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The electron propagator in a laser background has been shown to be made up of a series of sideband 
poles. In this paper we study this decomposition by analysing the impact on the sidebands of the residual 
gauge freedom in the Volkov solution. We show that these gauge transformations do not alter the 
location of the poles although the wave function renormalisation is gauge dependent. Our identification 
of the propagator from the diagonal part of the two-point function in the laser background is maintained 
but we show that the sideband structures mix under residual gauge transformations.

© 2014 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The recent rapid progress in laser technologies offers a timely 
testing ground for quantum field theory techniques associated with 
non-trivial backgrounds [1]. In this paper we are going to study 
charge propagation in such a background. A novel feature of a 
propagating charge in a laser is that it is indistinguishable from 
a charge which absorbs a given number of laser photons and also 
emits the same number of photons degenerate with the laser. Such 
laser induced degeneracies have a close parallel with the soft and 
collinear degeneracies associated with the infrared regime in both 
QED and QCD [2–5] while the induced mass effects in a laser 
background should help to refine our understanding of the current 
versus constituent mass distinction in QCD [6]. Note that building 
upon experience with QED in a vacuum, the two-point function 
in a laser background is usually referred to as the propagator. 
Through interactions with the background this two-point function 
includes diagrams where the initial and final momenta of the mat-
ter field are not the same. The approach we are taking projects out 
the diagonal part of this two-point function and does not include 
momentum changing vertex type effects. This is what we mean by 
the propagator in the rest of what follows.

In QED we usually expand around the free theory but in a laser 
background we can take the simplest description, the interacting 
Volkov solution [7,8], as our starting point. This solution is much 
richer than in the normal perturbative vacuum and, as we will 
summarise below, alters the propagator which becomes a sum of 
so-called sideband poles [9–11]. As this is not a free theory, the 
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matter field is not gauge invariant and in this paper we address 
the effects of local gauge transformations on this solution and the 
propagator, see also [12].

We recall [7] that the solutions of a scalar field in a plane 
wave background are distorted. For a linearly polarised background 
where the vector potential is given by

Aμ(x) = aμ cos(k · x), (1)

and where the constant amplitude aμ is space-like and taking the 
null vector kμ to be spatially aligned along the laser direction, the 
matter field is described by

φV(x) =
∫

d3 p

2E∗
p

(
D(x, p)aV(p) + D(x,−p)b†

V(p)
)
, (2)

where

D(x, p) = e−ip·xei(eu sin(k·x)+e2 v sin(2k·x)), (3)

and

u = − p · a

p · k
and v = a2

8p · k
. (4)

In this expression the momentum p appearing in the propagator 
is on-shell at m� where the laser shifted mass [9,13–16] is

p2 = m�
2 = m2 − 1

2 e2a2. (5)

In this paper we do not explicitly distinguish between on-shell and 
off-shell momenta as it has no impact on our discussion of gauge 
dependence. See [17] for a fuller discussion.
 BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
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We recall further that (2) may be written as a sum over modes

φV(x) =
∑

n

φn(x), (6)

where

φn(x) =
∫

d3 p

2E∗
p

(
e−iep·xeink·x Jn

(
eu, e2 v

)
aV(p)

+ eiep·xeink·x Jn
(
eu,−e2 v

)
b†

V(p)
)
, (7)

and the generalised Bessel function, Jn(eu, e2 v), is defined in 
terms of Bessel functions via

Jn
(
eu, e2 v

) =
∑

r

Jn−2r(eu) Jr
(
e2 v

)
. (8)

The Volkov propagator contains not just the standard pole 
i/(p2 − m∗2) familiar from perturbation theory but also infinitely 
many sideband poles of the form i/((p + nk)2 − m∗2) where n
is any integer [13,18–21]. As we have previously identified [17], 
the propagator is not given by the two-point function of the full 
Volkov field but is identified as the diagonal part of the two-point 
function in the vacuum |0〉V picked out by the Volkov annihilation 
operators:

iD V (x − y) =
∑

n
V〈0|T φn(x)φ†

n(y)|0〉V. (9)

This is to ensure that the propagator represents processes where 
there is a fixed momentum flow through the matter field. This can 
also be understood [17] in terms of degenerate processes extend-
ing the Lee–Nauenberg [4] characterisation of the infrared prob-
lem [5].

The form of the vector potential chosen here requires that 
k · a = 0 which corresponds from (1) to a Landau like gauge as 
∂μ Aμ = 0. In [17] the propagator was constructed in this gauge. 
The mass shift and wave function renormalisations were calculated 
to all orders in an operator formalism. This was further verified 
to the first few orders by explicit diagrammatic calculations. Each 
term in the sum (9) generates a separate, so-called sideband struc-
ture:∫

d4x e−ip·(x−y)
V〈0|T (

φn(x)φ†
n(y)

)|0〉V

= Z (n)
2 (u, v)

(p + nk)2 − m∗2 + iε
, (10)

showing the common mass shift and distinct wave function renor-
malisations of the sidebands. For the detailed form of Z2 see [17]. 
Here p is off-shell. It has been argued that the central sideband, 
corresponding to n = 0 and produced by the φ0(x) mode, may 
dominate in some regimes [18]. In this paper we want to address 
the issue of the residual gauge freedom which is opened up by the 
boundary conditions imposed on the plane wave laser background.

Below we will show that, although the Volkov field transforms 
with the expected phase shift characteristic of a charged matter 
field under such a residual gauge transformation, the modes (6)
actually mix with each other in a non-trivial manner. This mixing 
of the modes raises a question about whether the above identifica-
tion of the propagator (9) is consistent with gauge transformations. 
We will demonstrate below that the construction of the propaga-
tor is robust under such transformations and that the overall effect 
of gauge transformations may be absorbed into shifts of the wave 
function renormalisation factors.

We therefore now turn to the gauge freedom in the Volkov for-
malism, its effects on the various modes of the Volkov field and 
thus build up the diagonal sum (9). Although our conclusions hold 
to all orders, we shall, for illustrative purposes, demonstrate them 
perturbatively.

2. Residual gauge transformations

There is in the Landau gauge fixed solution discussed above a 
residual gauge freedom as we can make the replacement

Aμ(x) → Aμ(x) + ∂μλ(x), (11)

where λ(x) = λ sin(k · x) and λ is a constant. This corresponds to 
the amplitude shift

aμ → aμ + λkμ, (12)

which still preserves our Landau gauge choice due to the null na-
ture of kμ . We note that this gauge freedom preserves the plane 
wave character of the background laser potential which is why we 
restrict to it. Under this transformation we have, from (4),

u → u − λ and v → v. (13)

Similarly the distortion factor transforms as

D(x, p) → e−ieλ(x)D(x, p). (14)

From (2) we see the phase shift

φV(x) → e−ieλ(x)φV(x), (15)

as would be expected of a charged matter field under gauge trans-
formations. This is a local gauge transformation and, as the field 
extends to spatial infinity along the laser direction, the transforma-
tion does not vanish asymptotically along the laser. This residual 
gauge transformation is consistent both with our original Landau 
gauge condition and the boundary conditions of the Volkov solu-
tion.

We now want to analyse the impact of the gauge freedom on 
the various modes of the Volkov field. As the propagator is con-
structed from the diagonal sum over the modes (9) it is crucial 
that we know how they transform. In (7) the generalised Bessel 
functions, through their dependence on u, are responsible for the 
gauge dependence of the fields

Jn
(
eu, e2 v

) → Jn
(
e(u − λ), e2 v

)
=

∑
m

Jm(eλ) Jn+m
(
eu, e2 v

)
, (16)

where we used (13). This means that the Volkov modes mix under 
such a local gauge transformation as

φn(x) →
∑

s

J s(eλ)φn+s(x)e−isk·x, (17)

with a Bessel function dependent weighting. More complicated 
mixing would presumably occur if a gauge transformation was 
used which took us outside of the plane wave Volkov solution. 
It is useful here to verify that this is consistent with the overall 
transformation of the Volkov field. From (6) we have

φV(x) →
∑

n

∑
s

J s(eλ)φn+s(x)e−isk·x. (18)

Shifting the label n and using the standard result

ei� sin(k·x) =
∑

r

eirk·x Jr(�), (19)

we find that the Volkov field
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φV(x) → e−ieλ(x)
∑

r

φr(x), (20)

which shows that, as expected from (15), the phase may be ex-
tracted from the sum over modes.

It is clear from (17) that there is a mixing of the modes and it is 
not obvious that the identification of the propagator as a diagonal 
sum is compatible with this mixing. To study this perturbatively, 
let us consider the lowest modes in the propagator. It will be ap-
parent how this extends to higher orders. The first few terms in 
the diagonal sum around the central term (n = 0) are:

V〈0|T (
φ0(x)φ†

0(y) + φ1(x)φ†
1(y)

+ φ−1(x)φ†
−1(y) + · · ·)|0〉V. (21)

Now from (17) and the standard series representation of the Bessel 
function we see that at order e2 the only term that is gauge de-
pendent is φ0(x)φ†

0(y). We find that

φ0(x) → (
1 − 1

4 e2λ2)φ0(x) + eλ
2 φ1(x)e−ik·x

− eλ

2
φ−1(x)eik·x, (22)

and similar for φ†
0.

We see that the modes mix under a gauge transformation and 
that, more generally, expanding up to order e2n mixes modes 
whose labels are separated by n. Furthermore, the factors of e±ik·x
here might initially appear concerning as such a k-dependence in 
the diagonal two-point function would be incompatible with its 
interpretation as a propagator. However, we will see below that al-
though the mixing is real this k-dependence cancels in our result 
and the propagator interpretation of the diagonal sum (9) holds.

We now want to express the modes in terms of the Volkov cre-
ation and annihilation operators. Rewriting the generalised Bessel 
functions in (7) in terms of Bessel functions via (8) yields

J0
(
eu, e2 v

) = J0(eu) J0
(
e2 v

) + J2(eu) J−1
(
e2 v

)
+ J−2(eu) J1

(
e2 v

) + · · · . (23)

The second and third terms on the right hand side here are of 
order e4, so to order e2

J0
(
eu, e2 v

) = 1 − e2

4
u2. (24)

We thus obtain to leading order in the coupling

φ0(x) =
∫

d3 p

2E∗
p

(
e−ip·x

(
1 − e2

4
u2

)
aV (p)

+ eip·x
(

1 − e2

4
u2

)
b†

V (p)

)
. (25)

A similar calculation leads to

φ±1(x) = ∓ e

2

∫
d3 p

2E∗
p

(
e−ip·xe±ik·x

(
1 − e2

4
u2

)
aV (p)

+ eip·xe∓ik·x
(

1 − e2

4
u2

)
b†

V (p)

)
. (26)

It is important to notice how the factors of e±ik·x enter here. This 
means that such factors cancel on substitution into (22). We find 
from (22), (25) and (26) that the mode φ0(x), expressed in terms 
of creation and annihilation operators, up to order e2 transforms 
under the residual gauge transformation as
φ0(x) →
∫

d3 p

2E∗
p

(
1 − e2

4
(u − λ)2

)

× (
e−ip·xaV (p) + eip·xb†

V (p)
)
. (27)

This last equation shows the leading order, local gauge transforma-
tions of the mode φ0. However, it should be emphasised that this 
result includes terms from mixing with the modes φ±1 and will 
receive further contributions from φ±2 at order e4 etc. It is clear 
that at all orders, all of the modes will mix under a gauge trans-
formation. This demonstrates that restricting to specific modes is 
a gauge dependent, and unphysical approximation. The eik·x fac-
tors have cancelled in (27) and so if under our gauge transforma-
tion φn → φ̃n the diagonal term V〈0|T (φ̃n(x)φ̃†

n(y))|0〉V continues 
to generate solely the sideband pole in (p + nk)2 − m∗2, although 
φ̃n itself contains contributions from all the other modes in the 
original gauge.

We have thus seen that under gauge transformations, propa-
gators defined through the diagonal sum over modes remain as 
propagators. The changes affect the wave function renormalisation 
which acquires a λ-dependence. For the central sideband

Z (0)
2

(
eu, e2 v

) → 1 − e2

2
(u − λ)2 +O

(
e4). (28)

If we recall [17] that the all orders wave function renormalisation 
constant for the n-th sideband in a linear background has the form

Z (n)
2

(
eu, e2 v

) = J 2
n

(
eu, e2 v

)
, (29)

then (28) corresponds to the shift

Z (0)
2

(
eu, e2 v

) → Z 0
2

(
e(u − λ), e2 v

)
. (30)

This exemplifies the gauge dependence of the wave function renor-
malisation and we reiterate that it is in part caused by a mixing 
of modes which previously generated other sideband states in the 
initial gauge. Note that although Z (±1)

2 is gauge invariant at this 
order, it becomes gauge dependent at the next order, and so on. 
The mass shift, as a potentially measurable quantity [15], is gauge 
invariant as under our residual gauge transformation

a2 → (aμ + λkμ)
(
aμ + λkμ

) = a2, (31)

where we have used that k2 = 0 and the Landau gauge k · a = 0. 
This is reflected in the expression for the mass shift which is only 
generated by diagrams with the four-point vertex and not by the 
gauge dependent three-point vertex in scalar QED. This is also 
the case for circular polarised backgrounds [17]. It should be con-
trasted with fermionic QED where the gauge dependent vertex is 
proportional to e/a and it is possible to generate the gauge invari-
ant structure a2 via /a/a from the fermionic vertex.

In conclusion, we have seen in this paper that the wave func-
tion renormalisation factors are gauge dependent. Furthermore, the 
different sidebands mix with each other under gauge transforma-
tions although, in the resulting gauge, each mode in the diagonal 
sum generates its corresponding sideband pole. This shows that in 
this theory we have a consistent identification of the propagator 
with its sideband structure. Given that the propagator is not it-
self gauge invariant, this sideband structure could potentially have 
mixed under local gauge transformations which would have meant 
it had no physical significance. Our result shows that the position 
of the sidebands is physical but that their normalisation factors 
are gauge dependent. In a scattering calculation generalising the 
LSZ formalism to laser backgrounds, we would expect to see such 
unphysical factors cancel in the S-matrix.

The next step in understanding the quantum field theory of the 
Volkov solution is to identify the vertex structures in scalar QED in 
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laser backgrounds. We expect similar structures in fermionic QED, 
however, this does introduce an additional complexity to the the-
ory [19] which needs to be revisited. It will also be interesting to 
extend our study to non-monochromatic laser backgrounds which 
better describe the pulses used in experiments [22]. Progress in 
these areas is essential in the development of the theory of scat-
tering in laser backgrounds.
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