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Abstract

This article begins the study of irreducible maps involving finite-dimensional uniserial modules over
finite-dimensional associative algebras. We work on the classification of irreducible maps between two
uniserials over triangular algebras, and give estimates for the number of middle terms of an almost split
sequence with a uniserial end term.
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1. Introduction

The study of finite-dimensional uniserial modules over finite-dimensional associative alge-
bras was begun in earnest by Huisgen-Zimmermann in [8]; Huisgen-Zimmermann and Bongartz
achieved a description of uniserial modules in terms of certain varieties in [5] (see also [4,6,9]).
In the present article, which is based on the authors’ theses [3,12], certain questions regarding
the position of uniserial modules in the Auslander–Reiten quiver of finite-dimensional algebras
are investigated; most of the work applies to basic split triangular algebras only.

The article is organized as follows. In Section 2 we fix our notation and conventions and
recall the basic description of uniserials via varieties. In Section 3 we present a general result that
motivates much of the following work: any irreducible map between two uniserials is either the
radical embedding or the socle factor projection of a uniserial module. The two cases being dual,
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we go on to state a conjecture giving a concrete necessary and sufficient condition for a uniserial
over a triangular algebra to have an irreducible radical embedding. The criterion is combinatorial
in nature—as a consequence, while slightly technical when phrased in full generality, it is readily
checkable for a given quiver with relations. The sufficiency of this condition is proved using the
technique of quiver representations. The necessity of one part of the condition is then proved in
a slightly more general context.

We have not yet managed to prove the necessity of the full condition for all triangular algebras.
In Section 4 we prove it under an additional assumption, which includes the case of all triangular
multiserial algebras. In Section 5 we prove it for all monomial algebras; the condition takes on a
very simple form in this situation.

In Section 6 we study a general finite-dimensional algebra and focus on a different circle of
questions: almost split sequences with a uniserial end term. First we give a simple general result:
any short exact sequence with uniserial end terms has a middle term which is either indecom-
posable or a direct sum of two uniserials. Then we study the number of indecomposable middle
terms in an almost split sequence ending in a uniserial module; an upper bound is given for
multiserial algebras.

2. Notation and preliminaries

We will use the notation and terminology of [1]. Throughout, K will be a field and Γ will be a
finite quiver with vertex set Γ0 and arrow set Γ1. We compose arrows, paths and maps from right
to left: if p : e → f and q : f → g then qp : e → g. The starting point of the path p is denoted
by s(p) and its end point by t(p). Λ = KΓ/I will be a finite-dimensional K-algebra presented
as the quotient of the path algebra of Γ by an admissible ideal I . Λ is called triangular if Γ

does not contain any directed cycles. Whenever useful, we identify elements of Γ0 and paths in
Γ with their corresponding classes in Λ.

The category of finitely generated left Λ-modules is denoted by Λ-mod. The direct sum of
two modules M and N is denoted by M � N . A module is called uniserial if it has only one
composition series with simple factors. If U ∈ Λ-mod is uniserial with length n, then there exists
a path p in Γ of length n − 1 and an element x ∈ U such that px �= 0. Any such path is called a
mast of U and any such element x is called a top element of U . The terminology is that of [8].

Let p be a path in Γ . A path u is a right subpath of p if there exists a path r with p = ru.
Following [8], a detour on the path p is a pair (α,u) with α an arrow and u a right subpath of p,
where αu is a path in Γ which is not a right subpath of p, but there exists a right subpath v of p

with length(v) � length(u) + 1 such that the endpoint of v coincides with the endpoint of α.

u

v

···
β �=α

α

··· ···

We will abbreviate the statement “(α,u) is a detour on p” by (α,u) �� p. Given any detour
on p, let V (α,u) = {vi(α,u) | i ∈ I (α,u)} be the family of right subpaths of p in KΓ which are
longer than u and have the same endpoint as α.

Now suppose p has length l and passes consecutively through the vertices e(1), . . . , e(l + 1)

(which need not be distinct). A route on p is any path in Γ which starts in e(1) and passes
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through a subsequence of the sequence (e(1), . . . , e(l + 1)) in this order and through no other
vertices. A non-route on p is any path in Γ which starts in e(1) and is not a route on p.

Given any uniserial module with mast p and top element x, if (α,u) �� p, then αux =∑
i∈I (α,u) ki(α,u)vi(α,u)x for unique scalars ki(α,u). By [8], the points (ki(α,u))i∈I (α,u),(α,u)��p

corresponding to uniserials with mast p form an affine variety, called Vp , which lives in AN ,
where N = ∑

(α,u)��p |I (α,u)|. Moreover, there is a surjective map Φp from Vp onto the
set of isomorphism types of uniserial Λ-modules with mast p. It assigns to each point
k = (ki(α,u))i∈I (α,u),(α,u)��p in Vp the isomorphism type of the module Λe(1)/Uk , where

Uk =
∑

(α,u)��p
Λ

(
αu −

∑
i∈I (α,u)

ki(α,u)vi(α,u)

)
+

∑
q non-route on p

Λq.

3. Irreducible radical embeddings of uniserials

In this section, we first show that the only irreducible maps between uniserial modules are
certain radical embeddings JU ↪→ U and socle factor projections U → U/ socU . Then for a
triangular algebra Λ = KΓ/I , we propose necessary and sufficient combinatorial conditions for
the radical embedding JU ↪→ U of a uniserial module U to be irreducible.

Proposition 3.1. Let R be a left artinian ring with Jacobson radical J .

(1) If f : M → U is an irreducible injective map from the module M ∈ R-mod to the uniserial
U ∈ R-mod, then there exists an isomorphism ϕ : JU → M so that f ϕ is the natural radical
embedding JU ↪→ U .

(2) If g : U → M is an irreducible surjective map from the uniserial U ∈ R-mod to the module
M ∈ R-mod, then there exists an isomorphism ψ : M → U/ socU so that ψg is the natural
socle factor projection U → U/ socU .

Proof. (1) Since im(f ) is a proper submodule of U , im(f ) = J lU with l � 1 and M ∼= J lU

via f . However, if l > 1, then J lU → J l−1U → U would be a non-trivial factorization of
J lU → U , giving us a factorization of f , which is impossible. The proof of (2) is similar to
that of (1). �

Since every irreducible morphism is either injective or surjective, the only irreducible maps
between two uniserial modules are among radical embeddings JU ↪→ U and socle factor projec-
tions U → U/ socU . Since the two cases are clearly dual, we will focus on radical embeddings
in the sequel.

Now assume that Λ = KΓ/I is a triangular algebra. To prepare for our analysis in this section,
we fix a finitely generated uniserial left Λ-module U with mast

p = 1
α1−→ 2

α2−→ · · · αn−1−−−→ n.

On several occasions, we will refer to certain subpaths αi · · ·αj of p; whenever i < j , this ex-
pression will simply stand for 1. We now name all the arrows in Γ that touch p, classifying them
according to the type of contact with p:
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B := {
β ∈ Γ1

∣∣ s(β) ∈ {1, . . . , n − 1} and t(β) /∈ {1, . . . , n}},
B ′ := {

β ′ ∈ Γ1
∣∣ s(β ′) = n

}
,

C := {
γ ∈ Γ1

∣∣ s(γ ) /∈ {1, . . . , n} and t(γ ) ∈ {2, . . . , n}},
C′ := {

γ ′ ∈ Γ1
∣∣ t(γ ′) = 1

}
,

D := {
δ ∈ Γ1

∣∣ {s(δ), t(δ)} ⊂ {1, . . . , n} and δ /∈ {α1, . . . , αn−1}
}
.

For an illustration of these definitions with an example, consider the following quiver Γ ,
together with the path p = α3α2α1:

γ ′

δ1

α1
γ

α2
β

α3δ2

ε
β ′

1

β ′
2

We then have

B = {β}, B ′ = {
β ′

1, β
′
2

}
, C = {γ }, C′ = {γ ′}, D = {δ1, δ2}.

Observe that, in general, our uniserial module U may be identified with a representation U =
((Ux), (fα)) of Γ , where

Ux =
{

K, if x ∈ {1, . . . , n};
0, otherwise

and

fαi
= id for every i ∈ {1, . . . , n − 1}.

The module U is then completely determined by the choice of the mast p and the scalars fδ(1) for
δ ∈ D, different sets of scalars corresponding to non-isomorphic modules. Unlike the hereditary
case, not every path is a mast, however, and not every set of scalars appears in this fashion, since
the relations in I impose restrictions.

We know from 3.1 that, in order to understand irreducible maps between uniserial modules,
it is sufficient to study radical embeddings (and their duals, socle factor projections). The fol-
lowing conjecture covers this situation; we manage to prove “(2) ⇒ (1)” and a generalization of
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“(1) ⇒ (2)(a)” in the sequel. We will also prove “(1) ⇒ (2)(b)” for monomial and for multiserial
algebras.

Conjecture 3.2. (See [3, Conjecture 1.2.1].) Suppose Λ is a triangular algebra and U is a
uniserial Λ-module with mast p. Then the following statements are equivalent:

(1) The embedding JU → U is irreducible.
(2) U is not simple and satisfies both (a) and (b) below:

(a) For every β ∈ B ,

βαs(β)−1 · · ·α1 ∈ Jp,

and for every δ ∈ D,

δαs(δ)−1 · · ·α1 ∈ Kαt(δ)−1 · · ·α1.

(b) There exists a subset R ⊂ J such that {rp + J 2p | r ∈ R} forms a K-basis for Jp/J 2p

and (i) and (ii) both hold:
(i) For every γ ∈ C there exists w ∈ pJ such that, for every r ∈ R,

rαn−1 · · ·αt(γ )γ = rw.

(ii) For every δ ∈ D and every r ∈ R,

rαn−1 · · ·αt(δ)δ ∈ Krαn−1 · · ·αs(δ).

Proof of “(2) ⇒ (1).” Let V = ((Vx), (gα)) ∈ Λ-mod and suppose there exist Λ-linear maps

JU
Φ=(Φx)−−−−−→ V

Ψ =(Ψx)−−−−−→ U

such that Ψ Φ is the embedding JU ↪→ U .
Observe that we can assume without loss of generality that the elements of the set R aris-

ing from condition (2) are normed in the following fashion: r = eu(r)ren for certain vertices
u(r) ∈ Γ0. We can thus denote by gr the K-linear map Vn → Vu(r) induced by left multiplication
by r .

Note furthermore that we can strengthen the conditions on δ ∈ D in the following manner:

δαs(δ)−1 · · ·α1 = fδ(1)αt(δ)−1 · · ·α1

and for every r ∈ R

rαn−1 · · ·αt(δ)δ = fδ(1)rαn−1 · · ·αs(δ).

The first equation is clear, and the second one follows then from

rαn−1 · · ·αt(δ)δαs(δ)−1 · · ·α1 = fδ(1)rαn−1 · · ·α1

since rp �= 0 for r ∈ R.
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Case 1. There exists v ∈ V1 with Ψ1(v) = 1 and (grgαn−1 · · ·gα1)(v) = 0 for all r ∈ R.

Our goal is to construct a section χ for Ψ in this case. Define χ = (χx) : U → V by

χ1(1) := v,

χi(1) := (gαi−1 · · ·gα1)(v) for i ∈ {2, . . . , n} and

χx := 0 for x /∈ {1, . . . , n}.

Once we have checked that χ ∈ HomΛ(U,V ), the equality Ψ1χ1(1) = 1 will clearly imply Ψ χ =
id, completing the treatment of the first case.

So let us check that χ is Λ-linear. That gαi
χi = χi+1 = χi+1fαi

for i ∈ {1, . . . , n−1} is clear;
moreover, we compute

gδχs(δ)(1) = (gδgαs(δ)−1 · · ·gα1)(v)

= fδ(1)(gαt(δ)−1 · · ·gα1)(v)

= χt(δ)fδ(1)

for δ ∈ D.
Next observe that Jpv ⊂ ∑

r Krpv + J 2pv = J 2pv (because R generates Jp/J 2p and be-
cause of our assumption in Case 1). If follows Jpv = 0.

Now let β ∈ B ∪B ′. Then (gβgαs(β)−1 · · ·gα1)(v) ∈ Jpv = 0, and again gβχs(β) = 0 = χt(β)fβ .

Case 2. For every v ∈ V1 with Ψ1(v) = 1, there exists r ∈ R with (grgαn−1 · · ·gα1)(v) �= 0.

In this case, we will construct a retraction χ for Φ . We may clearly assume that R is finite,
and then the condition of Case 2 immediately implies that there exist linear maps ωr : Vu(r) → K

for r ∈ R such that

Ψ1 =
∑
r∈R

ωrgrgαn−1 · · ·gα1 .

Define χ = (χx) : V → JU by

χi := Ψi − ∑
r∈R ωrgrgαn−1 · · ·gαi

for i ∈ {1, . . . , n} and

χx := 0 for x /∈ {1, . . . , n}.

Again we need to check that χ is Λ-linear. For that purpose, we compute χ1 = 0,

fαi
χi = Ψi+1gαi

−
(∑

r∈R

ωrgrgαn−1 · · ·gαi+1

)
gαi

= χi+1gαi

for i ∈ {1, . . . , n − 1}, and
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fδχs(δ) = Ψt(δ)gδ − fδ(1)
∑
r∈R

ωrgrgαn−1 · · ·gαs(δ)

= Ψt(δ)gδ −
∑
r∈R

ωrgrgαn−1 · · ·gαt(δ)gδ

= χt(δ)gδ

for δ ∈ D. In addition, we obtain χ1gγ ′ = 0 = fγ ′χs(γ ′) for γ ′ ∈ C′. If γ ∈ C, then we can clearly
assume that the corresponding element w ∈ pJ from condition (2)(b)(i) has the form w = pw′
with w′ ∈ e1Jes(γ ), and it follows

χt(γ )gγ = fγ Ψs(γ ) −
∑
r∈R

ωrgrgαn−1 · · ·gαt(γ )
gγ

= 0 −
∑
r∈R

ωrgrgαn−1 · · ·gα1gw′

= −Ψ1gw′

= −fw′Ψs(γ )

= 0 = fγ χs(γ ).

Hence χ belongs indeed to HomΛ(V,JU). That χΦ = idJU is a consequence of the following
computation:

χ2Φ2(1) = Ψ2Φ2(1) −
∑
r∈R

ωrgrgαn−1···α2Φ2(1)

= 1 −
∑
r∈R

ωrΦu(r)frfαn−1···α2(1)

= 1.

Thus Φ is a split monomorphism in the second case, which shows that the inclusion JU ↪→ U

cannot be factored non-trivially. �
The implication (1) ⇒ (2)(a) is proved in [3] using representations of algebras. In the sequel,

we will generalize (1) ⇒ (2)(a), by weakening the assumption that the quiver has no oriented
cycle, and use the language of modules. The following result (which does not assume that Λ is
triangular) gives a first necessary condition for JU ↪→ U to be irreducible.

Proposition 3.3. Let U be a uniserial Λ-module with mast p. Then JU ↪→ U is not irreducible
if there is an arrow leaving e := s(p) besides the first arrow of p.

Proof. Suppose p = p′β with β ∈ Γ1 and U = Λe/K where

K =
∑

Λ

(
δu −

∑
ki(δ, u)vi(δ, u)

)
+

∑
q non-route on p

Λq.
(δ,u)��p i∈I (δ,u)
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Suppose there is an arrow α leaving e besides β . Then either (α, e) �� p or α is a non-route on p.
Here, we assume (α, e) ��p and we will prove that JU ↪→ U is not irreducible. The proof for the
case where α is a non-route on p is similar. Let V = Λe/L with

L =
∑

(δ,u)��p, (δ,u) �=(α,e)

Λ

(
δu −

∑
i∈I (δ,u)

ki(δ, u)vi(δ, u)

)

+ J

(
α −

∑
i∈I (α,e)

ki(α, e)vi(α, e)

)
+

∑
q non-route on p

Λq.

We will prove that JU ↪→ U factors non-trivially through V . Let ϕ and ψ be the unique Λ-
homomorphisms

JU
ϕ−→ V

ψ−→ U,

defined by ϕ(β + K) = β + L and ψ(e + L) = e + K . First, we show that ϕ is well defined.
Suppose λβ ∈ K , for some λ ∈ Λ. We will need to show that λβ ∈ L. We have

λβ = l

(
α −

∑
i∈I (α,e)

ki(α, e)vi(α, e)

)
+ w,

where l ∈ K and w ∈ L. On the other hand, λβ = kβ + w′β for some k ∈ K and w′ ∈ J . Hence,

l

(
α −

∑
i∈I (α,e)

ki(α, e)vi(α, e)

)
− kβ = w − w′β. (1)

Since α does not appear in any terms in the right-hand side of (1), we have l = 0. Therefore
λβ = w ∈ L. It is clear that ψ is well defined and ψϕ equals the radical embedding JU ↪→ U .

Claim 1. ϕ is not a split monomorphism. Otherwise, suppose χ : V → JU is a splitting of ϕ.
Then χ(e +L) ∈ JU , thus χ(β +L) ∈ J 2U , so β +K = χϕ(β +K) ∈ J 2U , which is a contra-
diction since p = p′β is a mast for U .

Claim 2. ψ is not a split epimorphism. Since L ⊂ JΛe, the module V has simple top and is
thus indecomposable. Therefore, all we have to show is that ψ is not an isomorphism. This is the
case because L is properly contained in K and the dimension of V is larger than the dimension
of U . �
Definition 3.4. (See [10].) A detour (α,u) on a path p is called inessential if

αu = s +
∑

i∈I (α,u)

kivi(α,u)

in Λ, where s is a K-linear combination of paths, none of which is a route on p, and ki ∈ K for
all i ∈ I (α,u). A detour is essential if it is not inessential.
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The following result establishes (1) ⇒ (2)(a) of Conjecture 3.2, and indeed it is somewhat
stronger since the quiver is allowed to have oriented cycles here.

Theorem 3.5. Let U be a non-simple uniserial module with mast p, where p does not start with
an oriented cycle. If JU ↪→ U is irreducible, then

(i) All detours on p are inessential.
(ii) All non-routes on p are in Jp.

In particular, U = Λe/Jp with e = s(p).

Proof. Let p = αn · · ·α1 and suppose (δj , uj ) �� p for 0 � j � m. Let NR = ∑
q non-route on p Λq

and

Δj = δjuj −
∑

i∈I (δj ,uj )

ki(δj , uj )vi(δj , uj ).

Proof of (i). Suppose U = Λe/K , where K = ∑m
j=1 ΛΔj + NR , with m minimal. We have to

show that m = 0. If m > 0, let U ′ = Λe/L where L = ∑m
j=2 ΛΔj + JΔ1 + NR . Notice that

eJ e ⊆ NR by our assumption on p; hence eU ′ = (Ke + L)/L. We first assume that K �= Z2. Let

V = U ′ � JU ′

H
,

where H = Λ(p + L,kp + L) + Λ(Δ1 + L,Δ1 + L) with 0,1 �= k ∈ K. Recall from Proposi-
tion 3.3 that α1 is the only arrow leaving e = s(p). Let ϕ and ψ be the unique Λ-homomorphisms

JU
ϕ−→ V

ψ−→ U,

defined by ϕ(α1 + K) = (α1 + L,α1 + L) + H and ψ((e + L,0 + L) + H) = se + K and
ψ((0 + L,α1 + L) + H) = lα1 + K , with s, l ∈ K such that s + l = 1 and s + lk = 0. Note that
such elements exist, since K �= Z2.

1. ϕ is well defined:

ϕ(Δ1 + K) = (Δ1 + L,Δ1 + L) + H = H.

2. ψ is well defined: We have ψ((p + L,kp + L) + H) = sp + lkp + K = K , and
ψ((Δ1 + L,Δ1 + L) + H) = sΔ1 + lΔ1 + K = K .

3. ψϕ = idJU :

ψϕ(α1 + K) = ψ
(
(α1 + L,α1 + L) + H

) = sα1 + lα1 + K = α1 + K.

4. ϕ is not a split monomorphism: Otherwise there would exist χ ∈ HomΛ(V,JU) such that
χϕ = idJU . Then χ((e + L,L) + H) = K , since eJ e ⊆ K . Hence,

α1 + K = χϕ(α1 + K) = χ
(
(α1 + L,α1 + L) + H

) = χ
(
(L,α1 + L) + H

)
.

Then χ((L,α1 + L) + H) = α1 + K . Therefore,
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χ(H) = χ
(
(p + L,kp + L) + H

) = χ
(
(p + L,L) + H

) + χ
(
(L, kp + L) + H

)
= kp + K �= K,

which is a contradiction.
Therefore, ψ splits; i.e., there exists χ1 ∈ HomΛ(U,V ) such that ψχ1 = idU . Hence

χ1(e+K) = (s−1e+L,L)+H because of the assumption that p does not start with an oriented
cycle. Then,

χ1(K) = χ1(Δ1 + K) = (
s−1Δ1 + L,L

) + H = H.

Then, (s−1Δ1 + L,L) ∈ H . Hence,(
s−1Δ1 + L,L

) = z(p + L,kp + L) + z′(Δ1 + L,Δ1 + L),

with z, z′ ∈ Λ. Therefore we have

s−1Δ1 + L = zp + z′Δ1 + L,

L = kzp + z′Δ1 + L.

Then, s−1Δ1 + L = (1 − k)zp + L. Hence Δ1 − s(1 − k)zp ∈ L. Thus s(1 − k)zp ∈ K , since
Δ1 ∈ K and L ⊆ K . This implies zp ∈ Jp, since pU �= 0. Hence Δ1 ∈ L. This contradicts the
minimality of m, finishing the proof of (i) for these base fields. �

Now suppose K = Z2. With the same notation, let

V = U ′ � JU ′ � JU ′

H
,

where H = Λ(L,p + L,p + L) + Λ(Δ1 + L,Δ1 + L,Δ1 + L). Then as in the previous case,

JU
ϕ−→ V

ψ−→ U,

is a non-trivial factorization of the radical embedding JU ↪→ U through V , where ϕ and ψ

are the (unique) Λ-homomorphisms defined by ϕ(α1 +K) = (α1 +L,α1 +L,α1 +L)+H and
ψ((e+L,L,L)+H) = e+K , ψ((L,α1 +L,L)+H) = α1 +K and ψ((L,L,α1 +L)+H) =
α1 + K .

Proof of (ii). Again first assume that K �= Z2. By part (i), U = Λe/K where K = ∑m
i=1 Λβiui +

Jp, and each βiui is a non-route on p with ui a right subpath of p, βi ∈ Γ1. Assume m is
minimum. If m > 0, then let U ′ = Λe/L where L = (

∑m
i=2 Λβiui + Jp) and

V = U ′ � JU ′

H
,

where H = Λ(p + L,kp + L) + Λ(β1u1 + L,β1u1 + L) for some k ∈ K, k �= 0,1. Let ϕ and ψ

be the Λ-homomorphisms

JU
ϕ−→ V

ψ−→ U,
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defined by ϕ(α1 + K) = (α1 + L,α1 + L) and ψ((e + L,L) + H) = se + K , and ψ((L,α1 +
L) + H) = lα1 + K with s, l ∈ K such that s + l = 1 and s + kl = 0. As in (i) we can see
that ϕ,ψ are well defined, ψϕ equals the radical embedding JU ↪→ U , and ϕ is not a split
monomorphism. Therefore ψ is split; i.e., there is a χ ∈ HomΛ(U,V ) such that ψχ = idU .
Then χ(e + K) = (s−1e + L,L) + H since no cycles start at p. It follows

χ(K) = χ(β1u1 + K) = (
s−1β1u1 + L,L

)
.

Therefore, (s−1β1u1 + L,L) = w(p + L,kp + L) + w′(β1u1 + L,β1u1 + L) where w,w′ ∈ Λ.
Hence,

s−1β1u1 + L = wp + w′β1u1 + L,

L = kwp + w′β1u1 + L.

Therefore s−1β1u1 + L = (1 − k)wp + L. Hence

s−1β1u1 + (k − 1)wp = vp +
m∑

i=2

wiβiui, (2)

where v ∈ J and wi ∈ Λ. If we multiply Eq. (2) by t(β1) from the left, we get that t(β1)wp is
zero or a non-route on p, since t(β1) �= t(p). Then Eq. (2) contradicts the minimality of m since
it expresses β1u1 as an element of L. �

Now suppose that K = Z2. With the same notation, let

V = U ′ � JU ′ � JU ′

H
,

where H = Λ(L,p + L,p + L) + Λ(β1u1 + L,β1u1 + L,β1u1 + L). Let ϕ and ψ be the
Λ-homomorphisms

JU
ϕ−→ V

ψ−→ U,

defined by ϕ(α1 + K) = (α1 + L,α1 + L,α1 + L) and ψ((e + L,L,L) + H) = e + K ,
ψ((L,α1 + L,L) + H) = α1 + K and ψ((L,L,α1 + L) + H) = α1 + K . Similarly, this is
a non-trivial factorization of the radical embedding JU ↪→ U through V . �
Example 3.6. In order to provide a better understanding of the different cases that would have
to be dealt with in a proof of “(1) ⇒ (2)(b),” we include here a series of examples where condi-
tion (2)(b) of Conjecture 3.2 is violated. A non-trivial factorization of the radical embedding is
given in each of these cases.
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(a) Suppose Γ is given by

3

γ1

1

α1

4

γ2

2

β1 β2

5

with relations β1α1 = β2α1 and β1γ1 = 0 = β2γ2. Here U is the unique uniserial with
mast α1. The embedding JU ↪→ U can then be factored non-trivially through a module
with graph

1 3 4

2 2

β2

2

β15

(b) Now Γ is given by

3

γ1

1

α1

4

γ2

2

β1

β2

5

ε

6
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with relations εβ2γ2 = β1γ2 and β1γ1 = 0 = β2α1. Again, U is the unique uniserial with
mast α1. In this case, the radical embedding can be factored through the indecomposable
with graph

1 4 3

2 2 2

5

6

(c) Consider the quiver Γ

1

α1

4

γ1

2

α2

β23

β1

5

with relations β2α1 = β1α2α1 and β2γ1 = 0. The radical embedding of the uniserial with
mast α2α1 can be factored through the following indecomposable module:

1 4

2 2 2

3 3

5
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(d) In our final example, let Γ be given by

1

α1

2

α2 δ1

3

β1

4

and consider the relation δ1α1 = α2α1. We can factor the radical embedding of the uniserial
with mast α2α1 through the module

1

2 2 2

δ1

3 3

4

Remark 3.7. In order to tackle the remaining implication “(1) ⇒ (2)(b)” of Conjecture 3.2, it is
convenient to have the following reformulation of condition (2)(b) at hand:

(2)(b′) There exists a family (wγ ) ∈ (pJ )C , such that for every x ∈ Γ0 and μ ∈ exJp/exJ
2p,

we can find r ∈ exJ en with μ = rp + exJ
2p and rαn−1 · · ·αt(γ )γ = rwγ for all γ ∈ C and

rαn−1 · · ·αt(δ)δ ∈ Krαn−1 · · ·αs(δ) for all δ ∈ D.
Assume that condition (1) holds, i.e., that the canonical embedding JU → U is irreducible,

and that (2)(b′) is violated. We then get, for every family (wγ ), a special vertex x and an ele-
ment μ ∈ exJp/exJ

2p from the negation of this statement. Since (2)(a) holds, this allows us to
“lengthen” U to a uniserial module Û in such a fashion that U is an epimorphic image of Û and
soc Û � Λex/Jex (note however that there is a choice involved: Û is not uniquely determined by
U and μ). Here are two potential approaches to the construction of a module M through which
the radical embedding of U factors non-trivially:

(a) Let M be the module obtained from gluing the socles of Û and D(e(x)Λ) (where D =
HomK(−,K) denotes the usual duality). The problem then is to find a “good” map from JU

to M .
(b) This time, we begin by gluing the socles of Û and J Û together to obtain M̌ ; this allows

for a natural embedding of JU . Of course, this particular embedding splits, and we have to
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extend M̌ to a module M having M̌ as an epimorphic image in order to prevent this from
happening.

4. The case of left multiserial triangular algebras

Throughout this section we assume that the algebra Λ is a triangular algebra. In this section,
using approach (b) from above, we will show that Conjecture 3.2 is true whenever the mast p

has the following additional property:

dimK

(
Jαn−1/J

2αn−1
)
� 1.

As a consequence, Conjecture 3.2 is valid for multiserial algebras (see Corollary 4.6).

Lemma 4.1. Let U be a uniserial module with mast p. If the radical embedding JU ↪→ U is
irreducible, and β ′ is an arrow with β ′p �= 0, then there is a uniserial module V with mast
q := β ′p.

Specifically, if {β ′
ip +J 2p | 1 � i � m} is a basis for Jp/J 2p, with β ′

i ∈ Γ1 and β ′
1 = β ′, then

such a uniserial module V can be constructed as V = Λe/L with

L := Jq +
m∑

i=2

Λβ ′
ip +

∑
(δ,u)��q, t(δ)=t(q)

Λ
(
δu − l(δ, u)q

)
,

where l(δ, u) ∈ K is a suitable scalar for every (δ, u) �� q with t(δ) = t(q).

Proof. Let

p = 1
α1−→ 2

α2−→ 3 · · · αn−1−−−→ n,

and n + 1 := t(β ′). Suppose (δ, u) �� q . If t(δ) ∈ {1,2, . . . , n}, then (δ, u) �� p and so by Theo-
rem 3.5, δu ∈ Kαt(δ)−1 · · ·α1 + s, where s ∈ Jp. Since there are no oriented cycles, we get s = 0.
If t(δ) = n + 1, then by Theorem 3.5(ii), δu ∈ Jp. Hence,

δu = l1β
′p + l2β

′
2p + · · · + lmβ ′

mp + wp, (3)

with w ∈ J 2, li ∈ K. Set l(δ, u) := l1. If for some β ∈ Γ1, βu is a non-route on q , then it is a
non-route on p as well and so βu ∈ Jp and t(β) /∈ {1, . . . , n + 1}. Hence, in this case, βu ∈∑m

i=2 Kβ ′
ip + J 2p. Define V = Λe/L, where

L := Jq +
m∑

i=2

Λβ ′
ip +

∑
(δ,u)��q, t(δ)=n+1

Λ
(
δu − l(δ, u)q

)
. (4)

Thus, V is a uniserial module. We only need to show that qV �= 0. Suppose qV = 0. Then, q ∈ L

and by Eqs. (3) and (4), we get q ∈ Jq + ∑m
i=2 Λβ ′

ip + J 2p. Then,

q = vq +
m∑

λiβ
′
ip + w′p, (5)
i=2



1840 A. Boldt, A. Mojiri / Journal of Algebra 319 (2008) 1825–1850
with v ∈ J , λi ∈ Λ and w′ ∈ J 2. Multiply Eq. (5) by t(β ′) from the left. Since the quiver does
not have oriented cycles, vq = 0, which contradicts the choice of the basis of Jp/J 2p. �
Lemma 4.2. Suppose dimK Jαn−1/J

2αn−1 = 1. Then there exists an arrow β ′ such that
Kβ ′αn−1 + Jβ ′αn−1 = Jαn−1.

Proof. By the hypothesis there is some β ′ ∈ Γ1 with β ′αn−1 /∈ J 2αn−1. We will show that
J 2αn−1 = Jβ ′αn−1. For this we only need to show that any path in J 2αn−1 is in Jβ ′αn−1. If not,
let q be a longest path in J 2αn−1\Jβ ′αn−1. Then q = γr · · ·γ1αn−1, where γi ∈ Γ1 and γ1αn−1 /∈
J 2αn−1, otherwise q could be replaced by a longer path. Hence γ1αn−1 = kβ ′αn−1 + wαn−1,
where 0 �= k ∈ K and w ∈ J 2. Therefore,

q = γr · · ·γ1αn−1 = kγr · · ·γ2β
′αn−1 + γr · · ·γ2wαn−1. (6)

Since γr · · ·γ2wαn−1 is a linear combination of paths in J 2αn−1 longer than q , we get
γr · · ·γ2wαn−1 ∈ Jβ ′αn−1. Then, by Eq. (6), q ∈ Jβ ′αn−1. This is a contradiction. �
Theorem 4.3. Let Λ be a triangular algebra and U be a uniserial Λ-module with mast p =
αn−1 · · ·α1. If dimK Jαn−1/J

2αn−1 � 1, then the following statements are equivalent:

(1) The embedding JU ↪→ U is irreducible.
(2) U is not simple and satisfies both (a) and (b) below:

(a) For every β ∈ B ,

βαs(β)−1 · · ·α1 ∈ Jp,

and for every δ ∈ D,

δαs(δ)−1 · · ·α1 ∈ Kαt(δ)−1 · · ·α1.

(b) Jp = 0 or there is an arrow β ′ such that {β ′p + J 2p} forms a K-basis for Jp/J 2p and
(i) and (ii) both hold:
(i) For every γ ∈ C there exists w ∈ pJ such that

β ′αn−1 · · ·αt(γ )γ = β ′w.

(ii) For every δ ∈ D

β ′αn−1 · · ·αt(δ)δ ∈ Kβ ′αn−1 · · ·αs(δ).

Proof. Note first that, under the present hypotheses, the conditions (2) are equivalent to those
in Conjecture 3.2. The conditions (2)(a) are identical. We have that dimK Jαn−1/J

2αn−1 � 1 so
that, by Lemma 4.2, we can take the set R of Conjecture 3.2(2)(b) to be {β ′p + J 2p} or ∅. Then
Conjecture 3.2(2)(b)(i) and (ii) reduce to the corresponding parts of this theorem.

(1) ⇒ (2)(b)(i):
Suppose Jp �= 0. Then dimK Jαn−1/J

2αn−1 = 1. By Lemma 4.2, there exists an arrow
β ′ ∈ Γ1 such that Kβ ′αn−1 + Jβ ′αn−1 = Jαn−1. Then {β ′αn−1 + J 2αn−1} is a basis for
Jαn−1/J

2αn−1 and {β ′p + J 2p} is a basis for Jp/J 2p. We will show that for γ ∈ C,
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β ′αn−1 · · ·αt(γ )γ ∈ β ′pJ . By Theorem 3.5, we know that U = Λe1/Jp where e1 = s(p). Let
q = β ′p and K = Jp. By Lemma 4.1, there exists a uniserial module Uq = Λe1/L with mast q ,
where

L = Jq +
∑

(δ,u)��q, t(δ)=t(q)

Λ
(
δu − l(δ, u)q

)
.

Let

V = Uq � JUq � Λex

H
,

where H = Λ(q + L,q + L,0) + Λ(L,αn−1 · · ·α1 + L,αn−1 · · ·αt(γ )γ ) with ex = s(γ ).

Uq

α1

JUq Λex

γ

Notice that for v ∈ V , e1v ∈ K(e1 + L,0, z) + H , where z is a linear combination of paths
from ex to e1. Let ϕ and ψ be the Λ-homomorphisms

JU
ϕ−→ V

ψ−→ U,

defined by ϕ(α1 + K) = (α1 + L,α1 + L,0) + H and ψ((e1 + L,L,0) + H) = e1 + K ,
ψ((L,α1 +L,0)+H) = K and ψ((L,L, ex)+H) = K . Then, using Lemma 4.2 we can prove
that ϕ and ψ are well defined. Clearly, ψϕ is the radical embedding JU ↪→ U .

Claim. ϕ is not a split monomorphism; otherwise there would exist χ :V → JU such that χϕ =
idJU . We have α1 +K = χϕ(α1 +K) = χ((α1 +L,α1 +L,0)+H) = χ((α1 +L,L,0)+H)+
χ((L,α1 + L,0) + H) = χ((L,α1 + L,0) + H), because χ((e1 + L,L,0) + H) = K . Also we
have χ((L,L, ex) + H) = K . But

χ(H) = χ
(
(L,αn−1 · · ·α1 + L,αn−1 · · ·αt(γ )γ ) + H

)
= αn−1 · · ·α2α1 + K �= K,

which is a contradiction. Therefore ψ splits, i.e., there exists χ1 : U → V with ψχ1 = idU . We
have χ1(e1 + K) = ((e1 + L,L,

∑m
i=1 kiwi) + H), where wi are the paths from ex to e1 and

ki ∈ K. But q ∈ K and so

χ1(K) = χ1(q + K) =
(

q + L,L,

m∑
kiqwi

)
+ H.
i=1
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Hence,(
q + L,L,

m∑
i=1

kiqwi

)
∈ Λ(q + L,q + L,0) + Λ(L,αn−1 · · ·α1 + L,αn−1 · · ·αt(γ )γ ).

Then, by Lemma 4.2,

(
q + L,L,

m∑
i=1

kiqwi

)
= k(q + L,q + L,0) + lβ ′(L,αn−1 · · ·α1 + L,αn−1 · · ·αt(γ )γ

)

+
∑

l(ui )�1

liuiβ
′(L,αn−1 · · ·α1 + L,αn−1 · · ·αt(γ )γ ),

where k, l, li ∈ K. It follows k = 1 and l = −1. Hence,

β ′αn−1 · · ·αt(γ )γ = −
∑

kiqwi +
∑

l(ui )�1

liuiβ
′αn−1 · · ·αt(γ )γ .

If we multiply the above equation from the left by t(β ′), using the fact that the quiver does not
have any oriented cycles and therefore t(β ′)ui = 0, we obtain

β ′αn−1 · · ·αt(γ )γ = −
∑

kiqwi ∈ β ′pJ.

(1) ⇒ (2)(b)(ii):
Suppose δ ∈ D. We will show that β ′αn−1 · · ·αt(δ)δ ∈ Kβ ′αn−1 · · ·αs(δ). Let δ : i → j and

q := β ′αn−1 · · ·α1. Again let Uq = Λe/L be the uniserial with mast q , with L as above. Let

V = Uq � JUq � Λei

H
,

where

H = Λ(q + L,q + L,0) + Λ(L,αn−1 · · ·α1 + L,αn−1 · · ·αj δ) + Λ(L,L,αn−1 · · ·αi).

Let ϕ and ψ be the Λ-homomorphisms

JU
ϕ−→ V

ψ−→ U,

defined by ϕ(α1 + K) = (α1 + L,α1 + L,0) + H and ψ((e1 + L,L,0) + H) = e1 + K ,
ψ((L,α1 + L,0) + H) = K and ψ((L,L, ei) + H) = K . Then, ϕ and ψ are well defined and
ψϕ is the radical embedding JU ↪→ U .

Claim. ϕ is not split monomorphism; otherwise there would exist χ :V → JU such that
χϕ = idJU . Then we would have α1 + K = χϕ(α1 + K) = χ((α1 + L,α1 + L,0) + H) =
χ((α1 + L,L,0) + H) + χ((L,α1 + L,0) + H) = χ((L,α1 + L,0) + H), because χ((e1 +
L,L,0) + H) = K . By Theorem 3.5(ii), χ((L,L, ei) + H) = kαi−1 · · ·α1 + K , where k ∈ K.



A. Boldt, A. Mojiri / Journal of Algebra 319 (2008) 1825–1850 1843
Thus, χ(H) = χ((L,L,αn−1 · · ·αi) + H) = kαn−1 · · ·α1 + K . Therefore, k = 0. But

χ(H) = χ
(
(L,αn−1 · · ·α1 + L,αn−1 · · ·αj δ) + H

) = αn−1 · · ·α2α1 + K �= K,

which is a contradiction.

Therefore, ψ splits, i.e., there exists χ1 : U → V with ψχ1 = idU . We have χ1(e1 + K) =
(e1 + L,L,0) + H . Hence χ1(K) = χ1(q + K) = (q1 + L,L,0) + H . Therefore,

(q + L,L,0) ∈ Λ(q + L,q + L,0) + Λ(L,αn−1 · · ·α1 + L,αn−1 · · ·αj δ)

+ Λ(L,L,αn−1 · · ·αi).

Then by Lemma 4.2

(q + L,L,0) = k(q + L,q + L,0) + lβ ′(L,αn−1 · · ·α1 + L,αn−1 · · ·αj δ)

+
∑

l(us)�1

lsusβ
′(L,αn−1 · · ·α1 + L,αn−1 · · ·αj δ)

+ v(L,L,αn−1 · · ·αi),

where l, ls ∈ K, us ∈ J and v ∈ Λ. Hence k = 1 and l = −1. Therefore,

β ′αn−1 · · ·αj δ =
∑

l(us )�1

lsusβ
′αn−1 · · ·αj δ + vαn−1 · · ·αi , (7)

in Λei . If we multiply Eq. (7) from the left by t(β ′), using the fact that there are no oriented
cycles, t(β ′)us = 0, we get

β ′αn−1 · · ·αj δ = t(β ′)vαn−1 · · ·αi.

Since there are no oriented cycles, t(β ′) �= t(αn−1) and so t(β ′)vαn−1 ∈ Jαn−1. But Jαn−1 =
Kβ ′αn−1 + Jβ ′αn−1 by Lemma 4.2. Therefore,

β ′αn−1 · · ·αj δ = kβ ′αn−1 · · ·αi + wβ ′αn−1 · · ·αi,

where w ∈ J . But, t(β ′)w = 0, since there are no oriented cycles. Therefore, β ′αn−1 · · ·αj δ =
kβ ′αn−1 · · ·αi . �

By the work above, Conjecture 3.2 is true for all triangular algebras with a presentation so
that for each α ∈ Γ1, Λα is uniserial.

Definition 4.4. An algebra Λ with Jacobson radical J is called left multiserial (m-multiserial)
if, for each primitive idempotent e of Λ, the left ideal Je is a sum of uniserial (m uniserial)
Λ-modules.

For the convenience of the reader, we provide here the following theorem from [10, Re-
mark 2.3].
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Theorem 4.5. (See [10, Remark 2.3].) Every left multiserial algebra is isomorphic to one with a
presentation so that for each α ∈ Γ1, Λα is uniserial.

Corollary 4.6. Conjecture 3.2 is true for all left triangular multiserial algebras.

5. The case of monomial algebras

Throughout this section we assume that the algebra Λ is a triangular algebra. We will prove
that the conjecture is true for monomial algebras. Recall that for any path p, non-zero in Λ, there
is an affine variety Vp and a map Φp from Vp onto the set of isomorphism types of uniserial
Λ-modules with mast p (see page 3).

Theorem 5.1. Suppose Λ is a triangular monomial algebra and U is a uniserial Λ-module with
mast p. Then the following statements are equivalent:

(1) The embedding JU ↪→ U is irreducible.
(2) U is not simple and satisfies both (a) and (b) below:

(a)
(i) For every β ∈ B , βαs(β)−1 · · ·α1 = 0, and

(ii) For every δ ∈ D, δαs(δ)−1 · · ·α1 = 0.
(b) For every β ′ ∈ B ′ such that β ′p �= 0 we have:

(i) For every γ ∈ C, β ′αn−1 · · ·αt(γ )γ = 0, and
(ii) For every δ ∈ D, β ′αn−1 · · ·αt(δ)δ = 0.

Proof. Note first that, since the algebra is monomial, the conditions (2) are equivalent to the ones
in Conjecture 3.2.

(1) ⇒ (2)(b)(i):
Let p = αn−1 · · ·α1 and U = Λe1/K . Suppose that there is β ′ ∈ B ′ such that β ′p �= 0 and

β ′αn−1 · · ·αiγ �= 0 for some γ ∈ C, where x
γ−→ i, with x /∈ {1,2, . . . , n}. By condition (2)(a),

Vp = {0}. Let

q1 := β ′αn−1 · · ·α1, q2 := β ′αn−1 · · ·αiγ.

Since Λ is a monomial algebra and qi �= 0; by [11, Proposition II.3], 0 ∈ Vqi
for i = 1 and 2. Let

Uq1 := Φq1(0) = Λe1/L and Uq2 := Φq2(0) = Λex/F , where ex = s(γ ). Let

V = Uq1 � JUq1 � Uq2

H
,

where

H = Λ(q1 + L,q1 + L,F) + Λ(L,αn−1 · · ·α1 + L,αn−1 · · ·αiγ + F).

Once again, for v ∈ V , e1v = (ke1 + L,L, z + F) + H , where z is a linear combination of paths
from s(γ ) to e1. However, such a path goes through e1 and so is a non-route on q2, i.e., z ∈ F .
Let ϕ and ψ be the Λ-homomorphisms

JU
ϕ−→ V

ψ−→ U,
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defined by ϕ(α1 + K) = (α1 + L,α1 + L,F) + H and ψ((e1 + L,L,F ) + H) = e1 + K ,
ψ((L,α1 + L,F) + H) = K and ψ((L,L, ex + F) + H) = K . We will first show that ϕ is
well defined. Note that K = L+ Λq1. Suppose λα1 ∈ K , for some λ ∈ Λ. Then λα1 = w + γ q1,
for some w ∈ L and γ ∈ Λ. Thus, (λα1 + L,λα1 + L,F) = (γ q1 + L,γ q1 + L,F) ∈ H .

Again, ψ is well defined, ψϕ is JU ↪→ U and ϕ is not split monomorphism. We will prove
that ψ also is not a split epimorphism, which contradicts the irreducibility of JU ↪→ U . Suppose
ψ is a split epimorphism. Then, there exists χ : U → V with ψχ = idU . We have χ(e1 + K) =
(e1 +L,L,F )+H . But q1 = β ′αn−1 · · ·α1 ∈ K . Hence χ(K) = χ(q1 +K) = (q1 +L,L,F )+
H is zero in V . Then,

(q1 + L,L,F ) = k(q1 + L,q1 + L,F)

+ w(L,αn−1 · · ·α1 + L,αn−1 · · ·αt(γ )γ + F), (8)

where k ∈ K and w ∈ Λ. Note that if β ′
1 �= β ′, then either β ′

1αn−1 · · ·α1 is non-route on q1
or (β ′

1, αn−1 · · ·α1) �� q1. Hence, β ′
1αn−1 · · ·α1 ∈ L. Similarly, β ′

1αn−1 · · ·αt(γ )γ ∈ F . There-
fore Eq. (8) becomes (q1 + L,L,F ) = k(q1 + L,q1 + L,F) + lβ ′(L,αn−1 · · ·α1 + L,

αn−1 · · ·αt(γ )γ + F), where k, l ∈ K. Therefore k = 1, k + l = 0, l = 0, which is a contradiction.
(1) ⇒ (2)(b)(ii):
Suppose there is β ′ ∈ B ′ such that β ′p �= 0 and β ′αn−1 · · ·αt(δ)δ �= 0 for some δ ∈ D. Let

δ : i → j . By (a)(ii), s(δ) = i �= 1. Let

q1 := β ′αn−1 · · ·α1, q2 := β ′αn−1 · · ·αj δ

and let Uq1 = Λe1/L and Uq2 = Λe2/F be the uniserial modules corresponding to 0 ∈ Vq1 and
0 ∈ Vq2 respectively. Let

V = Uq1 � JUq1 � Uq2

H
,

where H = Λ(q1 + L,q1 + L,F) + Λ(L,αn−1 · · ·α1 + L,αn−1 · · ·αj δ + F).

Uq1

α1

JUq1 Uq2

δ

Let ϕ and ψ be the Λ-homomorphisms

JU
ϕ−→ V

ψ−→ U,
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defined by ϕ(α1 + K) = (α1 + L,α1 + L,F) + H and ψ((e1 + L,L,F ) + H) = e1 + K ,
ψ((L,α1 + L,F) + H) = K and ψ((L,L, ei + F) + H) = K . Again, ϕ and ψ are well de-
fined and ψϕ is the radical embedding JU ↪→ U .

Claim. ϕ is not a split monomorphism:

Suppose there exists χ : V → JU such that χϕ = idJU . Then, we have α1 + K =
χψ(α1 + K) = χ((α1 + L,α1 + L,F) + H) = χ((α1 + L,L,F ) + H) + χ((L,α1 + L,F) +
H) = χ((L,α1 + L,F) + H). Also we know that χ((L,L, ei + F) + H) = kαi−1 · · ·α1 + K ,
where k ∈ K. Then χ((L,L, δei + F) + H) = kδαi−1 · · ·α1 + K = K , by (a)(ii), and

χ(H) = χ(L,αn−1 · · ·α1 + L,αn−1 · · ·αj δ + F) = αn−1 · · ·α2α1 + K �= K,

which is a contradiction.

Claim. ψ is not a split epimorphism.

Suppose there exists χ1 : U → V with ψχ1 = idU . We have χ1(e1 +K) = (e1 +L,L,F )+H .
Hence χ1(K) = χ1(q1 + K) = (q1 + L,L,F ) + H . Therefore (q1 + L,L,F ) + H = H , and so

(q1 + L,L,F ) ∈ Λ(q1 + L,q1 + L,F) + Λβ ′(L,αn−1 · · ·α1 + L,αn−1 · · ·αj δ + F).

Then (q1 + L,L,F ) = k(q1 + L,q1 + L,F) + lβ ′(L,αn−1 · · ·α1 + L,αn−1 · · ·αj δ + F), with
k, l ∈ K. Therefore k = 1, k + l = 0, l = 0, which is a contradiction. �
6. Almost split sequences with uniserial end terms

In this section, we first show that if we have an arbitrary exact sequence with uniserial end
terms, then the middle term is either indecomposable or a direct sum of two uniserials. Then
we study α(U), the number of indecomposable summands of the middle term of an almost split
sequence ending in U , where U is a uniserial non-projective Λ-module, and give a global upper
bound for it in the case that Λ is a multiserial algebra. See [7] for related work.

Proposition 6.1. Let R be a left artinian ring and consider a short exact sequence

0 −→ U1
f−→ M

g−→ U2 −→ 0

in R-mod with uniserial modules U1 and U2. Then M is either indecomposable or a direct sum
of two uniserial modules.

Proof. We will again denote the Jacobson radical of R by J . Assume we have a decomposition
M = M1 ⊕ M2 with both M1 and M2 non-zero. Decompose f and g accordingly, i.e., write
f = (

f1
f2

)
and g = (g1, g2), and let

¯: R-mod → (R/J )-mod
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be the functor R/J ⊗R −. We then get the right exact sequence

Ū1

(
f̄1
f̄2

)
−−→ M̄1 ⊕ M̄2

(ḡ1,ḡ2)−−−−→ Ū2 −→ 0

where Ū1 and Ū2 are simple and M̄1, M̄2 non-zero semisimple. Comparing the lengths of the
involved modules, we see that both M̄1 and M̄2 must be simple and f̄ �= 0. Without loss of
generality, we may assume f̄1(Ū1) = M̄1.

Pick u1 ∈ U1 \ JU1. Then f1(u1) ∈ M1 \ JM1 generates M1. Hence f1 is surjective and M1
is uniserial. If f2(u1) = 0, then f2 = 0 and g2 is injective, and consequently M2 is uniserial. If
f2(u1) �= 0, we can find l � 0 with f2(u1) ∈ J lM2 \ J l+1M2. If l = 0, then f2(u1) generates M2
and M2 is therefore uniserial. We will assume l > 0 from now on.

Claim 1. im(g1) ⊂ J lU2.

Let m1 ∈ M1; write m1 = αf1(u1) = f1(αu1) with α ∈ Λ. Then g1(m1) = g(m1) =
gf1(αu1) − gf (αu1) = −gf2(αu1) ⊂ g(J lM2) ⊂ J lU2. Hence we have g1(M1) ⊂ J lU2.

Claim 2. g2 is surjective and the map M2/J
lM2 → U2/J

lU2 induced by g2 is an isomorphism.

Let m2 ∈ M2 \ JM2. Then u2 := g2(m2) ∈ U2 \ JU2 (since g2(m2) ∈ JU2 would imply
im(g) = im(g1) + im(g2) ⊂ J lU2 + JU2 � U2, a contradiction). Since u2 generates U2, g2 is
surjective. Now let x ∈ M2 \ J lM2 and assume g2(x) ∈ J lU2, say g2(x) = αu2 = g2(αm2) with
α ∈ J l . Then x − αm2 ∈ ker(g2) \ J lM2 ⊂ im(f2) \ J lM2 = ∅, again a contradiction.

Claim 3. J lM2 is uniserial.

By restricting our maps f and g, we obtain the following short exact sequence:

0 → U1 → M1 ⊕ J lM2 → J lU2 → 0

and we see as above that J lM2/J
l+1M2 is simple, hence J lM2 is generated by f2(u1) and

f2 : U1 → J lM2 is therefore surjective.

Claim 4. M2 is uniserial.

We know that J kM2/J
k+1M2 is simple or 0 for all k ∈ N. �

In the sequel, Λ will be a finite-dimensional algebra over K.
The following proposition gives a general upper bound for the number α(U) for a uniserial

module U :

Proposition 6.2. If U ∈ Λ-mod is a non-projective uniserial module, then

α(U) � length(socDT rU) + 1.
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Proof. Let 0 → DT rU → B → U → 0 be an almost split sequence. Then 0 → socDT rU →
socB → socU is left exact. Therefore,

α(U) � length(socB)

� length(socDT rU) + length(socU)

= length(socDT rU) + 1. �
The following proposition gives more precise information.

Proposition 6.3. Let 0 → DT rU
f−→ ⊔

i∈I Bi
g−→ U → 0 be an almost split sequence where U

is a uniserial module and the Bi are indecomposable.

(i) At most one of the induced maps gi : Bi → U is a monomorphism.
(ii) If Bi

gi−→ U is an epimorphism and socBi is simple then socBi ⊆ f (socDT rU).
(iii) Let I ′ = {i ∈ I | gi : Bi → U is an epimorphism}. Then |I ′| � length(socDT rU).

Proof. (i) Suppose g1 and g2 are monomorphisms. Using Proposition 3.1 again, we have B1 ∼=
JU and B2 ∼= JU . The induced irreducible morphism B1 � B2 → U cannot be an epimorphism
and therefore is a monomorphism and B1 � B2 ∼= JU , which is impossible.

(ii) We have socBi ∩ ker(gi) �= 0 since ker(gi) �= 0 and socBi is essential in Bi . But socBi

is simple, so socBi ⊆ ker(gi). We know that 0 → socDT rU
f̄−→ ⊔

i∈I socBi
ḡ−→ socU is exact.

Hence socBi ⊆ ker ḡ = im f̄ . Therefore, socBi ⊆ f (socDT rU).
(iii) We distinguish two cases:

Case 1. There is an i such that gi is a monomorphism. Then

|I ′| � α(U) − 1 � length(socDT rU)

by Proposition 6.2.

Case 2. For each i ∈ I , the map gi is an epimorphism. We consider the exact sequence 0 →
socDT rU

f̄−→ ⊔
i∈I socBi

ḡ−→ socU and we use (ii): if socBi is simple for all i, then f̄ is an
isomorphism and we get

|I ′| = α(U) = length

(
soc

⊔
i∈I

Bi

)
= length(socDT rU).

If however at least one socBi is not simple, then the same exact sequence gives

|I ′| = α(U) � length

(
soc

⊔
i∈I

Bi

)
− 1 � length(socDT rU). �

Let e, f be primitive idempotents in Λ. For a non-zero element a ∈ f Je, the Λ-module
Λe/Λa is indecomposable and non-projective. We are interested in the case where this module
is a uniserial module and consider the almost split sequence ending in Λe/Λa.
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Proposition 6.4. If U = Λe/Λa is a uniserial module, then α(U) � 2.

Proof. Λf
.a−→ Λe → Λe/Λa → 0 (where .a denotes the right multiplication by a) is exact

and is the start of a minimal projective presentation of Λe/Λa. From [2, Proposition V.6.1] we
have that the middle term B in the almost split sequence δ : 0 → DT rU → B → U → 0 has
a decomposition B = B ′ � B ′′ with B ′ indecomposable and such that if B ′′ �= 0, the induced
morphism g′′ :B ′′ → U is an irreducible monomorphism. But, by Proposition 3.1, B ′′ ∼= JU is
indecomposable and therefore α(U) � 2. �

Uniserial representations of left multiserial algebras are studied in [10]. Here we find an upper
bound for α(U) where U is a uniserial module over a left m-multiserial algebra.

Theorem 6.5. Let U be a non-projective uniserial module over a left m-multiserial algebra Λ

with m � 2. Then α(U) � m.

Proof. By [10, Remark 2.3], we can assume that Λ = KΓ/I such that Λα is uniserial for every
arrow α in Γ1. Suppose p is a mast for U and let α1 be the first arrow of p. Let A = {Λγp |
γ ∈ Γ1}. Any two members of A are comparable; i.e., for γ1, γ2 ∈ Γ1, either Λγ1p ⊆ Λγ2p or
Λγ2p ⊆ Λγ1p, since Λα1 is uniserial. Hence there exists a greatest element in A, say Λγp.
Notice that Λγp can be zero. This happens when Jp = 0.

Case 1. There is no arrow leaving e := s(p) except α1. Here Λe is uniserial, we have U =
Λe/Λγp and since U is not projective, γp �= 0. Therefore α(U) � 2 � m by Proposition 6.4.

Case 2. There are arrows β1, . . . , βl, δl+1, . . . , δn leaving e except α1. Assume (βj , e) �� p (1 �
j � l) and δt e (l + 1 � t � n) are non-routes on p. Note that n < m, since Λ is m-multiserial.
Let bj = βj − ∑

i∈I (βj ,e) ki(βj , e)vi(βj , e) and bt = δt . If Λγp = 0, then U = Λe/
∑n

i=1 Λbi .

Otherwise U = Λe/(
∑n

i=1 Λbi + Λγp). Let 0 → DT rU
f−→ ⊔

i∈I Bi
g−→ U → 0 be an almost

split sequence. By Proposition 3.3, all the induced irreducible maps gi : Bi → U are epimor-
phisms. By Proposition 6.3(iii), α(U) � length socDT rU . But by [2, Proposition IV.1.11], we
know that socDT rU ∼= P1/JP1 where P1 → Λe → U → 0 is a minimal projective presentation
of U . Therefore α(U) � m. �

The following proposition gives more precise information in certain situations; it follows from
the proof of the above theorem.

Proposition 6.6. Suppose U is a non-projective uniserial module with mast p over a left m-
multiserial algebra Λ. Then

(i) If m = 1 (i.e. if Λ is left serial) then α(U) ≤ 2.
(ii) If there is only one arrow leaving s(p), then α(U) � 2.

(iii) If m = 2 ( for example, if Λ is a left biserial algebra), and Jp = 0, then α(U) = 1.

Proof. The parts (i) and (ii) follow directly from the proof of the above theorem. As to part (iii),
let α1 be the first arrow of p. Then there is an arrow β �= α1 starting at e = s(p) (otherwise,
following the above proof again, U = Λe would be projective). Thus, either (β, e) �� p or β is
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a non-route on p. If (β, e) �� p, then U = Λe/Λb, where b := β − ∑
i∈I (β,e) ki(β, e)vi(β, e). If

β is a non-route, then U = Λe/Λb, where b := β . In both cases then, α(U) = 1 by [2, Proposi-
tion V.6.3], because the image of Λf

.b−→ Λe is not in J 2e, where f = t(β). �
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