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Abstract

A partial wave analysis of̄pp→ ηηπ0 data from the Crystal Barrel experiment is made in terms ofs-channel resonances.
The decay channelsa0(980)η, f0(1770)π andf0(2105)π provide evidence for twoI = 1, JPC = 0−+ resonances. The first
has massM = 2360± 25 MeV and widthΓ = 300+100

−50 MeV, and the secondM = 2070± 35 MeV,Γ = 310+100
−50 MeV. There

is also evidence for aJPC = 2−+ state withM = 2005± 15 MeV andΓ = 200± 40 MeV, decaying strongly toa0(980)π.
 2001 Published by Elsevier Science B.V.

The present work is part of an analysis ofp̄p
annihilation with isospinI = 1 and charge conjugation
numberC = +1 in terms of s-channel resonances.
A combined analysis of data from final states 3π0,
π0η and π0η′ is reported separately [1]. Here we
focus attention on annihilation toηηπ0. In these
data, signals are visible from final statesa0(980)η,
f0(1500)π, f0(1770)πandf0(2105)π. They carry no
spin and may be analysed simply in terms of Legendre
polynomials describing the production process.

We find that the largest contributions toηηπ0 data
arise from S-wave final states withJP = 0−; those
from 1+, 2−, 3+ and 4− are somewhat smaller.
Hence these data give a rather direct determination of
contributions with quantum numbers 0−. In contrast,
3π0 data contain weak 0− contributions from the final
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statef2(1270)πwith orbital angular momentumL=
2 in the decay process. There, the 0− amplitude is hard
to separate from largerL = 2 f2(1270)π amplitudes
with JP = 2− and 4−.

Theηηπ0 data treated here have been presented in
two earlier publications [2,3]. They may be fitted with
the channels

(1)p̄p→ a0(980)η,

(2)→ a2(1320)η,

(3)→ a2(1660)η,

(4)→ f0(1500)π,

(5)→ f0(1770)π,

(6)→ f0(2105)π,

(7)→ f2(1980)π,

(8)→ f2(1270)π.

Fig. 1 shows Dalitz plots for data at all nine beam
momenta. Figs. 2 and 3 show projections on to masses
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Fig. 1. Dalitz plots for data; numbers in each panel indicate beam momenta in MeV/c.

of πη andηη combinations; histograms show the fit
described below. There are clear peaks in Fig. 3 due
to f0(1500)→ ηη, and in Fig. 2 due toa0(980)and
a2(1320)→ πη. The latter two are stronger than is
immediately apparent from the figure, since thea0
anda2 peaks originate from only one of the twoπ0η

combinations, e.g., fromπ0η1; the other combination
π0η2 produces a broad background when projected on
toM(π0η1), as one sees from Dalitz plots.

In Ref. [3], it was shown that a small but highly
significant peak in theηη channel requires the pres-
ence off0(1770)at beam momenta 900–1350 MeV/c.
In Ref. [2], it was also shown that data at 1525–
1940 MeV/c require a strongf0(2105)→ ηη signal.
That resonance has also been observed inp̄p → ηη

[4] and was first identified inJ/Ψ → γ (4π) data [5],
wheref0(2105)→ σσ , andσ stands for theππ S-
wave amplitude. Ref. [2] also presented evidence for

a broad 2+ signal inηη with M = 1980± 50 MeV,
Γ = 500± 100 MeV. There is further evidence for
this broad state in WA102 data on central production
of 4π [6].

We now describe the partial wave formula, given by
Eq. (9) below, used to fit the data. This is the same
as in the accompanying paper [1]. A full fit is made
to production and decay of all channels (1)–(8) in
terms ofp̄p partial waves up toJP = 4−. Each par-
tial wave has a distinctive dependence via relativis-
tic tensor expressionsZ(θ,α,β) on production angle
θ of each resonance in the centre of mass, and on
its decay angles(α,β) in the rest frame of the reso-
nance. The energy dependence of each partial wave
amplitude is expressed as the sum of up to twos-
channel resonances plus a background. These reso-
nances, described by simple Breit–Wigner functions
of s with constant widths, are found to cluster in the
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Fig. 2. Projections on toηπ mass; histograms show the partial wave fit. Numbers in each panel indicate beam momenta in MeV/c.

mass ranges 1930–2070 MeV and 2220–2360 MeV.
The background, where required, is taken as the high
energy tail of a resonance below thēpp threshold.
This parametrisation guarantees that partial wave am-
plitudes satisfy the necessary condition of analytic-
ity, relating the energy dependence of magnitudes and
phases.

Blatt–Weisskopf centrifugal barrier factorsB�(p)
andBL(q) are included in the partial wave amplitudes;
B�(p) incorporates the correct threshold dependence
on momentump in the p̄p channel for initial orbital
angular momentum�, andBL(q) likewise describes
the dependence onL and momentumq in the decay
to the final state, e.g.,a0(980)η. The radius of the
barrier is set to 0.83 fm from the determination
in Ref. [4]. The a0(980) amplitude for decay to
particles 1 and 2 is described by a Flatté formula
F(s12) and other resonances are described by Breit–
Wigner amplitudes. In summary, the full partial wave

amplitude for channel (1), as an example, is given by

f =
√
ρp̄p

p
B�(p)BL(q)

∑

i

Gi

M2
i − s − iMiΓi

(9)× [
F(s12)Z12 + F(s23)Z23

]
,

whereGi are complex coupling constants and the
sum i is overs-channel resonances and background.
Fitted parameters areGi , Mi andΓi . The factor 1/p
accounts for the flux in the entrancēpp channel,
andρp̄p is the phase space for this channel, 2p/

√
s.

Near thep̄p threshold, the S-wave cross section is
then proportional to 1/p

√
s, the well-known 1/vlaw.

In Fig. 4 below, fitted cross sections will be shown
multiplied by ps1/2, so as to display the resonant
behaviour free of kinematic factors. The phase space
for the final state is accommodated in fitting the Dalitz
plot.

The parameters of each resonance are scanned in at
least 7 steps over a range of typically±100 MeV. For
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Fig. 3. Projections on toηη mass; histograms show the partial wave fit. Numbers in each panel indicate beam momenta in MeV/c.

all quantum numbers other than 0− and 2−, masses
and widths are determined less precisely byηηπ0 data
than by 3π0, but are consistent with Ref. [1] within
errors. The 3π0 data have statistics> 100 000 events
per momentum whereas present data have typically
5000–9000 events at each momentum.

Columns 3 and 4 of Table 1 summarise masses
and widths fitted to present data. Errors cover sys-
tematic variations between decay channels; they also
cover variations depending on whether small compo-
nents are included in the fit or are omitted. Table 2
gives a quantitative picture of the significance of each
component in the fit. It shows changes in log likeli-
hood when each channel is dropped and the remain-
der are re-optimised. Our definition of log likelihood
is such that it changes by 0.5 for a one standard devi-
ation change in one parameter. Hence a change in log
likelihood of 20 is rather significant (∼ 5σ , bearing in
mind the number of fitted parameters).

The black circles on Fig. 4a show the integrated
cross section divided by a factor 3, for comparison
with those of individual channels. These individual
contributions are lower because strong constructive
interference between channels contributes positively
to the integrated cross section. There is a sizeable
cross section for the final statea2(1320)η, see the
dotted curve of Fig. 4a. However, it does not yield
new physics. This channel comes largely from̄pp
triplet states withJP = 1+, 2+ and 3+. Resonances
in these partial waves are better determinated by
3π0 data, where statistics are very high and there
are strong decays tof2(1270)π. The contribution to
present data fromJP = 4+ is negligible, probably
because of theL = 3 centrifugal barriers for both
production and decay. There is a small (7%) intensity
from f2(1270)π0, but it has little effect on other fitted
amplitudes. We find no significant contribution from
f ′

2(1525)or f2(1565)at any momentum.
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Fig. 4. Values ofX = cross sections multiplied byps1/2 for individual channels. (a) black circles show the overall cross section scaled by
1/3 for comparison with summed contributions tof0(1500)π, a2(1320)ηanda0(980)η from all JP. (b) 0− contributions: the full curve is the
summed intensity fromf0(1500)π; remaining curves refer toa0(980)η; the dashed curve is the combined intensity from all resonances, the
dotted curve the coherent sum ofπ(1800)andπ(2070); the chain curve refers toπ(2360). (c) and (d): 0− and 2− intensities from individual
channels. (e): summed 1+ and 3+ signals and that from 2+ → [f2(1980)π]L=1. (f), (g) and (h): variations of log likelihood lnL with mass
for π(2070), π(2360)and the low massπ2 → a0(980)ηsignal.

For JP = 0−, three resonances are included. One,
π(1800), is below thep̄p threshold and may simulate
physics background. Two further resonances at 2070
and 2360 MeV are needed and are sufficient to provide
a good fit to the data. Fig. 4b and c show 0−
contributions to the cross section.

We discuss the highest 0− state first. It receives
large contributions fromf0(2105)π, shown by the
dashed curve on Fig. 4c, and froma0(980)η. The
f0(2105) appears only in S-wave production and is
very secure. Thef0(1500)π channel makes only a
small contribution withJP = 0− from both resonances
at 2360 and 2070 MeV, shown by the full curve

of Fig. 4b. Table 2 shows thata0(980)η makes
decisive contributions to both resonances at 2360
and 2070 MeV. For thea0(980)η channel, there is
large interference between the upper and lower 0−
resonances; the combined contribution is shown by
the dashed curve of Fig. 4b. Despite this interference,
contributions froma0(980)η are very stable. This
channel andf0(2105)π agree closely on a mass
M = 2355± 25 MeV for present data. The cross
section for production off0(2105)π rises at high
mass faster than phase space for that channel and
requires production throughπ(2360). Fig. 4g shows
the variation of log likelihood as the mass is varied.
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Table 1
Columns 3 and 4 show masses and widths of resonances fitted to
ηηπ0 data. Columns 5 and 6 show masses and widths from weighted
averages with fits to 3π0, π0η andπ0η′

Name JP M (MeV) Γ (MeV) M (MeV) Γ (MeV)

π 0− 2070± 35 310+100
−50 2070± 35 310+100

−50

π 0− 2355± 25 270+100
−50 2360± 25 300+100

−50

π2 2− 1990± 30 290± 60 2005± 15 200± 40

π2 2− – – 2245± 60 320+100
−40

π4 4− 2255± 30 185± 60 2250± 15 215± 25

a1 1+ – – 1930+30
−70 155± 45

a1 1+ – – 2270+55
−40 305+70

−40

a2 2+ 2265± 45 295+100
−60 2255± 20 230± 15

a3 3+ – – 2031± 12 150± 18

a3 3+ 2260± 50 250+100
−50 2275± 35 350+100

−50

All fits with a variety of ingredients give masses in
the range 2337 to 2377 MeV. This range is used to
assess the systematic error, which is much larger than
the statistical error. The fit to 3π0 data gives a higher
but distinctly less accurate mass 2385± 45 MeV. The
weighted mean of 2360± 25 MeV fits bothηηπ0 data
and 3π0 well. The width is much less well determined:
Γ = 300+100

−50 MeV.
At lower masses, there is a sizeable contribution

from a0(980)η and also fromf0(1770)π, shown by
the full curve of Fig. 4c. In the previous analysis of
Ref. [3], it was shown thatf0(1770)production peaks
in the momentum range 900 to 1200 MeV/c. Table 2
shows thatf0(1770)πmakes a highly significant con-
tribution of 324 to log likelihood. It is particularly use-
ful, since it is again produced only through the S-wave
and does not contribute toπ(1800), which is too low in
mass. The cross section for production off0(1770)π
does not follow phase space for that channel, but re-
quires production through the resonance at 2070 MeV;
there is very little contribution from the upper 0− state.

From the presentηηπ0 data, the optimum parame-
ters of the lower resonance areM = 2070± 35 MeV,
Γ = 310+100

−50 MeV, where errors are mostly system-
atic. Fig. 4f shows log likelihood against mass when
the background is fitted byπ(1800). However, the
possibility of alternative descriptions of the back-
ground introduces a systematic error of±35 MeV in
the mass determination. The 3π0 data of Ref. [1] also

Table 2
Changes in log likelihood when each resonance is dropped from
the fit, and remaining contributions are re-optimised. In addition
π2(2250)→ a2(1660)πproduces a change of 107 anda2(2255)→
f2(1980)πa change of 363

Resonancea0(980)η f0(1500)π f0(1770)π a2(1320)η f0(2105)π

π(1800) 11 82 – –

π(2070) 272 12 324 126

π(2360) 197 44 9 33 434

π2(1880) – 255 – 176

π2(2005) 531 – – –

π2(2245) 107 10 – 19

π4(2250) 213 – – –

a1(1930) – 22 – 15

a1(2270) 18 77 – 71

a3(2031) 15 164 – 185

a3(2275) 141 37 – 23

a2(1950) – – – 41

a2(2030) – – – 48

a2(2175) – – – 3

require the presence ofπ(2070), but again suffer from
interference with a background term. From those data,
the optimum is at 2090± 65 MeV; the width is large
and poorly determined, 285± 75 MeV. Both sets of
data are well fitted with a mass of 2070± 35 MeV.

The two 0− states lie rather higher in mass than
correspondingI = 0 states [4]. These were observed
at 2010+35

−60 and 2285± 20 MeV. In Ref. [4], all states
were found to lie close to straight-line trajectories
of M2 against radial excitation number, with an
average slope of 1.143± 0.013 GeV2 per excitation.
The spacing of the two 0− states observed here
is consistent with this empirical rule. One cannot
compare accurately withπ(1300)because of the large
uncertainty in its mass. Theπ(1800) is consistent
in mass with the required intermediate state, but
there is evidence from its decay modes in favour of
interpretation as a hybrid [7]. The VES group has also
reported evidence inωρ for a 0− state at 1750 MeV;
this is a favoured decay mode forqq̄ states [7] and
may be the second radial excitation.

We turn now to quantum numbersJP = 2−. In
an earlier publication on the channelηηπ0π0 [8],
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Fig. 5. Angular distributions for production ofa0(980) for events in theηπ mass range 960 to 1020 MeV; histograms show the partial wave fit.
Numbers in each panel indicate beam momenta in MeV/c.

we reported evidence for aπ2 with M = 1880±
20 MeV,Γ = 255± 45 MeV, decaying dominantly to
a2(1320)η. Here, we again find a stronga2(1320)ηS-
wave contribution shown by the full curve of Fig. 4d;
the 2− → [a2η]L=0 amplitude is distinctive because
of its P2(cosα) dependence on the decay angleα
for a2(1320)→ ηπ . The fitted mass and width for
this amplitude are closely consistent with those for
π2(1880). The contribution tof0(1500)π, shown by
the dashed curve in Fig. 4d, is consistent at low masses
with the small branching ratio observed forπ2(1880)
to that channel in Ref. [8].

However, we observe here an additionala0(980)η
contribution withJP = 2−, considerably larger than
that allowed inηηπ0π0 data of Ref. [8]. It would be
conspicuous there, but is absent. Its fitted magnitude
in present data is shown by the dotted curve in
Fig. 4d. Table 2 shows that it makes a very large
improvement in log likelihood, namely 531. Both
a0(980)η and f0(1500)π signals for JP = 2− are

clearly recognisable from their production amplitude
P2(cosθ), which interferes distinctively with the large
0− amplitudes; this interference is clearly visible at
the lowest momenta in the angular distribution against
production angleθ in Fig. 5.

If the 2− → [a0η]L=2 channel is fitted freely, it
optimises atM = 1990± 30 MeV with a width of
290± 60 MeV. The variation of log likelihood with
mass is shown in Fig. 4h. Errors quoted for mass
and width allow for the possibility of moving ana0η

contribution intoπ2(1880)consistent with the upper
limit from Ref. [8]. If the mass and width are set to
those ofπ2(1880), despite the evidence in Ref. [8]
against decays ofπ2(1880)toa0(980)η, log likelihood
is worse by 31. For two degrees of freedom, this is
more than a 7σ effect.

There is further evidence for two distinctπ2 states
from the 3π0 data. They require a strongf2(1270)π
amplitude withL = 2, consistent in mass and width
with π2(1880). Thef2(1270)πamplitude withL= 0
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peaks at a higher mass 2020± 17 MeV with Γ =
165± 35 MeV. The width is considerably less than
found here. However, both those data andηηπ0 are
well fitted with a compromise massM = 2005±
15 MeV and width 200± 40 MeV, together with
π2(1880).

We have earlier found similar evidence for two
neighbouringI = 0, JP = 2− states,η2(1860) and
η2(2030) [9]. The η2(1860) has been confirmed by
WA102 [10]. Two neighbouringJP = 2− states with
I = 1 and different decay modes are then a clear pos-
sibility. If the spacing in mass squared follows the
empirically observed 1.143 GeV2, the radial excita-
tion of π2(1670) is expected at 1985± 20 MeV. Be-
cause two separateπ2 candidates in a narrow mass
range require one of them to be an intruder state (prob-
ably the predicted hybrid), and because both lie at
the bottom of our available mass range, we acknowl-
edge that confirmation is desirable. We present the ev-
idence so that other experimental groups should be
alert to the possibility of two separate states. Present
data are consistent withπ2(1880)accounting for the
entirea2(1320)ηandf0(1500)πsignals; however, we
cannot rule out the possibility that these two channels
are also fed in the present data partly by the second
state at 2005 MeV.

For other quantum numbers, theηηπ0 data are con-
sistent with resonances required by the analysis of
3π0. There is a small but highly significant 3+ peak
at 2260± 50 MeV in the dashed curve in Fig. 4e.
Despite large errors for mass and width, this is ad-
ditional evidence that a 3+ resonance exists in this
mass range. Likewise, there is a distinct peak in the
2− amplitude for production ofa2(1660)π, shown by
the chain curve of Fig. 4d; unfortunately, the determi-
nation of mass and width are poor, both here and in
3π0 data. There is a distinct 4− signal in a0(980)η;
Table 2 shows that it produces a large improvement in
log likelihood of 213. It optimises at 2255± 30 MeV
in present data, very close to the value 2250±15 MeV
for 3π0 data, where there is a large 4− signal. For
JP = 1+, shown by the full curve in Fig. 4e, there is a
definite signal at the higher masses; this is evidence in
favour of the state required in the analysis of 3π0 data
at 2270 MeV. At the bottom of the mass range, a sec-
ond 1+ state gives a small improvement of 37 in log
likelihood. This improvement is sufficient to require
some additional low mass contribution, but is not suf-

ficient to determine the mass and width of any possible
resonance. Table 2 includes small contributions from
2+ states at 1950, 2030 and 2175 MeV; those states
are required by 3π0 data, but contributions toηηπ0

are too small to help determine masses and widths.
A distinctive feature of theηηπ0 data from 1350 to

1940 MeV/c is that they require a strong contribution
from a broadf2(1980)decaying toηη, channel (7). It
is clearly visible by eye in the angular distributions for
decay toηη, see Fig. 4 of Ref. [2]. The data required
the curious property that thef2(1980) is produced
almost purely with spin projectionm′ = ±1 along the
beam direction in the final state. The present analysis
confirms this result but clarifies the reason for the
helicity dependence.

The large contribution from this state is shown by
the dotted curve on Fig. 4e. It peaks at∼ 2265 MeV,
and is well fitted by ana2(2255) which appears
strongly in the analysis of 3π0, π0η andπ0η′ data.
We find that the broadf2(1980)is produced purely by
this a2(2255)decaying tof2(1980)π with L = 1. It
has a ratio of coupling constantsg between3F2 and
3P2 amplitudes ofr2 = g(3F2)/g(

3P2) = −1.9 ± 0.4
for present data; this ratio agrees well with the value
−2.13±0.20 determined in Ref. [1]. With this value of
r2, the final state will be almost purelym′ = ±1 for the
following reasons. Clebsch–Gordan coefficients for
coupling ofp̄p to 3F2 and3P2 are such that the initial
state will be purelym= 0 if r2 = −√

7/2  −1.9. The
m= 0 state decays purely to final states withm′ = ±1,
again because of Clebsch–Gordan coefficients. Thus,
the curious property that thef2(1980) is produced
almost purely withm′ = ±1 seems to be a fortuitous
consequence of the fact that thea2(2255)hasr2 close
to −1.9.

Figs. 5 and 6 show production angular distributions
for a0(980)η andf0(1500)π, selecting events within
one half-width of the resonance mass. All are fitted
quite well. Production and decay angular distributions
for a2(1320)ηare illustrated in our previous publica-
tion [3] and are also well fitted.

In summary, a partial wave analysis ofηηπ0 data
gives masses and widths fors-channel resonances
consistent with those found in the analysis of 3π0 data,
π0η andπ0η′ [1]. ForJP = 0−, theηηπ0 data give the
best determination of the mass and width of the state
at 2360 MeV. An additional 0− state at lower mass is
also required; data from 3π0 andηηπ0 are both well
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Fig. 6. Angular distributions for production off0(1500) in the overall centre of mass for events lying within±60 MeV of the resonance;
histograms show the partial wave fit. Numbers in each panel indicate beam momenta in MeV/c.

fitted with an average mass of 2070±35 MeV. There is
definitely a strongJP = 2− amplitude in thea0(980)η
channel at low masses, much stronger than observed in
Ref. [8] for π2(1880). It suggests a second 2− state at
∼ 2005 MeV, but needs confirmation because both 2−
states are near the bottom of the available mass range.
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