
ELSEVIER Theoretical Computer Science 168 (1996) 257-266

Theoretical
Computer Science

On machines, universal by extensions

Liudmila Pavlotskaya’

Moscow Power Engineering Institute, Moscow, Russia

Abstract

A new definition of universal Turing machines is introduced which allows to obtain universal
Turing machines with a very small number of program instructions. Here such a program with
only seventeen instructions is supplied.

1. Introduction

According to the definition first formulated by Davis [l], a Turing machine is uni-

versal if the set of its configurations leading to a completed computation is m-complete.

The law of succession between configurations in the computing process which is

assumed by this definition reflects our intuitive representation of algorithms applied

to a set of finite objects. In particular, it is assumed that each time the machine head

goes out of a word, it always reads the same symbol, called blank, in a cell which it

did not previously visit. But, in order to simulate any kind of computations, a universal

machine may use a non-recursive set of “codes” and, in that case, the machine cannot

itself define the end of the word which is the code of a certain computation. This means

that the notion of “word end” for the machine itself loses its meaning. However, if it

is demanded that the set of codes should be recursive, then the definition of universal

machine would become unapplicable.

It seems to us that the following property of universality does not correspond to the

intuitive representation of machines on which it is possible to simulate the computation

of any other machine. In general, it is impossible to restore the result of the simulated

computation from the result obtained by the universal machine. If the simulated machine

computes function f(n), then, in order to obtain this value by the universal machine, it

is necessary to make two copies of that machine run f(n) times, each time finding new

initial configurations. It seems that our informal representation of universal machine

does not completely correspond to the formal one.

* E-mail: vm@mpei-rt.msk.su.

0304-3975/96/%15.00 @ 1996-Elsevier Science B.V. All rights reserved

PII SO304-3975(96)00079-S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82806933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

258 L. Pavlotskayal Theoretical Computer Science 168 (1996) 257-266

Putting aside the question of which of the below-considered machines could be con-

sidered as universal from the intuitive point of view, we define below Turing machines

which are universal on certain sets of extensions and we give such an example of

a machine, the program of which contains 17 instructions and which is universal on

periodic extensions.

In [7,8], an example of a universal machine is given with a program containing

23 instructions. No universal machine in the traditional meaning with a shorter program

has yet been known.

2. Basic definitions

We consider Turing machines, the tape of which is infinite in one direction, from left

to right, with X = {x1,x2,. . . , xm} as the alphabet of input symbols, Q = (41, q2,. . . , ql}
as the set of states of the machine head and with a program, containing instructions of

the form qix+xkql, where M is the symbol of move to the right (R) or to the left (L).

The execution of such a command consists in replacing in the scanned cell symbol xj

by symbol xk, setting the head in state ql instead of qi, and moving along the tape by

one cell to the right if A4 = R, and by one cell to the left if M = L. If the head is in

state qi and reads xi, and if the program has no instruction beginning with qixj, then

the computation halts.

Let the tape cells be numbered 1,2,. . . The piece of the tape constituted of cells

numbered i, i + 1 ,. . .,j is denoted [i,f. Consider that at the initial time, word x is

written on [l, Ix]], where 1x1 is the length of word x, and that the head reads one of

the corresponding cells. By word written on the tape at a given step of computation,

we understand the initial word or the word obtained by recording on the initial one

the symbols contained in all the cells on the right hand of [1,1x1] that were visited by

the head up to the considered time.

Call machine configuration the set consisting of word x = xi, , . .-Xi, written on the

tape, of the state of the head, say qi and of the number of the scanned cell. The

set of these data can be written as a single word xi, . . . qiXik . . . xi,, which we also call

configuration.

If during the computation starting from configuration K, the head does not go out

of the ends of that part of the tape which contains word x, we shall consider that the

computation on K is defined and, in that case, it can be finite or infinite. In the other

case, the computation on K is not defined and call extremal conjiguration word x’qj

if at that moment of exiting out of the word end, word x’ is written on the part [l, lx]]

and the head is under state qj.

Definition 1. Call word p finite extension of extremal configuration xqi if the compu-

tation on configuration xqip is defined and finite. Call also word p finite extension for

those configurations such that the computation starting from them leads to configura-

tion xqi.

L. Pavlotskayal Theoretical Computer Science I68 (1996) 257-266 259

3. Machines which are universal on a set of configurations
with extensions belonging to a given set

Let 37 be the set of configurations of machine F and let X&(9) be the set of those

configurations of X for which either the computation is defined and finite or there are

finite extensions belonging to set 9.

Assume that a numbering is put on the set of all configurations.

Definition 2. Call a Turing machine universal on the set X of configurations with

extensions in 9 if X&(P) is m-complete.

Assume that F is universal in our sense. How F can be used in order to simulate

machine 2 computing function fz(n) in the natural encoding? By definition, it follows

that there is a recursive function g(n) such that jjj(n) is defined if and only if g(n) is

the number of a configuration from X&(P).

Let 120 be an integer. Let us make F start its computation from configuration KO

with number g(na). If the computation on Ka is defined and finite then function fi(n)

is defined for n = no. When the computation is defined an infinite, function fi(n) is

not defined for n = no. In the case when the computation on KO is not defined the

machine reaches a certain extremal configuration xqi. Let us now make F compute on

configuration xqipt where p1 E 8. If the new computation is defined and finite, word

p1 is a finite extension of configuration xqi and in this case function &(n) is defined

for n = no. In the case when the new computation is defined and infinite or it is not

defined, let us start the computation from configuration xqipz with p2 E 9 and let us

find out if p2 is a finite extension of configuration xqi. If 9 is recursively enumerable

and f~(na) is defined, this process will come to an end and a finite extension of

configuration xqi will be found.

Consequently, when 9’ is a set of words on an alphabet with more than one symbol,

it is difficult to use a machine which is universal on configurations with extensions in 9

in order to simulate arbitrary computations. For this reason, it is interesting to consider

machines which are universal on extension sets with a structure easily allowing to find

finite extensions or to get convinced that there are no extensions.

4. Existence of a machine with a decidable halting problem and
universal in the new meaning

It is known that there is a Turing machine with (0, 1) as input alphabet and 41,. . . , qs

as states which is universal in the traditional meaning on the set of configurations of

the form 411”. Let F be one of these machines and let F computations halt only when

the machine head is in state qj and it sees symbol x (with x being either 0 or 1). Then

the set Fc, of configurations of the indicated type on which the computation halts is

m-complete.

260 L. Pavlotskayal Theoretical Computer Science I68 (1996) 257-266

Let us transform F into the new machine G with (0, 1,2} as input alphabet and let

us append the following instructions to the program of F:

qi2R2U, a2R2a, EOROE, alRla (i = 1, . . . ,s)

q$xP, POROP, BlRlB

In the program of G, instructions beginning with 82 are missing. It clearly follows

from that how to transform the program of F which contains halting instructions dif-

ferent from qjX in the program of G such that the latter should contain a “halting”

instruction with “82”.

The set of all configurations of machine G of the form 411” for which there are finite

extensions belonging to {Ok2} coincide with Fh,. Consequently, this set is m-complete

and machine G is universal on X = (41 1”) with extensions in 9 = {Ok2}.

The halting problem for machine G is decidable on X, not depending on which

symbol among 0 and 2 is taken as the blank symbol. Indeed, machine G does not halt

when, starting on configuration q1 l”, it will always encounter symbol 0 on cells IZ + 1,

n+2,... On the other hand, when all these cells contain symbol 2, the machine, going

out of the word, will halt if it is in state /I and will move for ever to the right if it

went out of the word in another state.

Accordingly, the following theorem holds:

Theorem. There are machines which are universal on a set X of configurations with
extensions in a certain set S for which the halting problem on X is decidable.

5. Universal machines on computable extensions

Let us consider computations of machine G with extensions p = Ok. If the com-

putation leads to a new extremal configuration, it is enough next to consider Ok+’ as

a finite extension if the machine head went out of the word in state qi, i = 1,. . . , s,

and Ok2 if the head went out in state /I. This means that there is an algorithm, a

single one for all configurations, with which it is possible to organize the determined

computations with G which will be finite only on those configurations for which there

are finite extensions. Under these considerations, the algorithm computing the next

symbol in the possible finite extensions can be provided by a finite automaton with

Q = (41, . . . , qs, /3} as input alphabet and { 0,2} as output alphabet.

Machines of this kind will be called universal machines on computable or determined

extensions.

In the general case, assume that extensions of all computations of F on X leading

to extremal configurations are uniquely defined by algorithm A, i.e. for each extremal

configuration Xqi algorithm A defines symbol xi (depending in the general case on

x and qi) for defining configuration xqixj starting from which the computation is to

be continued. Let us denote by &&(A) the set of configurations of .X on which the

computation halts.

L. Pavlotskaya I Theoretical Computer Science 168 (1996) 257-266 261

Definition 3. A Turing machine is universal on computations with extensions by algo-

rithm A if X&,(A) is m-complete.

If it is allowed to take as A an algorithm of any complexity, the machine with the

following program, q1 Mlql, qlOROq2, qzOROq1, is universal on configurations {q, 1”)

with extensions {O”l} determined by a universal machine. Notice that such a machine

is not universal on any fixed set of extensions, i.e. in the meaning of Definition 2.

6. Turing machines, universal on automaton extensions

There are machines for which computable extensions can be supplied by a finite

automaton. Let us call such Turing machines machines with automaton extensions.
Let A be a finite automaton with states S = {si,. . . ,sr}, with Q = (41,. . . ,qe} as

input alphabet and X = {xi,. . . , xm} as output alphabet. Its working is given by two

functions p : S x Q + X and d : S x Q -+ S.

Deterministic computations on Turing machines using automata run as follows.

Let the machine reach extremal configuration xqi and let the automaton be in state sj

at this time of the computation. Symbol p(sj,qi) is then written in the cell on which the

machine head went out, and the automaton goes to state d(sj,qi). Later, the machine

performs its computation starting from configuration xqip(sj,qi) and the automaton

stays in state d(sj,qi) until the machine reaches the next extremal configuration. At

initial time, the automaton is in a distinguished state called initial state.

Machines which are universal on extensions computed by using this algorithm are

called universal Turing machines on automaton extensions.
An example of a machine which is universal on periodic extensions, hence, on

automaton extensions, is given below.

The universal Turing machines with a single left-hand instruction obtained in [2]

compute consecutive iterations of a function belonging to a special kind. Denote T(n)
such a function. Let number d 22 be fixed and let functions p(r) and q(r) be given

for Odr < d, with p(r) < d. Starting from n = no, a sequence of numbers, say nk, is

obtained. For each nk let mk and rk respectively denote the quotient and the remainder

in the division of nk by d. Let us then define nk+i as follows:

nk+l = nk - d + PC’-k) if mk # 0,

nkfl = k . d + rk + q(rk) if mk = 0.

When mk = 0, T(n) is computed and then T(n) = nk+l.
The process of computing iterations of T halts if remainder rs takes one of the

values of some finite set i.e. rs E (~-10,. . .,Y[o}.

It follows from [2,3] that for any partial recursive function f(n) there is such a

function T(n) that we have: the process of computing the iterations of T(n) for numbers

of the kind C*22n+2 halts if and only if f (n) is defined and in this case the result of the

262 L. Pavlotskayal Theoretical Computer Science 168 (1996) 257-266

computation is C*(22”“*7g(“)+ 1). Here C = 2N, where N is the number of instructions

in Minsky’s machine used to compute function f(n).

If he/she wants to know the details of the proof of the latter result, the reader

can be recommended papers [2,3]. Here is only outlined the basic idea for obtaining

function T(n).

It is known that for any partial recursive function f(n) there is a Minsky machine

transforming 22’ into 22”“‘, the program of which contains instructions of the following

types: x2, x3, /6,a, halt instruction, see for instance [5]. Executing instructions of the

first two types consists in multiplying the given number by 2 or 3, respectively, and

turning to the execution of the next instruction. Executing instructions of the third type

means to divide the given number by 6 and the execute instruction number a if the

number is divisible by 6. If the number is not divisible by 6, then the machine executes

the next instruction.

Let us change each instruction of type three in this algorithm into instruction +n/6, a,
the execution of which has the same sense with the only difference that if the given

number is divisible by 6 it is multiplyed by g. This algorithm transforms 22” into

22 ‘W * 7g(“) where g(n) is the number of multiplications by 5 occurring during the

computation process.

Let the instructions of this algorithm be numbered 1,2,. . . , N, where N is the number

of the halt instruction. Then any step of the computation consists in executing one

instruction. Let us assume that instruction i, a x2-instruction, is applied to number n.

It can be managed that: T(2N * n + 2’) = 2N * 2n + 2’+’ if d = 2N * 42, and for

Y = 2N t t + 2’, p(r) = 2N * 21, q(r) = 2N * t + 2(i + 1) - 2’.

By analogy it is possible to replace the execution of the instructions of other

types by computing function T(n), if the following features are taken into

consideration:

T(n) = 2n for d = 42, p(r) = 21, q(r) = r;

T(n) = 3n for d = 42, p(r) = 28, q(r) = 2r;

T(n) = 5 . n for d = 42, p(r) = 6, q(r) = ;.

The machine, the program of which is given below, computes the iterations of fimc-

tion T(n) under some encoding with the condition that the extension of initial config-

urations should belong to the set of {p”}, where p is a fixed word on the machine

alphabet.

Here is the program of machine T:

aQR5a cr6R6y ~2R5p

ctlR4jI /IOR5/I y3R5y

a2LOa BlR4/? 6OLO6

L. Pavlotskayal Theoretical Computer Science 168 (1996) 257-266 263

a3R5u P3R5S 62L20:

ct4Llcr YQR5Y 63Rl6

ci5LOa ylR1~

Word p is of the form

p = cod(O). . . cod(r). . . cod(d - l),

where cod(r) = 2 if Y E (~10,. . .,qo} and, if r $ {rio,. . , ,Y,o},

cod(r) = 30P(‘)2 for r f p(r) < d,

cod(r) = 33OP(‘)2 for Y + p(r) 2 d.

Here still is used another property of the functions whose iterations are computed

by the machines built in [2]. These dictions are such that if remainder r is obtained

during the computation, then r+ 1 never appears afterwards as a remainder. This is the

reason why after cod(r), it is possible to put cod(r + 1) in word p, where the latter

cod is defined by

cod@ + 1) = 31+10q(r)-‘2,

where t is the number defined by

Machine T simulates the computation of function r(n) by transforming the configu-

ration attached to nk by the one which is attached to nk+l. Each configuration attached

to a given nk has the form:

(I) 611 . . . 144.. .4 2 (3) 00.. .O 2 cod[rk + 11.. .cod(d - 1)pp.. .

where * indicates the machine head position.

This represents the encoding of nk in the following meaning:
_ the number of l’s is mk,
_ the number of 4’s is k + 1,
_ the head is in state /? and is scanning the lirst symbol in cod(rk).

Computations shall be considered on configurations with extensions in set {p”}. In

that case, finite extensions are beginnings of a periodic sequence and these extensions

can be found if it is assumed that the tape cells on the right hand of the initial

configuration do contain that sequence starting from the beginning.

Notice that symbol 5 plays a special role during the computation. If the head

had replaced symbol x by 5 in a cell, the later computation does not depend on

what happens in that cell. In that case, say that the head has erased symbol n. In-

deed, the head may write symbol 5 in the scanned cell, only while moving to the

right. Consequently, it may come back to this place only in state a since all left

instructions lead to state ~1. When this happens, the head performs instruction cr5LOa and

264 L. Pavlotskayai Theoretical Computer Science 168 (1996) 257-266

it may later come on this 0 being in state 01, fi or y. In all these cases, it writes

again symbol 5 and remains in the same state. For this reason, we shall not write

symbols 5 in the representations of configurations when doing this makes things more

simple. Notice that these symbols may be placed only on the left side of the head.

In the same way, say that the head erases symbol 2 when it performs instruction

cr2LOa.

Consider now machine T computation starting from configuration (I). The head

first erases the first 3, then replaces the possible second one by one while perform-

ing instructions 6ORO6 and 62L2c(. Configuration (I) is now transformed into the

following:

(II) 611...144...4 (1) OO...! 2 cod[rk+ l]...cod(d- l)pp...

Starting from this time, the head remains in state a and erases one 0. It goes then

rightward, erasing all symbols until it meets the first 2, also erasing this symbol. Then

it moves leftward until it reaches the first occurring 2, erases that symbol and then

erases all symbols on the right side until it reaches the next symbol 2, repeating this

cycle until the configuration looks like the following:

(III) 611 . . . 144...4 (1) 55...2 0 cod[rk+t]...cod(d - l)pp...

The head erases the p(k) O’s which lie on its right, also counting the 0 it is scanning

in configuration (II) under state a. Starting from this time it goes to the right, looking

after the next 1, then replacing it with 4, turning to state /I and, remaining under

that state, moving to the right until it reaches the first occurring 3 in the encoding of

remainder rk+i .

Configuration (III) is replaced by

(IV) 611 . . . 144.. .4 (4) z(3) 00.. .02 COd[rk+l + 11.. .

The number of 4’s in (IV) is by 1 greater than that number in configuration (I). The

number of l’s is unchanged when, in configuration (I), cod[rk] contains two symbols 3,

which matches condition m&l = mk when rk + p[rk] ad. When the latter condition

does not hold and, consequently, cod[rk] contains a single 3, the number of l’s in (IV)

is equal to mk - 1.

When the machine reaches configuration (III) with the form

6444 . . ,455.. . $0 cod[rk+i]. . .

its head is under state a, and it moves to the left until it reaches the first cell, containing

symbol 6. At this point, it turns to state y and, remaining in that state, it reaches cod[rk],

erasing that word and turns to state B as it reads the first symbol of cod[rk+i + l] which

has the form

L. Pavlotskaya I Theoretical Computer Science 168 (1996) 257-266 265

Now, the word lying to the left of the head reads as 61k+‘, with 5’s being skipped.

Starting from that time, the machine works as it did while beginning the computation on

configuration (I): after erasing all O’s contained in that encoding, it finds the nearset 1

on its left, changes it into 4 and moves to the beginning of the encoding, which is the

starting configuration for computing the next iteration of function T(n):

6 lk+’ l’-’ 4 3(3)00
*

. . .02 cod[r + l] . . . cod(d - 1)pp . . .

The head is in state /?, and Y is the remainder in the division of rk+l + q[rk+r]

by d. When Y belongs to the set of remainders which indicates that the computation

is completed, cod(r) is 2 and the head halts since there is no instruction with 82 as

input couple and in this case the result of the computations is (k + t)d + r.

7. Conclusion

As previously indicated, we give here the construction of a very simple machine for

a special case of automaton extensions, namely, periodic ones. The reader may wonder

what happens with more complex automaton extensions. Is it possible to get more

simple machines with the counterpart of a more complex automaton? The answer to

this question is yes. The author is preparing with Maurice Margenstern a paper which

gives more simple Turing machines which are universal on automaton extensions. In

the technical report [4], two such machines are constructed: one with 8 instructions

and another with 5 instructions. On the other hand, in a paper in preparation with the

same co-author, it will be proved that machines with 4 instructions can never fail to

have a decidable halting problem on automaton extensions.

Acknowledgements

High Tech. EV No 950525 grant given by NATO Scientific Affairs Division has

provided the best conditions for writing this paper as well as the technical report [4]

in collaboration with Maurice Margenstem.

References

[l] M.D. Davis, A note on universal Turing machines, in: C. Shannon and J. McCarthy, eds., Automata

Studies (Princeton University Press, Princeton, NJ, 1956) 167-175.

[2] M. Margenstem and L. Pavlotskaya, Deux machines de Turing universelles a au plus deux instructions

gauches, Comptes Rendus de I’AcadPmie des Sciences (Paris) 320 (I) (1995) 1395-1400.

[3] M. Margenstem and L. Pavlotskaya, Deux machines de Turing universelles: I’une sur (0, 1) avec deux

instructions gauches, I’autre sur { 0, 1,2} avec une seule instruction gauche, LITP Research Report No.

95.25, Institut Blaise Pascal, 1995.

[4] M. Margenstem and L. Pavlotskaya, Vers une nouvelle approche de l’universalite concemant les machines

de Turing, LITP Research Report No. 95.58, Institut Blaise Pascal, 1995.

266 L. Pavlotskaya I Theoretical Computer Science 168 (1996) 257-266

[5] M.L. Minsky, Computation: Finite and Znjinite Machines (Prentice-Hall, Englewood Cliffs, NJ, 1967).

[6] L.M. Pavlotskaya, Sur les systemes de calcul, Actes de MCU95/UMc’95 Proc. (1996) 168-177, to

appear.

[7] 1u.V. Rogozhin, Sem’ universal’nikh machin T’juringa, Matematicheskie Zssledovanija, 69, Kichinev,

Moldova (1982) 76-90.

[8] 1u.V. Rogozhin, Small universal Turing machines, this TCS special issue.

