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A b s t r a c t - - A  deterministic particle method for kinetic equation in several dimensions was pre- 
sented by Motta and Wick some years ago. In the present paper, we formulate the method in general 
coordinates and apply this formulation to an elastic collision kernel. We show that the method pre- 
serves exactly the energy conservation property of the elastic kernel. (~) 2003 Elsevier Science Ltd. 
All rights reserved. 
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1. I N T R O D U C T I O N  

Numerical  methods  for the  solution of the  Bol tzmann equat ion are under continuous investiga- 

t ion [1,2]. The  M W - C R F  method  is a determinis t ic  part icle  method  for conservation laws, which 

are given as kinetic equat ions including collisions, presented by M o t t a  and Wick some years 

ago [3]. In  the  present  short  communicat ion  we show tha t ,  in the  case of an elastic collision ker- 

nel, energy conservat ion is exact ly  preserved by the M W - C R F  method.  The  idea of the  method  

is to wri te  the  equat ion in divergence form (CRF s tands  for collision redefined as flux) and for- 

mal ly  to t ransform the  problem in a collisionless one. This can be done by introducing a flux 

equivalent for the  inhomogenei ty  and by computing,  at  each t ime step, the  collision induced force 
term for the  collisionless problem. Then one take advantage of the  long experience in solving 

Vlasov equat ion with  par t ic le  methods  [4-7]. For this  reason in M W - C R F  method  part icles can 

move in the  veloci ty space but  their  weight is kept  constant .  This  has some advantage  [8] with 

respect  to  o ther  well es tabl ished approaches where par t ic le  are kept fixed in the  velocity space 

and the  evolut ion is reflected in changing their  weights in t ime [9-11]. 
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In [3], the method was numerically tested with model equations. The method was also applied 
to the classical test case of a semiconductor N+N-N + structure to show that  it can be imple- 
mented on parallel machine [12]. Comparison with other particle methods was presented in [8]. 
Recently, a formulation of the method more convenient for computational purpose and a sketch 
of the MW-CRF algorithm has been presented in [13]. 

In order to show the energy conservation property it is sufficient to compute the relevant quan- 
tities of the method for the elastic model kernel. This is better achieved if one takes advantage 
of the symmetries of the problem. In a 3D velocity space, energy conservation better appears 
in spherical coordinates. For this reason, in the next section, the method is presented in a form 
suitable for coordinate transformations. 

2. T H E  M W - C R F  M E T H O D  IN G E N E R A L  C O O R D I N A T E S  

In this section, we briefly present the MW-CRF method] Presentation is slightly different from 
previous papers, but we find this form easier to introduce coordinate transformations. 

Kinetic equation splits usually in the transport  and the collision part. The transport  part can 
be written easily in divergence form. 

( ~  f)trans= -divspace(fV)- divmomentum(fK). 

Here we are interested in writing the collision part also in this form. Hence, we consider the 
equation 

ft = Q(f), (1) 

where ~ C R 3, f : [0, c~) × ~ --* R and 

Q(f) d~ = O. 

The initial condition f0 : f/--* R should be a given nonnegative function with 

a fo(~)d~= l. 

We search for a vector field ¢ such that  

(2) 

(3) 

d i v ¢  = - Q ( f ) ,  (4) 

¢(t ,  ~) = 0, ~ e 0n.  (5) 

This means the collision Q(f) is expressed as a flux ¢ and there is no flux across the boundary 
of ~/, which guarantees that  the conservation property (2) is satisfied. The associated force-field g 
is given according to 

f s g f  d ~ = / s C d ~ ,  (6) 

for all Borel sets B C ~. 
Hence, instead of (1), we consider 

ft+div~(fg)=O. (7) 

We remark that  the full equation reads now as 

A + div~(fv) + d i v d / ( K  + g)) = 0. 



D e t e r m i n i s t i c  P a r t i c l e  M e t h o d  

Let T be a regular coordinate transformation and IT[ denotes its Jacobian. Then we find 

Q ( f )  = Q ( ( f  o T)ITI). 

Since T is time independent we get 
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Hence, we have 

We introduce the set 
i I[,~,,.~,] = {~ C f~: a+ < ~+ _< 7i}, (9) 

for i = 1, 2, 3. Let OI(,~,,.r, ] its boundary and F(~/+) C 0I~t ,,-r+j the set defined by 

r (7 , )  -- {~ e ~;~, = ~+}. (10) 

The properties shown in [13] still hold as follows. 

PROPERTY 1. The surface F(~/+) is the only part of 0I~<~ which does not belong to 0fL i.e., 
t z,~iJ 

O I ~  "r, [ +, d" 

PROPERTY 2. The surface F(7+) has the outward normal along the axis ~+ and versus along 
increasing ~+ 

nr(~,) -~+ = 1. 

Using (3) and the Gaussian theorem we find 

-J~1 (~ ( ' f )d+  = J~x div g"d+ = f r  ++,dS+,, (11) 
!o .. . .  ~ :o .... 1 ('++) 

where dSi is the appropriate surface element. This holds for all 7,+ ~ [a+, fl+]. Now we choose I~  
as Borel sets in (6). Together with (11), for the r.h.s, we obtain 

z (:: (:>) ~+(++) = ¢i(t,~) d~ = - (~ d(~ d~. (12) 

f r  ]g i  d~ = koi('7i). (-r~ ) 

This generalises the result obtained in [3]. 

(13) 

cOtf o T = O t ( f  o T )  = Q(  ( f  o T)[T[) o T. 

But f o T must be multiplied by IT[ to be a density function. 
Calling f = ( f  o T)[T[ and (~(]) = ( Q ( ( f  o T)[T D o T)[T[ we find 

(+/ 

Suppose in the chosen coordinate system f~ can be represented as a Cartesian product of three 
intervals 

a = [~1, Zl] x [ ~ ,  Zd × [~3,84- 
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3. E N E R G Y  C O N S E R V A T I O N  P R O P E R T Y  

We turn now to show the energy conservation property of the numerical method. In order to 
achieve this result we use a model kernel for elastic collisions 

Q(f) = s (z, k)f (z) d e -  f (k ) f ,  s(k, z) dZ, (14) 

where S(k,  k') represents the collision probability per unit time which, for elastic collisions is 

S(k,k ' )  = A5 (k '2 - k 2 ) ,  (i5) 

where A is a constant terms. 
In semiconductor physics (14) represents the probability per unit time of an electron tran- 

sition from a state k into an empty state k' induced by the lattice imperfections, when Pauli 
exclusion principle is neglected; and (15) is the elastic limit of the optical nonpolar interaction 
in the parabolic approximation. Here it is convenient to use the general formulation described in 
Section 2 using spherical coordinates and to apply the standard MW-CRF algorithm [13]. 

1. The density function f0 will be approximated by a discrete measure 

1 ~ ( i  (~ _ ~o ) 
fo(~) -- ~ 

j=l 

2. The i-component of the collision induced force gi is computed using (12) into (13), which 
then leads to a linear system of order N 

Agi = ~i ,  (16) 

where ,4 is a diagonal dominant matrix; gf (j = 1, N) is the/-component of the colli- 
sion induced force on the j-particle and qtf (j = 1,N) is the r.h.s, vector of the linear 
system [13]. 

3. The approximation points ~J are propagated, from the initial condition ~J(0), according 
to 

= g ( 1 7 )  

using an explicit first-order scheme. 
4. Cycle to Step 2 up to tfinal. 

Let (~1,~2,~3), (kl, k2, k3), respectively, the Cartesian and the spherical coordinates, ~'~k = 

[al,/~1] × [0, 7r] × [0, 27r], and denote by T the coordinate transformation from {~} --* {k} and 
by ITI = k 2 sin k2 its Jacobian. 

The collision term (14) can be expressed as the difference between a gain term G and a lost 
term L. Then in the new coordinate system we have 

Q ( / (k l ,  ks, k3)) = G(kl, ks, k3) - t (k l ,  ks, k3), 

where G and L are given by 

G(kl, ks, k3) -- [ S(/~1,/~2,/~3, kl, k2, k3)](/Zl,/z2,/z3)kl 2 sin k2 d/z, 

L(kl, k2, k3) = ](k l ,  k2, k3)C(kl, ks, k3), 

with 

C(kl, k2, k3) -- f~  S(kl, k2, k3,/Zl,/~2,/~3)/z2 sin/~2 d/z, 
~t 
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where # = (#1, #2, #a). Then @~(7,) can be written in the form 

To evaluate the ~(7~)  for i = 1, 2, 3 we can proceed as in [3,13]. 

Here we are interested in computing only the first component ~1 as energy is given by the 
radial component. 

After some algebra, taking care of &function properties and with an appropriate use of the 
Heaviside function H(.),  one gets for the Gain term 

N 
1 ~ S(ks,k)k2sink2 G(k) = 

j-----1 
(18) 

and 

J0 J0 1 1 j = l  

2"AA N r ' n  

N 
: 27rA ~-~kj (,.~l_kJ)n [(,~l_k~ ) (k j  0tl) ] 

N j= l  

We now consider the Loss term. One has 

(19) 

C(k) = ~ A6 (#2 _ k~) #2 sin#2 d#, d#2d#3 

: 47 rA .2(~ (/.£2 --  k 2) d . 1  
o-0¢ 1 

= 21rAk1H[(31 - k,)(k, - o~1) ] 

and 

k~L,l(3q ) = ] (k )C(k )  dkl' dk 
la1,3,1] 1 

N j= l  al 

Comparing (20) with (19) one has 

(20) 

~1 = -~O,1 + ~k,1 = 0. 

Collision induced forces are computed throughout (16). The r.h.s, term for the first component 
is identically zero, 

Agl = 0. 

As the matrix .4 is not singular then gl j = 0, Vj = 1, N. Equation (17) then shows that  the radial 
component, k~, of the particles does not change with time. In spherical coordinates this means 
that  the energy of particles does not change with time. This shows that  the energy conservation 
property of the elastic collision kernel is exactly preserved by the MW-CRF method. 
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