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Abstract 

A new definition of universal Turing machines is introduced which allows to obtain universal 
Turing machines with a very small number of program instructions. Here such a program with 
only seventeen instructions is supplied. 

1. Introduction 

According to the definition first formulated by Davis [l], a Turing machine is uni- 

versal if the set of its configurations leading to a completed computation is m-complete. 

The law of succession between configurations in the computing process which is 

assumed by this definition reflects our intuitive representation of algorithms applied 

to a set of finite objects. In particular, it is assumed that each time the machine head 

goes out of a word, it always reads the same symbol, called blank, in a cell which it 

did not previously visit. But, in order to simulate any kind of computations, a universal 

machine may use a non-recursive set of “codes” and, in that case, the machine cannot 

itself define the end of the word which is the code of a certain computation. This means 

that the notion of “word end” for the machine itself loses its meaning. However, if it 

is demanded that the set of codes should be recursive, then the definition of universal 

machine would become unapplicable. 

It seems to us that the following property of universality does not correspond to the 

intuitive representation of machines on which it is possible to simulate the computation 

of any other machine. In general, it is impossible to restore the result of the simulated 

computation from the result obtained by the universal machine. If the simulated machine 

computes function f(n), then, in order to obtain this value by the universal machine, it 

is necessary to make two copies of that machine run f(n) times, each time finding new 

initial configurations. It seems that our informal representation of universal machine 

does not completely correspond to the formal one. 
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Putting aside the question of which of the below-considered machines could be con- 

sidered as universal from the intuitive point of view, we define below Turing machines 

which are universal on certain sets of extensions and we give such an example of 

a machine, the program of which contains 17 instructions and which is universal on 

periodic extensions. 

In [7,8], an example of a universal machine is given with a program containing 

23 instructions. No universal machine in the traditional meaning with a shorter program 

has yet been known. 

2. Basic definitions 

We consider Turing machines, the tape of which is infinite in one direction, from left 

to right, with X = {x1,x2,. . . , xm} as the alphabet of input symbols, Q = (41, q2,. . . , ql} 
as the set of states of the machine head and with a program, containing instructions of 

the form qix+xkql, where M is the symbol of move to the right (R) or to the left (L). 

The execution of such a command consists in replacing in the scanned cell symbol xj 

by symbol xk, setting the head in state ql instead of qi, and moving along the tape by 

one cell to the right if A4 = R, and by one cell to the left if M = L. If the head is in 

state qi and reads xi, and if the program has no instruction beginning with qixj, then 

the computation halts. 

Let the tape cells be numbered 1,2,. . . The piece of the tape constituted of cells 

numbered i, i + 1 ,. . .,j is denoted [i,f. Consider that at the initial time, word x is 

written on [l, Ix]], where 1x1 is the length of word x, and that the head reads one of 

the corresponding cells. By word written on the tape at a given step of computation, 

we understand the initial word or the word obtained by recording on the initial one 

the symbols contained in all the cells on the right hand of [ 1,1x1] that were visited by 

the head up to the considered time. 

Call machine configuration the set consisting of word x = xi, , . .-Xi, written on the 

tape, of the state of the head, say qi and of the number of the scanned cell. The 

set of these data can be written as a single word xi, . . . qiXik . . . xi,, which we also call 

configuration. 

If during the computation starting from configuration K, the head does not go out 

of the ends of that part of the tape which contains word x, we shall consider that the 

computation on K is defined and, in that case, it can be finite or infinite. In the other 

case, the computation on K is not defined and call extremal conjiguration word x’qj 

if at that moment of exiting out of the word end, word x’ is written on the part [l, lx]] 

and the head is under state qj. 

Definition 1. Call word p finite extension of extremal configuration xqi if the compu- 

tation on configuration xqip is defined and finite. Call also word p finite extension for 

those configurations such that the computation starting from them leads to configura- 

tion xqi. 
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3. Machines which are universal on a set of configurations 
with extensions belonging to a given set 

Let 37 be the set of configurations of machine F and let X&(9) be the set of those 

configurations of X for which either the computation is defined and finite or there are 

finite extensions belonging to set 9. 

Assume that a numbering is put on the set of all configurations. 

Definition 2. Call a Turing machine universal on the set X of configurations with 

extensions in 9 if X&(P) is m-complete. 

Assume that F is universal in our sense. How F can be used in order to simulate 

machine 2 computing function fz(n) in the natural encoding? By definition, it follows 

that there is a recursive function g(n) such that jjj(n) is defined if and only if g(n) is 

the number of a configuration from X&(P). 

Let 120 be an integer. Let us make F start its computation from configuration KO 

with number g(na). If the computation on Ka is defined and finite then function fi(n) 

is defined for n = no. When the computation is defined an infinite, function fi(n) is 

not defined for n = no. In the case when the computation on KO is not defined the 

machine reaches a certain extremal configuration xqi. Let us now make F compute on 

configuration xqipt where p1 E 8. If the new computation is defined and finite, word 

p1 is a finite extension of configuration xqi and in this case function &(n) is defined 

for n = no. In the case when the new computation is defined and infinite or it is not 

defined, let us start the computation from configuration xqipz with p2 E 9 and let us 

find out if p2 is a finite extension of configuration xqi. If 9 is recursively enumerable 

and f~(na) is defined, this process will come to an end and a finite extension of 

configuration xqi will be found. 

Consequently, when 9’ is a set of words on an alphabet with more than one symbol, 

it is difficult to use a machine which is universal on configurations with extensions in 9 

in order to simulate arbitrary computations. For this reason, it is interesting to consider 

machines which are universal on extension sets with a structure easily allowing to find 

finite extensions or to get convinced that there are no extensions. 

4. Existence of a machine with a decidable halting problem and 
universal in the new meaning 

It is known that there is a Turing machine with (0, 1) as input alphabet and 41,. . . , qs 

as states which is universal in the traditional meaning on the set of configurations of 

the form 411”. Let F be one of these machines and let F computations halt only when 

the machine head is in state qj and it sees symbol x (with x being either 0 or 1). Then 

the set Fc, of configurations of the indicated type on which the computation halts is 

m-complete. 
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Let us transform F into the new machine G with (0, 1,2} as input alphabet and let 

us append the following instructions to the program of F: 

qi2R2U, a2R2a, EOROE, alRla (i = 1, . . . ,s) 

q$xP, POROP, BlRlB 

In the program of G, instructions beginning with 82 are missing. It clearly follows 

from that how to transform the program of F which contains halting instructions dif- 

ferent from qjX in the program of G such that the latter should contain a “halting” 

instruction with “82”. 

The set of all configurations of machine G of the form 411” for which there are finite 

extensions belonging to {Ok2} coincide with Fh,. Consequently, this set is m-complete 

and machine G is universal on X = (41 1”) with extensions in 9 = {Ok2}. 

The halting problem for machine G is decidable on X, not depending on which 

symbol among 0 and 2 is taken as the blank symbol. Indeed, machine G does not halt 

when, starting on configuration q1 l”, it will always encounter symbol 0 on cells IZ + 1, 

n+2,... On the other hand, when all these cells contain symbol 2, the machine, going 

out of the word, will halt if it is in state /I and will move for ever to the right if it 

went out of the word in another state. 

Accordingly, the following theorem holds: 

Theorem. There are machines which are universal on a set X of configurations with 
extensions in a certain set S for which the halting problem on X is decidable. 

5. Universal machines on computable extensions 

Let us consider computations of machine G with extensions p = Ok. If the com- 

putation leads to a new extremal configuration, it is enough next to consider Ok+’ as 

a finite extension if the machine head went out of the word in state qi, i = 1,. . . , s, 

and Ok2 if the head went out in state /I. This means that there is an algorithm, a 

single one for all configurations, with which it is possible to organize the determined 

computations with G which will be finite only on those configurations for which there 

are finite extensions. Under these considerations, the algorithm computing the next 

symbol in the possible finite extensions can be provided by a finite automaton with 

Q = (41, . . . , qs, /3} as input alphabet and { 0,2} as output alphabet. 

Machines of this kind will be called universal machines on computable or determined 

extensions. 

In the general case, assume that extensions of all computations of F on X leading 

to extremal configurations are uniquely defined by algorithm A, i.e. for each extremal 

configuration Xqi algorithm A defines symbol xi (depending in the general case on 

x and qi) for defining configuration xqixj starting from which the computation is to 

be continued. Let us denote by &&(A) the set of configurations of .X on which the 

computation halts. 
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Definition 3. A Turing machine is universal on computations with extensions by algo- 

rithm A if X&,(A) is m-complete. 

If it is allowed to take as A an algorithm of any complexity, the machine with the 

following program, q1 Mlql, qlOROq2, qzOROq1, is universal on configurations {q, 1”) 

with extensions {O”l} determined by a universal machine. Notice that such a machine 

is not universal on any fixed set of extensions, i.e. in the meaning of Definition 2. 

6. Turing machines, universal on automaton extensions 

There are machines for which computable extensions can be supplied by a finite 

automaton. Let us call such Turing machines machines with automaton extensions. 
Let A be a finite automaton with states S = {si,. . . ,sr}, with Q = (41,. . . ,qe} as 

input alphabet and X = {xi,. . . , xm} as output alphabet. Its working is given by two 

functions p : S x Q + X and d : S x Q -+ S. 

Deterministic computations on Turing machines using automata run as follows. 

Let the machine reach extremal configuration xqi and let the automaton be in state sj 

at this time of the computation. Symbol p(sj,qi) is then written in the cell on which the 

machine head went out, and the automaton goes to state d(sj,qi). Later, the machine 

performs its computation starting from configuration xqip(sj,qi) and the automaton 

stays in state d(sj,qi) until the machine reaches the next extremal configuration. At 

initial time, the automaton is in a distinguished state called initial state. 

Machines which are universal on extensions computed by using this algorithm are 

called universal Turing machines on automaton extensions. 
An example of a machine which is universal on periodic extensions, hence, on 

automaton extensions, is given below. 

The universal Turing machines with a single left-hand instruction obtained in [2] 

compute consecutive iterations of a function belonging to a special kind. Denote T(n) 
such a function. Let number d 22 be fixed and let functions p(r) and q(r) be given 

for Odr < d, with p(r) < d. Starting from n = no, a sequence of numbers, say nk, is 

obtained. For each nk let mk and rk respectively denote the quotient and the remainder 

in the division of nk by d. Let us then define nk+i as follows: 

nk+l = nk - d + PC’-k) if mk # 0, 

nkfl = k . d + rk + q(rk) if mk = 0. 

When mk = 0, T(n) is computed and then T(n) = nk+l. 
The process of computing iterations of T halts if remainder rs takes one of the 

values of some finite set i.e. rs E (~-10,. . .,Y[o}. 

It follows from [2,3] that for any partial recursive function f(n) there is such a 

function T(n) that we have: the process of computing the iterations of T(n) for numbers 

of the kind C*22n+2 halts if and only if f (n) is defined and in this case the result of the 
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computation is C*(22”“*7g(“)+ 1). Here C = 2N, where N is the number of instructions 

in Minsky’s machine used to compute function f(n). 

If he/she wants to know the details of the proof of the latter result, the reader 

can be recommended papers [2,3]. Here is only outlined the basic idea for obtaining 

function T(n). 

It is known that for any partial recursive function f(n) there is a Minsky machine 

transforming 22’ into 22”“‘, the program of which contains instructions of the following 

types: x2, x3, /6,a, halt instruction, see for instance [5]. Executing instructions of the 

first two types consists in multiplying the given number by 2 or 3, respectively, and 

turning to the execution of the next instruction. Executing instructions of the third type 

means to divide the given number by 6 and the execute instruction number a if the 

number is divisible by 6. If the number is not divisible by 6, then the machine executes 

the next instruction. 

Let us change each instruction of type three in this algorithm into instruction +n/6, a, 
the execution of which has the same sense with the only difference that if the given 

number is divisible by 6 it is multiplyed by g. This algorithm transforms 22” into 

22 ‘W * 7g(“) where g(n) is the number of multiplications by 5 occurring during the 

computation process. 

Let the instructions of this algorithm be numbered 1,2,. . . , N, where N is the number 

of the halt instruction. Then any step of the computation consists in executing one 

instruction. Let us assume that instruction i, a x2-instruction, is applied to number n. 

It can be managed that: T(2N * n + 2’) = 2N * 2n + 2’+’ if d = 2N * 42, and for 

Y = 2N t t + 2’, p(r) = 2N * 21, q(r) = 2N * t + 2(i + 1) - 2’. 

By analogy it is possible to replace the execution of the instructions of other 

types by computing function T(n), if the following features are taken into 

consideration: 

T(n) = 2n for d = 42, p(r) = 21, q(r) = r; 

T(n) = 3n for d = 42, p(r) = 28, q(r) = 2r; 

T(n) = 5 . n for d = 42, p(r) = 6, q(r) = ;. 

The machine, the program of which is given below, computes the iterations of fimc- 

tion T(n) under some encoding with the condition that the extension of initial config- 

urations should belong to the set of {p”}, where p is a fixed word on the machine 

alphabet. 

Here is the program of machine T: 

aQR5a cr6R6y ~2R5p 

ctlR4jI /IOR5/I y3R5y 

a2LOa BlR4/? 6OLO6 
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a3R5u P3R5S 62L20: 

ct4Llcr YQR5Y 63Rl6 

ci5LOa ylR1~ 

Word p is of the form 

p = cod(O). . . cod(r). . . cod(d - l), 

where cod(r) = 2 if Y E (~10,. . .,qo} and, if r $ {rio,. . , ,Y,o}, 

cod(r) = 30P(‘)2 for r f p(r) < d, 

cod(r) = 33OP(‘)2 for Y + p(r) 2 d. 

Here still is used another property of the functions whose iterations are computed 

by the machines built in [2]. These dictions are such that if remainder r is obtained 

during the computation, then r+ 1 never appears afterwards as a remainder. This is the 

reason why after cod(r), it is possible to put cod(r + 1) in word p, where the latter 

cod is defined by 

cod@ + 1) = 31+10q(r)-‘2, 

where t is the number defined by 

Machine T simulates the computation of function r(n) by transforming the configu- 

ration attached to nk by the one which is attached to nk+l. Each configuration attached 

to a given nk has the form: 

(I) 611 . . . 144.. .4 2 (3) 00.. .O 2 cod[rk + 11.. .cod(d - 1)pp.. . 

where * indicates the machine head position. 

This represents the encoding of nk in the following meaning: 
_ the number of l’s is mk, 
_ the number of 4’s is k + 1, 
_ the head is in state /? and is scanning the lirst symbol in cod(rk). 

Computations shall be considered on configurations with extensions in set {p”}. In 

that case, finite extensions are beginnings of a periodic sequence and these extensions 

can be found if it is assumed that the tape cells on the right hand of the initial 

configuration do contain that sequence starting from the beginning. 

Notice that symbol 5 plays a special role during the computation. If the head 

had replaced symbol x by 5 in a cell, the later computation does not depend on 

what happens in that cell. In that case, say that the head has erased symbol n. In- 

deed, the head may write symbol 5 in the scanned cell, only while moving to the 

right. Consequently, it may come back to this place only in state a since all left 

instructions lead to state ~1. When this happens, the head performs instruction cr5LOa and 
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it may later come on this 0 being in state 01, fi or y. In all these cases, it writes 

again symbol 5 and remains in the same state. For this reason, we shall not write 

symbols 5 in the representations of configurations when doing this makes things more 

simple. Notice that these symbols may be placed only on the left side of the head. 

In the same way, say that the head erases symbol 2 when it performs instruction 

cr2LOa. 

Consider now machine T computation starting from configuration (I). The head 

first erases the first 3, then replaces the possible second one by one while perform- 

ing instructions 6ORO6 and 62L2c(. Configuration (I) is now transformed into the 

following: 

(II) 611...144...4 (1) OO...! 2 cod[rk+ l]...cod(d- l)pp... 

Starting from this time, the head remains in state a and erases one 0. It goes then 

rightward, erasing all symbols until it meets the first 2, also erasing this symbol. Then 

it moves leftward until it reaches the first occurring 2, erases that symbol and then 

erases all symbols on the right side until it reaches the next symbol 2, repeating this 

cycle until the configuration looks like the following: 

(III) 611 . . . 144...4 (1) 55...2 0 cod[rk+t]...cod(d - l)pp... 

The head erases the p(k) O’s which lie on its right, also counting the 0 it is scanning 

in configuration (II) under state a. Starting from this time it goes to the right, looking 

after the next 1, then replacing it with 4, turning to state /I and, remaining under 

that state, moving to the right until it reaches the first occurring 3 in the encoding of 

remainder rk+i . 

Configuration (III) is replaced by 

(IV) 611 . . . 144.. .4 (4) z(3) 00.. .02 COd[rk+l + 11.. . 

The number of 4’s in (IV) is by 1 greater than that number in configuration (I). The 

number of l’s is unchanged when, in configuration (I), cod[rk] contains two symbols 3, 

which matches condition m&l = mk when rk + p[rk] ad. When the latter condition 

does not hold and, consequently, cod[rk] contains a single 3, the number of l’s in (IV) 

is equal to mk - 1. 

When the machine reaches configuration (III) with the form 

6444 . . ,455.. . $0 cod[rk+i]. . . 

its head is under state a, and it moves to the left until it reaches the first cell, containing 

symbol 6. At this point, it turns to state y and, remaining in that state, it reaches cod[rk], 

erasing that word and turns to state B as it reads the first symbol of cod[rk+i + l] which 

has the form 
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Now, the word lying to the left of the head reads as 61k+‘, with 5’s being skipped. 

Starting from that time, the machine works as it did while beginning the computation on 

configuration (I): after erasing all O’s contained in that encoding, it finds the nearset 1 

on its left, changes it into 4 and moves to the beginning of the encoding, which is the 

starting configuration for computing the next iteration of function T(n): 

6 lk+’ l’-’ 4 3(3)00 
* 

. . .02 cod[r + l] . . . cod(d - 1 )pp . . . 

The head is in state /?, and Y is the remainder in the division of rk+l + q[rk+r] 

by d. When Y belongs to the set of remainders which indicates that the computation 

is completed, cod(r) is 2 and the head halts since there is no instruction with 82 as 

input couple and in this case the result of the computations is (k + t)d + r. 

7. Conclusion 

As previously indicated, we give here the construction of a very simple machine for 

a special case of automaton extensions, namely, periodic ones. The reader may wonder 

what happens with more complex automaton extensions. Is it possible to get more 

simple machines with the counterpart of a more complex automaton? The answer to 

this question is yes. The author is preparing with Maurice Margenstern a paper which 

gives more simple Turing machines which are universal on automaton extensions. In 

the technical report [4], two such machines are constructed: one with 8 instructions 

and another with 5 instructions. On the other hand, in a paper in preparation with the 

same co-author, it will be proved that machines with 4 instructions can never fail to 

have a decidable halting problem on automaton extensions. 
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