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3H-serotonin as a marker of oscillatory insulin secretion
in clonal b-cells (INS-1)q
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Abstract Serotonin release from preloaded pancreatic b-cells
has been used as a marker for insulin release in studying exocy-
tosis from single cells using the amperometric technique. We
found that single pancreatic b-cells exhibited oscillations in exo-
cytosis with a period of 1–1.5 min as measured amperometrically
by serotonin release. We also show that 3H-serotonin can be used
to monitor exocytosis from intact and streptolysin-O permeabi-
lized clonal insulin-secreting cells preloaded with labeled seroto-
nin and that serotonin release correlated with insulin secretion in
the same cells. The use of 3H-serotonin provides a real-time indi-
cator of exocytosis from populations of clonal insulin-secreting
cells.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Impaired insulin release from the pancreatic b-cell is one of

the causative factors of type 2 diabetes and has been inten-

sively investigated over the past four decades. Insulin release

has been measured from man and whole animals as well as per-

fused pancreas and perifused islets, dissociated islets and clo-

nal pancreatic b-cells [1–3].

Exocytosis has been measured using a variety of different

techniques in pancreatic islets or b-cells. These techniques in-

clude traditional radioimmunoassay [3], and amperometric

measurements of insulin release from single pancreatic b-cells

using ruthenate-coated carbon fiber electrodes to catalyze the

oxidation of the insulin disulfide bonds [4,5]. Due to difficulties

in making reliable insulin specific electrodes, a more basic sero-

tonin-sensing carbon fiber is often used to measure exocytosis

from cells, which have been preincubated with serotonin for
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2–24 h [6,7]. Serotonin is taken up into the b-cell, localizes to

the insulin secretory granules [8,9] and is then co-secreted with

insulin [10]. Serotonin release from single preloaded pancreatic

b-cells has been measured using the amperometric technique

and has correlated well to insulin exocytosis as measured by

the same technique using the specific insulin sensitive carbon

fiber electrode [11].

Exocytosis can be measured radioisotopically during batch

incubation experiments. 3H-epinephrine can be loaded into

PC12 cells in order to monitor secretion of 3H-norepinephrine

from permeabilized cells [12]. 3H-serotonin release has been

measured from preloaded clonal insulin-secreting RINm5F

cells depolarized with KCl, but no correlation with insulin re-

lease was attempted [13]. Here, we show that 3H-serotonin can

be loaded into clonal pancreatic b-cells (INS-1) in order to

monitor exocytosis from both intact and permeabilized cells

validating the use of serotonin as a marker for insulin secre-

tion.
2. Materials and methods

2.1. Animals and preparation of primary cultured b-cells
Pancreatic islets of Langerhans were isolated from a non-inbred col-

ony of adult obese mice (gene code ob/ob) [14]. The mice were killed by
decapitation after being fasted for 24-h and dispersed islets were iso-
lated by a collagenase technique [15]. The islets of these mice contain
more than 90% b-cells [16]. A cell suspension was prepared as de-
scribed previously [17], the cells seeded into petri dishes and resus-
pended in RPMI 1640 culture medium containing 11 mM glucose,
10% fetal calf serum, 100 IU/ml penicillin, 100 lg/ml streptomycin
and 50 lg/ml gentamycin. The cells were incubated at 37 �C in 5%
CO2 prior to experiment.
2.2. Cell culture
INS-1 cells were cultured in RPMI 1640 medium supplemented with

50 U/ml penicillin, 50 lg/ml streptomycin, 50 lM 2-mercaptoethanol,
1 mM pyruvic acid, 10 mM HEPES and 10% fetal bovine serum. Cells
were used between passages 65 and 100. Cells were grown in the above
media containing 3 mM glucose 24 h prior to secretion experiments.
2.3. Amperometry
Six to twelve hours before experiments, serotonin (5-HT, Sigma, St.

Louis, MO) was added to the RPMI 1640 culture medium at a final
concentration of 1 mM. Glass-encased carbon fiber microelectrodes
were pulled from borosilicate glass capillary containing a single carbon
fiber of 9 mm diameter (P-55S, Amoco Performance Products, USA).
The carbon fibers were sealed in the tip by dipping them in Sylgard
(Dow Corning, Kanagawa, Japan) and then cut at a 45� angle. For
recordings, the petri dish was placed in a temperature controlled peri-
fusion chamber (32–36 �C), constantly perifused with standard extra-
cellular solution and test substances added as indicated. Standard
blished by Elsevier B.V. All rights reserved.



Fig. 1. Amperometric recordings from a single b-cell and INS-1 cell,
preloaded with serotonin. Panel A shows a typical example of the
secretory response in a single INS-1 cell following stimulation with
25 mM KCl (arrow) (n = 5). In Panel B, recording from a single ob/ob
cell during perfusion with 12 mM glucose is shown. Periods of
exocytotic activity occur with a frequency of 60–90 s (n = 3). Panel C
shows an idealized curve, based on the recording in Panel B. Each line
represents an exocytotic event. The recordings were made at 34 �C.

J.T. Deeney et al. / FEBS Letters 581 (2007) 4080–4084 4081
extracellular solution consisted of (in mM): 138 NaCl, 5.6 KCl, 1.2
MgCl2, 2.6 CaCl2, 5 HEPES-NaOH, 3 glucose (pH set to 7.40). Using
a micromanipulator (Narishige PE-2, Narishige, Japan), electrodes
were placed in close contact with the cell surface and were operated
in amperometric mode using an EI-400 potentiostat (Ensman Instru-
mentation, Bloomington, IN). Records were filtered at 100 Hz
(�3 dB value, 8 pole Bessel filter, Frequency Devices, Haverhill,
MA) and digitized at 400 Hz (ADC TL-1, Axon Instrument, Foster
City, CA). A holding potential of 600 mV, versus a sodium-saturated
calomel electrode, was applied to the electrode, which was sufficient
to oxidize serotonin [6].

2.4. Serotonin loading
INS-1 cells, grown to a density of 3 · 105 cells per well in 48 well

plates, were incubated with 250 ll RPMI 1640 medium per well con-
taining 3 mM glucose and 10 lCi/ml 5-hydroxy-[3H] tryptamine (3H-
serotonin) (>100 Ci/mmol, Amersham) for 24 h prior to measurements
of secretion. To examine the time course of 3H-serotonin loading, cells
were incubated with 3H-serotonin for the indicated times, followed by
three washes with Krebs–Ringer bicarbonate buffer. Washed cells were
then extracted with phosphate buffered saline; 25 mM NaOH; 0.1%
Triton X-100 and aliquots were counted in a scintillation counter to
determine CPM of 3H incorporated into the cells.

2.5. Insulin secretion and 3H release
Insulin secretion from INS-1 cells preloaded with serotonin was per-

formed as previously described [18]. INS-1 cells were preincubated for
30 min with Krebs–Ringer buffer containing the same glucose concen-
tration subsequently used to measure basal insulin release. INS-1 cells
were then incubated with Krebs–Ringer buffer containing indicated
amounts of glucose and KCl for 30 min at 37 �C. The time course of
insulin release was measured from individual wells of INS-1 cells stim-
ulated one well at a time with 16.7 mM glucose at 10 s intervals and
sampled simultaneously as previously described [18]. Briefly, while
incubating at 37 �C the preincubation medium of each well was re-
moved and replaced with buffer containing high glucose in rapid suc-
cession. A 10 s/well rate of stimulation was required to resolve the
rapid oscillations of insulin release from INS-1 cells.

2.6. Insulin-and 3H release from streptolysin-O permeabilized cells
INS-1 cells preloaded with serotonin were permeabilized with strep-

tolysin-O and Ca2+-stimulated exocytosis was measured as previously
described [19].

2.7. Secretion analysis
Samples were analyzed for insulin using radioimmunoassay reagents

purchased from Linco Research Inc. (St. Louis, MO). 3H-serotonin re-
lease was measured by scintillation counting. Statistical analysis was
performed using Student’s t-test for unpaired data. Oscillations in
insulin and 3H-serotonin release were analyzed using the program
Optimized Optimal Segments (OOPSEG), a data smoothing program
designed to quantitate random measurement error [20].
3. Results and discussion

Serotonin release is routinely used to monitor exocytosis

from cells using the amperometric technique [6,7,11]. The tech-

nique has been used to measure exoctosis from clonal pancre-

atic b-cells, dissociated b-cells and whole islets. It has been

shown that serotonin loaded into b-cells localizes to the insulin

secretory granules and is co-secreted with insulin [10]. Fig. 1

shows typical amperometric results from single ob/ob mouse

pancreatic b-cells and clonal insulin-secreting cells (INS-1),

which were preloaded with 1 mM serotonin for 6–12 h and

stimulated with glucose or KCl. The spikes in the trace repre-

sent exocytotic events as the released serotonin was oxidized at

the tip of a carbon fiber electrode. Exocytotic activity is shown

from INS-1 cells after stimulation with 25 mM KCl (Fig. 1A).

In Fig. 1B exocytotic activity from an ob/ob b-cell is shown.
There was very little exocytotic activity at basal, 3 mM glu-

cose, but increasing the glucose concentration to 12 mM

caused release of serotonin and thus increased electrode activ-

ity. Release of serotonin from the preloaded ob/ob b-cell oscil-

lated with a period of 1–1.5 min, similar to the period of

oscillations previously observed in insulin release from INS-1

cells grown in multiwell plates [18].

With these results, we decided to determine how closely 3H-

serotonin release reflected the insulin secretory response from

populations of INS-1 cells. Fig. 2A depicts the loading pattern

of serotonin into INS-1 cells grown for the times indicated in

RPMI 1640 media containing 3H-serotonin (10 lCi/ml) and

3 mM glucose. Since most of the label incorporated into the

cells was taken up over the first 24 h of incubation, this time

was chosen for the cell loading. It has been reported that sero-

tonin concentrations as high as 500 lM have an inhibitory ef-

fect on insulin release from perifused rat islets [21]. The high

specific activity of the 3H-serotonin used in this study resulted

in a final concentration of less than 100 nM, which did not in-

hibit glucose-induced insulin secretion from INS-1 cells

(Fig. 2B).

A comparison of 3H-serotonin release and insulin secretion

from serotonin loaded INS-1 cells is shown in Fig. 3. Insulin

secretion was stimulated 3- and 10-fold over basal with

16.7 mM glucose and 16.7 mM glucose plus 40 mM KCl,

respectively. This is compared to 2- and 4-fold increases in
3H-serotonin release from the same cells under the same con-

ditions. In Fig. 3, 3H-serotonin release at basal 3 mM glucose

was arbitrarily set to the same value as insulin release for easy

comparison of fold stimulations of release. Although serotonin

release appeared to be a good indicator of exocytosis from the

INS-1 cells it did not reflect the magnitude of insulin release in



Fig. 2. Time course of 3H-serotonin uptake (A) and effect of serotonin
on insulin secretion in INS-1 cells (B). In Panel A INS-1 cells were
incubated in RPMI 1640 media containing 3 mM glucose and 10 lCi/
ml 3H-serotonin for the times indicated. Cells were washed and
extracted as described in methods and values for CPM were
determined by scintillation counting. (A) represents a typical experi-
ment repeated three times. Panel B shows 8 mM glucose stimulated
insulin secretion 4-fold, compared with the 2 mM glucose basal
condition from INS-1 cells preincubated with (shaded bars) or without
(white bars) 100 nM serotonin for 24 h. (n = 2). Each bar represents
the mean of at least five samples and ‘n’ designates the number of
separate experiments. 3-Isobutyl-1-methylxanthine (2.5 lM) was in-
cluded in the final incubation. P < 0.001 as compared to the 2 mM
glucose control (*).

Fig. 3. Comparison of insulin- and 3H-serotonin release from INS-1
cells preloaded with 3H-serotonin. 16.7 mM glucose and 16.7 mM
glucose plus 40 mM KCl stimulated insulin secretion from INS-1 cells
3- and 10-fold, respectively compared with the 3 mM glucose basal
condition. 3H-serotonin release is shown as shaded bars and increased
2- and 4-fold under the same conditions. In order to facilitate
comparison between serotonin and insulin release, 3H-serotonin CPM/
well values were divided by 5778 to provide the same numerical value
for basal levels of serotonin and insulin release (n = 3). Each separate
experiment represents the mean of at least three samples and ‘n’
designates the number of separate experiments. P < 0.01 as compared
to the 3 mM glucose control for insulin (#) and 3H-serotonin (*).

Fig. 4. Comparison of insulin- and 3H-serotonin release from strep-
tolysin-O permeabilized INS-1 cells preloaded with 3H-serotonin.
Increasing the free Ca2+ from 100 nM to 10 lM resulted in a 3.3-fold
increase in insulin release and a 2.6-fold increase in 3H-serotonin
release from streptolysin-O permeabilized INS-1 cells. Increasing the
free Ca2+ to 100 lM resulted in a decrease in both insulin and 3H-
serotonin release compared to 10 lM. In order to facilitate comparison
between serotonin and insulin release, 3H-serotonin CPM/well values
were divided by 10693 to provide the same numerical values of
serotonin and insulin release at 100 nM [Ca2+]f (n = 3). Each separate
experiment represents the mean of at least three samples and ‘n’
designates the number of separate experiments. P < 0.01 as compared
to the 100 nM [Ca2+]f control for insulin (#) and 3H-serotonin (*).
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the presence of KCl. One possible explanation for this may be

variable specific activity of serotonin in the secretory vesicles

such that the pool of insulin granules mobilized by depolariza-

tion includes granules that are poorly loaded with the 3H-sero-

tonin. Nevertheless, the strong qualitative relationship between

serotonin and insulin release makes the use of serotonin, as a

marker for insulin release, a valuable tool for comparison of

secretion under different conditions.

Insulin- and serotonin-release from streptolysin-O permeabi-

lized INS-1 cells are shown in Fig. 4. In this case, basal release

of 3H-serotonin at 100 nM free Ca2+ was also arbitrarily set to

the same value as insulin release. 3H-serotonin release was in-

creased 2.6-fold by increasing the ambient Ca2+from 100 nM

to 10 lM. The release of 3H-serotonin from the permeabilized

cells was similar to that of insulin.

To determine whether glucose-induced oscillations in insulin

release could be monitored by 3H-serotonin release, the time

course of insulin release from INS-1 cells grown in multiwell

plates was determined. Fig. 5 shows an oscillatory pattern of
3H-serotonin (A) and insulin (C) release from INS-1 cells

loaded with 3H-serotonin for 24 h. The time courses for sero-

tonin and insulin release were analyzed using the data smooth-
ing program Optimized Optimal Segments (OOPSEG) in order

to mathematically identify oscillations [20]. Oscillations in 3H-

serotonin and insulin release, plotted as the derivatives of the

smoothed data, are shown in Fig. 5B and D, respectively.

The period of oscillations in insulin release from INS-1 cells



Fig. 5. Oscillations in exocytosis from INS-1 cells grown in multiwell plates as measured by both insulin and 3H-serotonin release. INS-1 cells grown
in 48 well plates and loaded with 3H-serotonin were stimulated with 16.7 mM glucose at 10 s intervals and sampled simultaneously in order to obtain
a time course of secretion. Panel A shows oscillations in 3H-serotonin released from INS-1 cells grown in multiwell plates while Panel C shows the
oscillatory pattern of insulin released from the same cells. Data were smoothed and analyzed using the program OOPSEG. The resulting derivatives
of the time courses of serotonin and insulin release are plotted in Panels B and D, respectively. Values for the coefficient of variation is estimated to
8.0% for serotonin release and 11.4% for insulin release, as measured by the OOPSEG program. The figure shows typical results found in three
separate experiments.
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stimulated with 16.7 mM glucose was 1.5 min, which corre-

lated well with glucose-induced oscillations of 3H-serotonin re-

lease from the same cells. Glucose-induced oscillations in

insulin secretion from INS-1 cells incubated 24 h with seroto-

nin mimicked oscillations previously measured from INS-1

cells without serotonin pretreatment [18]. The oscillations in

exocytosis measured from the population of INS-1 cells grown

in the multiwell plate were similar to those measured from sin-

gle cells using the amperometric technique (cf. Fig. 1).

The similarity between insulin and 3H-serotonin release from

preloaded clonal insulin-secreting cells (INS-1) allows for ra-

pid on-line detection of secretion from these cells. This pro-

vides a sensitive tool to quickly monitor oscillations in

exocytosis, which would facilitate the analysis of coincident

oscillations of intracellular metabolites or phosphorylation-

dephosphorylation processes. The measurement is dependent

on the ability to load cells with serotonin. A second clonal

insulin-secreting cell line tested, HIT T-15 cells, incorporated

less than 1% of the total 3H counts taken up by INS-1 cells,

making the measurements of secretion more difficult in batch

incubations and nearly impossible during perifusion. It is inter-

esting to note that measurement of exocytosis from serotonin

loaded HIT cells was also not successful using the amperomet-

ric technique, suggesting that a component of the serotonin

uptake system into these cells is not expressed or functioning.

Incorporation of 3H-serotonin was also tested in islets isolated
from male Sprague–Dawley rats. Although the incorporation

of label was similar to that in INS-1 cells, on a 3H-counts

per cell basis, the relatively few cells in the islet compared

to the cultured clonal cells in the well made it difficult to

follow secretion from single islets using the 3H-serotonin

method.

Thus, 3H-serotonin release, as a measure of insulin exocyto-

sis, is an important tool that can be applied to a variety of

secretion experiments using clonal insulin-secreting cells. These

include release from both intact and permeabilized cells as well

as studies of oscillations in exocytosis from INS-1 cells.
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