(A, b) # M� m, n(R) |
L� A, b Zm+n # E(F, (00)*)] is thick in M� m, n (R). In view of Theorem 1.7,
systems of forms which belong to the latter set are badly approximable,

hence the thickness of the set BA@m, n . K

5. CONCLUDING REMARKS AND OPEN QUESTIONS

It is worthwhile to look at the main result of this paper in the context of
other results in inhomogeneous Diophantine approximation. In what
follows, �: N [ (0, �) will be a non-increasing function, and we will say,
following [KM3], that a system of affine forms given by (A, b) # M� m, n (R)
is �-approximable3 if there exists infinitely many q # Zn such that

&Aq+b+p&m��(&q&n) (5.1)
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for some p # Zm. Denote by Wm, n (�) the set of �-approximable systems
(A, b) # M� m, n (R).

The main result in the present paper is doubly metric in its nature; that is,
the object of study is the set of all pairs (A, b). On the contrary, in singly
metric inhomogeneous problems one is interested in the set of pairs (A, b)
where b is fixed. For example, the doubly metric inhomogeneous
Khintchine�Groshev Theorem [C, Chap. VII, Theorem II] says that

the set Wm, n (�) has {full measure
zero measure

if ��
k=1 �(k)=�

if ��
k=1 .(k)<�.

The singly metric strengthening is due to Schmidt. For b # Rm, denote by
Wm, n (�, b) the set of matrices A # Mm, n (R) such that (A, b) # Wm, n (�). It
follows from the main result of [S1] that given any b # Rm,

the set Wm, n (�, b) has {full measure
zero measure

if ��
k=1 �(k)=�

if ��
k=1 .(k)<�.

Denote �0 (x)=1�x. A quick comparison of (5.1) with (1.1) shows that
(A, b) is badly approximable iff it is not =�0-approximable for some =>0;

in other words, BA@m, n=M� m, n (R)"�=>0 Wm, n (=�0). Therefore it follows
from the above result that for any b # Rm, the set

BAm, n (b) =
def [A # Mm, n (R) | (A, b) # BA@m, n]

has zero measure.
Another class of related problems involves a connection between the rate

of decay of � and the Hausdorff dimension of Wm, n (�). The corresponding
result in homogeneous approximation is called the Jarnik�Besicovitch
Theorem, see [Do1]. The doubly metric inhomogeneous version was done
by M. M. Dodson [Do2] and H. Dickinson [Di], and recently J. Levesley
[L] obtained a singly metric strengthening. More precisely he proved that
for any b # Rm,

dim(Wm, n (�, b))={mn \1&
*&1

m+n*+ if *>1

mn if *�1,

where *=lim infk � � (log(1��(k))�log k) is the lower order of the function
1��.

In view of the aforementioned results, one can ask whether it is possible
to prove that BAm, n (b) is thick in Mm, n (R) for every b # Rm. (It is a conse-
quence of Theorem 1.7 and slicing properties of the Hausdorff dimension
that vectors b # Rm such that BAm, n (b) is thick form a thick subset of Rm.)
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Note also that in the paper [S3], Schmidt proved that BAm, n is a winning
(a property stronger than thickness, cf. [S2, D2]) subset of Mm, n (R). It is
not clear to the author whether Schmidt's methods can be modified to
allow treatment of inhomogeneous problems. It seems natural to conjecture
that BA@m, n is a wining subset of M� m, n (R), and, moreover, that BAm, n (b)
is a winning subset of Mm, n (R) for every b # Rm. This seems to be an
interesting and challenging problem in metric number theory.
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