
Physics Letters B 753 (2016) 401–405

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

A nonabelian particle–vortex duality

Jeff Murugan a, Horatiu Nastase b,∗
a The Laboratory for Quantum Gravity & Strings, Department of Mathematics and Applied Mathematics, University of Cape Town,
Private Bag, Rondebosch 7700, South Africa
b Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz 271, Bl. II, São Paulo 01140-070, SP, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 November 2015
Received in revised form 16 December 2015
Accepted 16 December 2015
Available online 18 December 2015
Editor: N. Lambert
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of cosmic string physics.
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1. Introduction

Beginning with the remarkable correspondence between the 
sine-Gordon and massive Thirring models [1], dualities have 
played a crucial role in the modern understanding of quan-
tum field theories. Indeed, they have been an indispensable
tool in the understanding of both strongly coupled systems as 
well as various nonperturbative problems. This was certainly the 
case, for instance, for Seiberg and Witten’s landmark study of 
(3 + 1)-dimensional, N = 2 supersymmetric gauge theory [2,3], 
where electric–magnetic duality (a generalized form of the usual 
electric–magnetic duality of Maxwell electrodynamics) that ex-
changes particles with monopoles, was essential in fully solving 
the low energy theory. In that (3 + 1)-dimensional case, even 
though an explicit path integral transformation exists only for the 
abelian case, the duality is understood as being essentially non-
abelian in the sense of acting on the full non-abelian theory.

One duality which has received considerably less attention oc-
curs in (2 + 1)-dimensional gauge theories and exchanges particles 
with topological solitons, specifically vortices [4]. One possible rea-
son for the dearth of literature on the subject could be that its 
utility lies primarily in condensed matter systems which, being 
usually non-relativistic are much less susceptible to the power-
ful relativistic methods employed in high energy theory. Another 
is likely the fact that the duality was generally less well-defined 
than its (3 +1)-dimensional counterpart. To the best of our knowl-
edge, particle–vortex duality has, until now, only been defined in 
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the context of abelian gauge theories, exhibiting Neilsen–Olesen-
like vortices. In [5], this duality was defined as a path integral 
transformation in a manifestly symmetric way, and embedded into 
a planar N = 6 Chern–Simons-matter theory commonly known as 
the ABJM model, which is itself known to be dual to the type IIA 
superstring on an AdS4 × CP

3 background [6]. In this context, the 
particle–vortex duality of the boundary field theory was shown to 
correspond to an electric–magnetic duality in the bulk. As a final 
point in [5], it was speculated that, based on the structure of the 
embedding into the ABJM model, it should be possible to define a 
nonabelian version that would act on the whole non-abelian ABJM 
model.

In this letter, we show that it is indeed the case that we can de-
fine a version of particle–vortex duality that acts on a non-abelian 
theory, at least in a certain restricted sense. Key to our argument 
are the recent advances in the study of 2-dimensional non-abelian 
T-duality acting on the string worldsheet in string theory [7] (see 
also [8–10] for the action of the nonabelian T-duality in super-
gravity). By generalizing the procedure to (2 + 1)-dimensions, we 
obtain a non-abelian version of particle–vortex duality that acts on 
gauge theories with a global SU(2), as well as a local symmetry. 
Recognizing that this is precisely the set-up for the “semi-local” 
vortices found in [14] (see also [15,16]) in the context of cosmic 
strings in the case of a local U (1) symmetry, we explicitly ex-
hibit the action of the nonabelian particle–vortex transformation 
on these solutions.

The letter is organized as follows. In section 2 we revisit non-
abelian T-duality and its relation to the abelian T-duality, extend-
ing it in section 3 to three spacetime dimensions, consequently 
defining a non-abelian particle–vortex duality on a general theory 
which we illustrate with a simple example of a semilocal vortex in 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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section 4. This article should be viewed as a proof-of-principle of a 
phenomenon with potential application from condensed matter to 
cosmology, with a longer companion paper to follow in which we 
will elaborate further on the duality and provide more substantial 
examples [17].

2. Nonabelian T-duality

In string theory, abelian T-duality is a symmetry that acts on a 
compact dimension as an inversion of its radius, R → α′/R . First 
noted at the level of the string spectrum, it was proven to be a 
symmetry of the perturbative string path integral in [18], where 
it was defined as a duality transformation of the worldsheet ac-
tion. Specifically, one writes a constrained first order form for the 
worldsheet action for the compact direction, with a Lagrange mul-
tiplier implementing the constraint that mixed second derivatives 
of the compact coordinate commute. Then, if instead of eliminat-
ing the Lagrange multiplier the original coordinate is integrated 
out, one obtains a T-dual theory in which the Lagrange multiplier 
plays the role of a new coordinate. This formulation is very sim-
ilar in spirit to the abelian particle–vortex duality transformation 
at the level of the path integral [5].

Initially carried out with commuting abelian isometries, a nat-
ural next step was to “nonabelianize” the transformation. This was 
first accomplished in [7] with the transformation acting on three 
coordinates transforming under a (global) SU(2) symmetry, obtain-
ing what became known as non-abelian T-duality. In this section 
we review the procedure.

Consider the string background with metric and B-field

ds2 = Gμνdxμdxν + 2GμidxμLi + gij L
i L j

B = Bμνdxμ ∧ dxν + Bμidxμ ∧ Li + 1

2
bij L

i ∧ L j, (1)

and constant dilaton φ = φ0. Here,

L1 = 1√
2
(− sin ψdθ + cosψ sin θdφ),

L2 = 1√
2
(cosψdθ + sinψ sin θdφ),

L3 = 1√
2
(dψ + cos θdφ) , (2)

are SU(2) left-invariant 1-forms for the Euler angles (θ, φ, ψ), such 
that dLi = 1

2 f i
jk L j ∧ Lk . The angles have the range 0 ≤ θ ≤ π , 0 ≤

φ ≤ 2π , 0 ≤ ψ ≤ 4π , and the SU(2) transformations act as

δθ = ε1 sinφ + ε2 cosφ,

δφ = cot θ(ε1 cosφ − ε2 sin θ) + ε3,

δψ = 1

sin θ
(−ε1 cosφ + ε2 sinφ). (3)

Using the normalized Pauli matrices ti = τ i/
√

2, that satisfy 
Tr (tit j) = δi j , and the group element g = e

iφτ3
2 e

iθτ2
2 e

iψτ3
2 , under-

stood here as a field g(τ , σ) on the string worldsheet, the 1-forms 
can be rewritten more conveniently as Li± = −iTr (ti g−1∂± g). Note 
that while g is complex, the Li are all real. Then, with

Q μν = Gμν + Bμν, Q μi = Gμi + Bμi

Q iμ = Giμ + Biμ, Eij = gij + bij , (4)

the string worldsheet action in this background takes the globally 
SU(2)-invariant form
S =
∫

d2σ
[

Q μν∂+ Xμ∂− Xν + Q μi∂+ XμLi−

+ Q iμLi+∂− Xν + Eij L
i+L j

−
]

. (5)

One can make this invariance local by introducing an SU(2)

gauge field A and replacing derivatives with covariant deriva-
tives, ∂± g → D± g = ∂± g − A±g , which, in turn, replaces Li±
with L̃i± = −iTr [ti g−1 D± g]. Since we don’t want to add a new 
degree of freedom (the gauge field A), we need to impose its 
triviality as a constraint. A good way of doing that is by requir-
ing the field strength to vanish and enforcing this in the action 
through a Lagrange multiplier term −iTr [v F+−] = −iεμνTr [v Fμν ], 
where v = vi is an SU(2) adjoint (a triplet) and the field strength 
F+− = ∂+ A− − ∂− A+ − [A+, A−]. In this way we obtain a first or-
der action that acts as a master action for the T-duality. Integrating 
out the Lagrange multiplier v leads to F+− = 0 which, in the ab-
sence of any topological issues, leads to a trivial A, equivalent to 
A = 0, recovering the original theory.

If instead, we integrate out the gauge field A and gauge fix the 
SU(2) symmetry, we get A± in terms of v , and on substituting 
into the master action, obtain the T-dual action. Explicitly, we first 
partially integrate the Lagrange multiplier term to

−i

∫
Tr [v F+−] =

∫
{Tr [+i(∂+v)A− − i(∂−v)A+]

− A+ f A−} , (6)

where A+ f A− ≡ Ai+ f i j A j
− and f i j ≡ f i j

k vk . Then, gauge fixing the 
SU(2) to g = 1, replaces Li± by iTr [ti A±] = i Ai± , in the master ac-
tion, giving

S =
∫

d2σ
[

Q μν∂+ Xμ∂− Xν + Q μi∂+ Xμ(+i Ai−)

+ Q iμ∂− Xμ(+i Ai+) + Eij(i Ai+)(i A j
−)

+ i∂+vi Ai− − i∂−vi Ai+ − Ai+ f i j A j
−
]
. (7)

After varying this with respect to A+ and A− and solving the re-
sulting equations of motion, we obtain

Ai− = −iM−1
i j (∂−v j − Q jμ∂− Xμ)

Ai+ = +iM−1
ji (∂+v j + Q μ j∂+ Xμ) , (8)

where Mij = Eij + f i j . Finally, substituting A± back in the master 
action, produces the T-dual action

Sdual =
∫

d2σ [Q μν∂+ Xμ∂− Xν + (∂+vi + Q μi∂+ Xμ) ×

× M−1
i j (∂−v j − Q jμ∂− Xμ)]. (9)

At the quantum level, i.e. considering the one-loop determinant, 
the T-duality also modifies the dilaton to


(x, v) = 
(x) − 1

2
ln(det M). (10)

In general, implementing nonabelian T-duality, even in (1 + 1)-
dimensions is highly nontrivial. In addition to well-known global 
issues [11], there are also unresolved questions about the range of 
the dual coordinates [12]. A full discussion of these issues in our 
(2 + 1)-dimensional setting is beyond the scope of this article and 
is left for future work.
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3. Particle–vortex duality as nonabelian T-duality in 3 
dimensions

We now want to generalize the above construction to (2 + 1)-
dimensions. Again, it is natural to consider the real variables 

k

0 and Li
μ = −iTr [ti g−1∂μg], where, as before g(xμ) ∈ SU(2) is 

complex, k = 1, . . . , N is a general index and i includes at least 
the values 1, 2, 3 for adj(SU(2)). We will first write down a de-
sired master action generalizing the 2-dimensional case, except 
with Q μi = 0 and Q μν = δμν . First though, we define the local 
SU(2) symmetry, which means replacing derivatives with covariant 
derivatives, Dμg = ∂μg − Aμg , and Li

μ with L̃i
μ = −iTr [ti g−1 Dμg]. 

The desired master action is then

Smaster =
∫

d3x
[
−1

2
(∂μ
k

0)
2 − 1

2
(
k

0)
2 gμν L̃i

μ L̃ j
ν Eij

+ εμνρ vi
μF i

νρ

]
, (11)

where the gauge field strength is the usual Fμν = ∂μ Aν − ∂ν Aμ −
[Aμ, Aν ].

Varying the action with respect to the Lagrange multipliers vi
μ

leads to F i
μν = 0 which, in the absence of any topological issues, 

leads to a trivial gauge field. Consequently, the choice of Aμ = 0
leads to L̃i

μ = Li
μ , reducing the action to the pre-dualizing,

Soriginal =
∫

d3x

[
−1

2
(∂μ
k

0)
2 − 1

2
(
k

0)
2 gμν Li

μL j
ν Eij

]
. (12)

If instead we first partially integrate the Lagrange multiplier term 
to∫

εμνρ vi
μF i

νρ =
∫

εμνρ [(∂μvi
ν)Ai

ρ − (∂ν vi
μ)Ai

ρ + Ai
μ fνi j A j

ρ ] ,

where fνi j ≡ f i jk vk
ν , and gauge fix by setting g = 1, then L̃i

μ →
iTr [ti Aμ] = i Ai

μ . Subsequent variation of the master action with 
respect to Ai

μ gives

[(
k
0)

2 gμρ Eij + 2εμνρ fνi j]A j
ρ = −εμνρ(∂ν vρi − ∂ρ vνi),

which is solved by Ai
μ = −M−1

i j
μρ

V ρ
j , with

Mμρ
i j ≡ [(
k

0)
2 gμρ Eij + 2εμνρ fνi j]

V μ
i ≡ εμνρ(∂ν vρi − ∂ρ vνi). (13)

On substituting Ai
μ back in the master action (11), we get the 

particle–vortex dual action

Sdual =
∫

d3x

[
−1

2
(∂μ
k

0)
2 + 1

2
Ai

μMμρ
i j A j

ρ + Ai
μV μ

i

]

= −1

2

∫
d3x[V μ

i M−1
i j V ρ

j + (∂μ
k
0)

2]. (14)

Evidently then, we have found a transformation of the path inte-
gral in (2 + 1)-dimensional theories of the form (12) that furnishes 
a non-abelian particle–vortex duality. In order to consider it a gen-
uine particle–vortex duality transformation, we must be able to 
derive (12) from a more familiar action that admits vortex so-
lutions, couple the theory to a nontrivial gauge field and add a 
vortex current term to the action. In these more familiar cases, we 
are only able to implement the duality on a specific ansatz. At this 
point, it is not clear to us if and how to extend it to the full theory.

To show that this sequence can be executed, we consider a 
scalar field 
 in a tensor product representation, obtained from 
the adjoint representations of two groups, that a priori need not be 
related to the SU(2) on which particle–vortex duality acts. As an 
ansatz we take


 = 
a
0 Ta ⊗ ei

∫
dxμLi

μ F A
i T̃ A , (15)

where Ta and T̃ A are adjoint matrices transforming under a priori
different groups, and F A

i are given coefficients (a “background”), 
out of which we will construct Eij . Normalizing the generators 
through Tr [Ta Tb] = δab and Tr [T̃ A T̃ B ] = δAB , leads to

Tr [(Ta ⊗ T̃ A)(Tb ⊗ T̃ B)] = δABδab , (16)

and consequently, the standard kinetic term for 
 becomes 
(δA

A ≡ N)

Tr |∂μ
|2 = N(∂μ
a
0)

2 + (
a
0)

2Li
μL j

μN Eij , (17)

where N Eij ≡ F A
i F A

j , which up to a normalization of 
0 is the 
same as (12). We can now add to this action a potential depending 
only on 
a

0 which, as we saw earlier, is untouched by the dual-
ity transformation. Thereafter, we need to couple to a gauge field, 
write a vortex ansatz and add a vortex current to the action. To-
ward this end, we need a more general ansatz for the scalar.

One simple, if naive, possibility is if F A
i is simply Fi , i.e. T A is 

trivial and in which we can write an ansatz with just a common 
phase,


a = 
a
0 exp

(
i

∫
dxμLi

μFi

)
, (18)

and for which the standard scalar kinetic term becomes∑
a

|∂μ
a|2 = (∂μ
a
0)

2 + (
a
0)

2Li
μL j

ν gμν Fi F j . (19)

Again, we reproduce (12) except with Eij = Fi F j now separable. 
Next, we couple the scalar to an external gauge field, aμ = am

μTm

in a Lie algebra direction not covered by Aμ (Tr [AμTm] = 0), thus 
m is a particular case of i, and Am

μ = 0. This amounts to replacing 
L̃i
μ in (11) by

˜̃Li
μ = −iTr [ti g−1(∂μ − i(Aμ + am

μTm))g] (20)

and adding a kinetic term of + 1
4 Tr [ f 2

μν ], for the external gauge 
field.

However, for the purposes of writing a vortex ansatz, it is more 
useful to consider instead a modification that creates a covariant 
derivative acting on the field 
. For 
 in the adjoint representa-
tion, the normal derivative is

∂μ
 = (Ta∂μ
a
0 + Ta ⊗ T̃ A i
a

0Li
μF A

i )1 ⊗ ei
∫

dxμLi
μ F A

i T̃ A . (21)

Making the derivative covariant with respect to aμ results in

Dμ
 = (Ta∂μ
a
0 + Ta ⊗ T̃ A i
a

0Li
μF A

i + Ta

a
0 ⊗

[am
μ T̃m, ei

∫
dxμLi

μ F A
i T̃ A ]e−i

∫
dxμLk

μ F A
k T̃ A )

1 ⊗ ei
∫

dxμL j
μ F A

j T̃ A (22)

Therefore, in effect, the gauge field coupling gives the replacement

Li
μF A

i → Li
μF A

i + Li
μF B

i f BC
A AC

μ +O((L j
ν)2) , (23)

to first order. We note that nothing makes it necessary that the 
gauge field be nonabelian at all. Indeed, if A belongs to the singlet 
representation, we may write the usual U (1) covariant derivative 
for 
 without a problem.
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We are now ready to consider a vortex ansatz. Assuming az-
imuthal symmetry, 
a

0 = 
a
0(r) and “vorticial” information about 

the solution is encoded in its phase

ei
∫

dxμLi
μ F A

i = eiN Aθ , (24)

where N A is the vortex number and θ is the polar angle on the 
plane. For a U (1) gauge field, it suffices to simply erase the A
index. As in the abelian case, the requirement that Dμ
 → 0 at 
r → ∞ ensures both a finite energy solution (since the kinetic 
term |Dμ
|2 vanishes at infinity) and the existence of a topolog-
ical charge (since it implies that 

∮
Aθdθ is quantized). Of course, 

having an ansatz doesn’t guarantee the existence of a solution. One 
needs to show that it is a solution of the equations of motion in 
a specific model (specified by a particular potential V (
a

0)). In a 
forthcoming article, we will show explicitly how the duality acts 
of nonabelian vortices in an SU(2) × U (1) gauge theory that arises, 
for example, in the low energy limit of N = 2, SU(3) QCD with N f
flavors [13].

Finally, with an actual solution at hand we can isolate the vor-
tex contributions to the action in the path integral, and obtain a 
vortex current term. Similarly to the abelian case in considered at 
length in [5], where the phase α separates into αsmooth + αvortex, 
with αvortex being the part that contains a topological charge of the 
vortex, we now replace Li

μ with Li
μ,smooth + Li

μ,vortex. Gauge fixing 
g = 1, we get Li

μ = i Ai
μ + Li

μ,vortex, or rather Ai
μ → Ai

μ,smooth +
Ai

μ,vortex. Then, varying the master action (11) with respect to 
Ai

μ,smooth gives

Ai
μ,smooth + Ai

μ,vortex = −M−1
i j

μρ
V ρ

j . (25)

The associated vortex current term,

εμνρ vi
μ(∂ν Ai

ρ,vortex − ∂ρ Ai
ν,vortex) ≡ vi

μ jμi
vortex , (26)

is obtained from the term linear in Aμ . From the vortex ansatz (24), 
we have

(F A
mam

μ,vortex =)Li
μ,vortex F A

i = N A∂μθ = 1

2(
a
0)

2
j A
μ , (27)

where j A
μ = −i(
†

A∂μ
A − 
A∂μ

†
A) (no sum over A) is a scalar 

particle current. In other words, the relation (26) expresses a 
duality between particle and vortex currents, generalizing the 
εμνρ∂ν jρ = jμvortex relation from the abelian case, and justifying us 
calling it a nonabelian particle–vortex duality for the path integral 
transformation.

4. An example: semilocal vortices

To illustrate the above, we now exhibit the duality transfor-
mation explicitly for the case of the semilocal (cosmic) strings of 
[14–16]. Defined through the Lagrangian

L = −1

2
|Dμ
|2 − λ

4

(

†
 − v2

)2 − 1

4
fμν f μν, (28)

the model is a two-flavored Higgs model with an SU(2)G ×
U (1)L → U (2) symmetry group. Now the scalar 
 = (
a) =(

1,
2

)T
transforms in the fundamental representation of the 

global, flavor SU(2), while the gauge-covariant derivative is only 
U (1)-local, Dμ
 = (∂μ − ieaμ)
, like at the end of the last section, 
and fμν = 2∂[μaν] is the usual abelian field strength. Of course, 
unlike the case in the last section, where 
 = 
a Ta , so 
 was in 
the adjoint of the group generated by Ta , now we have a scalar 
a

in the fundamental representation of the global SU(2), so for the 
duality transformation we simply write the ansatz (18) but with-
out 
 = 
a Ta . Here 
a

0, a = 1, 2 and Li
μ , i = 1, 2, 3, 4 ∈ adj(U (2))

are real, i = 4 corresponds to 1, thus we see that even though we 
have 6 real variables, we are constrained to have the same phase 
for 
1 and 
2. That is actually fine, since for the axially symmetric 
n-vortex ansatz

aθ = v√
2

n

r
a(r); ar = 0; 
a = vϕa(r)einαa , (29)

where (r, θ) are polar coordinates on the plane, leads to the con-
dition that at r → ∞, α2 = α1 + c, with c a constant. Taking c = 0
(without loss of generality), the vortex solution indeed satisfies 
the ansatz for the particle–duality transformation in (18). The en-
ergy is Bogomolnyi-saturated at critical coupling β ≡ 2λ/e2 = 1, 
where the second order equations of motion for 
 and aμ , defin-

ing ϕ(r) = √
(ϕ1(r))2 + (ϕ2(r))2, descend to the first order BPS 

equations

dϕ

dr
= n

r
(1 − a)ϕ,

da

dr
= r

n
(1 − ϕ2) , (30)

same ones as for the Nielsen–Olesen vortex, thus the same numer-
ical vortex solution is used to construct this “semi-local string”.

Making the identification Tr [ti Tm] = δi
m and the embedding 

a4
μ = aμ , a1,2,3

μ = 0 (and A1,2,3
μ �= 0; A3

μ = 0), we have the mas-

ter action for the duality (replacing L̃i
μ with ˜̃Li

μ in (11) and adding 
the kinetic term)

Smaster =
∫

d3x
[
−1

2
(∂μ
a

0)
2 − 1

2
(
a

0)
2 gμν

4∑
i, j=1

˜̃Li
μ

˜̃L j
ν Eij

− 1

4
f 2
μν − V (
) + εμνρ

∑
i=1,2,3

vi
μF i

νρ

]
, (31)

where Eij = Fi F j and 
a
0 = vϕa . As before, varying with respect 

to vi
μ leads to the original action, where the terms on the first 

line combine to give −(1/2)|Dμ
|2. Integrating out Aμ instead 
and imposing the gauge g = 1, leads to the dual action (with the 
definitions (13))

Sdual =
∫

d3x

[
−1

2
(∂μ
a

0)
2 − 1

4
f 2
μν − V (
) + Ai

μV μ
i

+ Aĩ
μ(V ρ

j̃
+ Mρσ

ĩ4
aσ ) + 1

2
aμgμρ(
a

0)
2aρ + 1

2
Aĩ

μMμρ

ĩ j̃
A j̃

ρ

]
,

(32)

where Aĩ
μ = −M−1μρ

ĩ j̃
(V ρ

j̃
+ Mρσ

ĩ4
aσ ) and we have split i into ĩ =

1, 2, 3 and 4. The particle–vortex duality is then given by the gauge 
field (from (27) and m = 4, F4 = 1)

aμ,vortex = jμ

(
a
0)

2
⇒ jμvortex = εμνρ∂ν

(
jρ

2(
a
0)

2

)
. (33)

5. Discussion

Abelian particle–vortex duality has proven a powerful tool in 
the understanding of bosonic systems that range from anyonic su-
perconductivity through to cosmic strings. An excellent example 
of this is illustrated in [19], which utilizes precisely this duality 
to explain the current–voltage symmetry observed near the crit-
ical point of the transition between the Laughlin plateaux and 
Quantum Hall insulator, a phenomenon not captured in the linear 
electromagnetic approximation.
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As exciting as these developments have been to date, we are 
today at the birth of a new scientific paradigm with the discov-
ery of topological phases of matter as embodied in, for exam-
ple, high temperature superconductors and the fractional quantum 
Hall effect. A key feature of such states of matter is that their 
quasi-particle excitations are neither fermionic nor bosonic but are 
best described as nonabelian anyons that obey nonabelian braiding 
statistics. Certainly since Moore and Read’s landmark paper [20]
identifying quasiparticle excitations of certain fractional quantum 
Hall systems which obey nonabelian statistics, nonabelian states 
of matter have posed an exciting challenge to theoretical physics. 
Recent technological advances coupled with equally rapid develop-
ments in topological field theory have served only to fuel interest 
in this area and make the study of nonabelian states of matter 
one of the hottest topics in theoretical condensed matter physics 
today. It is our hope that the nonabelian particle–vortex duality 
communicated in this article will develop into as useful a tool to 
understand these new states of matter as its counterpart did for 
abelian physics.
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