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Abstract

A fourth order transport model is proposed for global computation with the application of multi-moment con-

strained finite volume (MCV) scheme and Yin-Yang overset grid. Using multi-moment concept, local degrees of

freedom (DOFs) are point-wisely defined within each mesh element to build a cubic spatial reconstruction. The

updating formulations for local DOFs are derived by adopting multi moments as constraint conditions, including

volume-integrated average (VIA), point value (PV) and first order derivative value (DV). Using Yin-Yang grid elimi-

nates the polar singularities and results in a quasi-uniform mesh over the whole globe. Each component of Yin-Yang

grid is a part of the LAT-LON grid, an orthogonal structured grid, where the MCV formulations designed for Cartesian

grid can be applied straightforwardly to develop the high order numerical schemes. Proposed MCV model is checked

by widely used benchmark tests. The numerical results show that the present model has fourth order accuracy and is

competitive to most existing ones.
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1. Introduction

Since 1990s, high-resolution GCM (General Circulation Model) simulations have become technically possible

with the rapid development of computer hardware. To develop the high performance global models for such kind

of simulations, researchers began to pay more attentions to computational meshes with global quasi-uniform grid

spacing. So far, the representative advanced spherical meshes include cubed-sphere grid [1], icosahedral-triangular

grid, icosahedral-hexagonal grid [2, 3] and Yin-Yang grid [4].

Cubed-sphere grid is constructed by projecting an inscribed cube onto the sphere. It covers the whole global with

six identical patches, where the curvilinear coordinates are constructed. Cubed-sphere grid eliminates the equation
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singularities and circumvents the convergence of meridian lines near two poles. Its major disadvantage compared

with LAT-LON grid is that the coordinate system might be non-orthogonal and then results in more complicated

numerical formulations. Furthermore, the discontinuous local coordinates along patches boundaries often introduce

extra numerical errors. Conformal cubic grid was proposed in [5] to obtain the continuous local coordinates at patch

boundaries, but at the cost of losing analytical transformation relations. Global quasi-uniform meshes could also be

constructed by projecting the icosahedron onto the sphere and the resulted grids possess considerably uniform grid

spacing. Two kinds of grids, i.e. icosahedral-triangular grid and icosahedral-hexagonal grid, have been becoming

popular in GCM community recently. However, these spherical grids are unstructured in nature. The numerical

models on these unstructured meshes require numerical techniques which are very different from those developed

for the structured grids and are much more complicated. Generally, the numerical models running on unstructured

grids are usually more computational expensive and more challenging for parallel implementations. Meanwhile, it is

usually not a trivial work to develop high order schemes (more than second order accuracy) over an unstructured grid.

Yin-Yang grid (shown in Fig.1) was recently introduced by [4]. Being an overset grid, Yin-Yang grid is constructed

by combining two perpendicularly oriented LAT-LON grid components of low latitude part, which is quasi-uniform

and free from the polar singularity. Since each component of Yin-Yang is part of the conventional LAT-LON grid, it

is very attractive for GCM modelers. It provides a convenient platform to directly transplant the existing numerical

models developed on the latitude-longitude grid. Being an overset grid, Yin-Yang grid needs to communicate data

in the overlapping area between Yin and Yang components which does not automatically guarantee the total mass

conservation over the sphere, though conservative schemes are adopted within two component grids. A transport

model was proposed in [6] to assure the global conservation on Yin-Yang grid by adjusting the flux computation for

the cells in the overlapping area based on a piecewise constant reconstruction. The scheme adopted in [7] for high

order mass integration over spherical polygons might be a potential choice for higher order implementations.

We have shown in our previous work [8] that numerical errors, including those in in mass conservation, can

be remarkably reduced by implementing high order local reconstructions using multi-moments. In this paper, we

concentrate on developing a fourth order accurate atmospheric transport model for the Yin-Yang grid by using high

order MCV scheme. The numerical results show that the resulting model assures adequate accuracy for medium range

weather prediction or short range climate simulation.

Multi moment constrained finite volume (MCV) scheme was proposed in [9]. This scheme introduced a novel

numerical framework for developing the arbitrary high order schemes. Instead of using multi moments as model

variables directly, degrees of freedom (DOFs) for high order reconstruction are locally defined as point-wise values

at specified points within each cell. Multi moments (constraints) including volume-integrated average (VIA), point

values (PVs) and derivatives of different orders (DVs) are adopted to provide the spatial discretization formulations for

local DOFs. Third to sixth order MCV schemes for system of conservation laws have been constructed on Cartesian

grid in [9]. The MCV schemes are computational efficient due to concise evolution equations for different moments.

Furthermore, MCV schemes allows larger CFL stability conditions compared with discontinuous Galerkin schemes

and spectral volume/difference schemes of same order. As we know, smooth but considerably complex structures are

main characteristic of geophysical flows. To accurately simulate such phenomena, high order scheme are preferred.

We have developed a global shallow water model based on Yin-Yang grid in [8] using conservative semi-Lagrangian

scheme. Though semi-Lagrangian schemes are wildly used in GCMs, it is not easy to treat the integration of source

terms along the trajectory with uniform high order accuracy. For general systems of conservation laws, we prefer to

adopt the high order schemes developed under Eulerian framework. In this paper, we develop a global transport model

by extending the fourth order MCV scheme to spherical geometry with the application to Yin-Yang grid.

The remaining part of this paper is organized as follows. We describe the fourth order MCV formulations for

solving transport equation on Yin-yang grid in section 2. Section 3 includes the numerical results of wildly used

benchmark tests by proposed model and the comparisons with other representative global transport models for verifi-

cation. At last, a short conclusion is given in section 4.

2. Spherical transport model on the Yin-Yang grid

2.1. Yin-Yang overset grid
The Yin-Yang overset grid consists of two components. Each one is nothing but the lower latitude part of the

conventional LAT-LON grid. As a result, the grid spacing of the Yin-Yang grid is quite uniform. To cover the whole
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Figure 1: Schematic diagram of the Yin-Yang grid (left), which consists of two notched LAT-LON grids, i.e. Yang grid (middle) and Yin grid

(right), perpendicularly oriented to each other. Each component grid covers a domain of longitudinal 270 degrees and latitudinal 90 degrees.

global, the computational domain (Yin- or Yang grid) is at least defined to be from 45◦S to 45◦N in latitudinal direction

and from 45◦E to 315◦E in longitudinal direction. Two components of Yin-Yang grid are normal to each other, the

transformation laws between Yin coordinate (λ′, ϕ′) and Yang coordinate (λ, ϕ) is easily written as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cosϕ cos λ = − cosϕ′ cos λ′
cosϕ sin λ = sinϕ′
sinϕ = cosϕ′ sin λ′

. (1)

Bearing in mind that the Yin and Yang components are identical, the same numerical formulations can be indepen-

dently used on Yin or Yang component if the enough ghost cells are interpolated from the adjacent component. The

locations of ghost cells are calculated and stored at the beginning of the computation. MCV scheme is constructed

based on single-cell reconstructions. As a result, only one-layer ghost cells are required to exchange the information

over Yin and Yang components. Using local high-order reconstructions, interpolation stencil used for evaluating the

ghost cell is within one computational element. Such compact stencil is useful not only for improving computational

efficiency, but also suppressing the extra numerical errors generated by nonconforming connections between Yin and

Yang components. For sake of brevity, we specify our discussions in the following sections only to the Yang grid.

2.2. Fourth order MCV transport model on Yin-Yang grid
In this subsection, we describe the numerical formulations of fourth order MCV model for global transport com-

putation on Yin-Yang grid.

Two dimensional spherical transport equation is written on the LAT-LON grid in conservative form as

∂tψ + ∂λe + ∂ϕ f = 0, (2)

where ψ =
√

Gφ, φ is the transported field,
√

G = a2 cosϕ is the Jacobian of transformation, a is the Earth radius, λ and

ϕ denote the longitude and latitude direction on sphere, flux vector f = (e, f ) = (ψũ, ψṽ), and ṽ = (ũ, ṽ) = ( u
a cosϕ

, v
a ) is

the angular velocity on LAT-LON grid.

Third order spatial reconstruction over each control volume is required to construct fourth order MCV model. As

a result, 16 local DOFs should be defined within each control volume for single-cell reconstruction. As shown in

computational space in Fig.2, 16 local DOFs (φi jmn where the local DOF indices m (1 to 4) and n (1 to 4) indicate

the positions within the control volume of the indices i j ) are equidistantly arranged in logical rectangular control

volume Ci j. The discretization formulations for these local DOFs through constraint conditions provided by multi

moments were developed in [9] as so-called multi-moment finite volume (MCV) scheme. We hereafter describe the

implementation of fourth order MCV scheme for global transport computation on Yin-Yang overset grid.

To construct a high order model, derivatives of flux vectors (second and third terms of Eq. (2)) are firstly computed

through MCV scheme to obtain the semi-discrete equations. Then the time integration is accomplished by using fourth

order Runge-Kutta scheme.
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Figure 2: The equidistant local DOFs are defined within the control volume Ci j = [λi−1/2, λi+1/2]×[ϕ j−1/2, ϕ j+1/2] where 16 local DOFs are denoted

as the blank circles for the fourth-order MCV model. There are four rows (grid lines) in λ-direction and four columns (grid lines) in ϕ-direction

within the control volume, respectively.

On structured grid, MCV scheme are efficiently implemented by using one dimensional formulations in different

directions one by one along grid lines. Without losing generality, we consider the determination of the derivative of

flux component e with respect to λ. Similar procedure by exchanging e with f and λ with ϕ can be used along grid

lines in ϕ-direction.

Considering the local DOFs defined along nth (n=1 to 4) row within control volume Ci j (Fig.2), we describe the

numerical procedure to calculate the derivative of flux e with respect to λ. To build an even order MCV scheme,

constraints are defined both at cell’s interfaces and inside the cell. For fourth order scheme, constraints are adopted as

• Point values of flux component e at two endpoints of control volume, i.e. ei j1n and ei j4n, which are used in the

flux-form formulation for the Line-Integrated Average (LIA) moment over the line segment in λ direction;

• First order derivative values of flux component e at two ends of control volume, i.e. (∂λe)i j1n and (∂λe)i j4n,

which are used to update the Point Value (PV) moment;

• Second order derivative value of flux component e at the center of control volume, i.e.
(
∂2
λe
)

i jCn
, which provides

another constraint in terms of the Derivative (DV) moment.

The following relationship connects the constraints and the point-wise derivatives of the flux components e with

respect to λ at specified points from Pi j1n to Pi j4n which are directly then to update the unknowns,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(∂λe)i j1n
(∂λe)i j2n
(∂λe)i j3n
(∂λe)i j4n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ei j1n

ei j4n
(∂λe)i j1n
(∂λe)i j4n(
∂2
λe
)

i jCn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1 0 0

− 4
3Δλ

4
3Δλ

− 4
27
− 5

27
− 4Δλ

27− 4
3Δλ

4
3Δλ

− 4
27
− 5

27
4Δλ
27

0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4)

The discretization formulations for different constraints (moments) are derived by the following steps.

• One dimensional cubic Lagrangian interpolation function is constructed for advected field ψ using the point

values at points Pi j1n to Pi j4n as

Ψ (λ)i jn =

4∑
m=1

(
Pmψi jmn

)
, (5)
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where basis function is

Pm =

4∏
p=1,p�m

(
λ − λp

)
(
λm − λp

) . (6)

• Numerical fluxes at cell interfaces are determined directly from the point values of the transported field as

ei j1n = ũi j1nψi j1n and ei j4n = ũi j4nψi j4n. (7)

• Derivatives of flux is determined by solving general Riemann problem (GPR), also known as the derivative

Riemann Problem (DRP), at cell interfaces. For example, at left interface of cell Ci j, it is computed as

(∂λe)i j1n =
1

2

[
(∂λEl)i j1n + (∂λEr)i j1n

]
+

∣∣∣ũi j1n

∣∣∣
2

[
(∂λΨl)i j1n − (∂λΨr)i j1n

]
, (8)

where E and Ψ are the spatial reconstructions of flux component e and variable ψ =
√

Gφ, subscript l denotes

nth row of control volume Ci−1 j and r denotes the nth row of Ci j.

• The second order derivative of flux component e with respect to λ is computed by following procedure:

(1) A fourth-order reconstruction polynomial E for flux component e along the nth row of control volume Ci j is

obtained with the constraints as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
(
λi− 1

2

)
= ei j1n

E
(
λi+ 1

2

)
= ei j4n

∂λE
(
λi− 1

2

)
= (∂λe)i j1n ,

∂λE
(
λi+ 1

2

)
= (∂λe)i j4n

E (λi) = E (λi)

(9)

(2) Then the second order derivative of flux component e with respect to λ at cell’s center is computed as

(∂λλe)i jCn = ∂
2
λE (λi) . (10)

After accomplishing the spatial discretization, the ordinary differential equation

∂tψi jmn = L (ψ) (11)

is solved by fourth order Runge-Kutta scheme from step k to step k + 1 as

ψ(1)
i jmn = ψ

k
i jmn +

1

2
ΔtL(ψk

i jmn)

ψ(2)
i jmn = ψ

k
i jmn +

1

2
ΔtL(ψ(1)

i jmn) (12)

ψ(3)
i jmn = ψ

k
i jmn + ΔtL(ψ(2)

i jmn)

ψn+1
i jmn = −

1

3
ψk

i jmn +
1

3
ψ(1)

i jmn +
2

3
ψ(2)

i jmn +
1

3
ψ(3)

i jmn.

3. Numerical tests

In this section, we present three widely used numerical examples for global transport to evaluate the numerical

scheme. The convergence rate of the numerical scheme is examined by grid refinement tests for the spherical advec-

tion transport problem. The solid body transport test for advection equation proposed by [10] and another recently

suggested moving-vortex test is utilized to examine the performance of the numerical scheme for practical applica-

tions. Normalized error measures l1, l2 and l∞ on the Yin-Yang grid in details are defined in [8].
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3.1. Accuracy test

A smooth initial distribution is specified for accuracy test as

φ(λ, ϕ, 0) = cosϕ2 sin 2λ. (13)

Solid rotations in different directions are tested with the velocity field as

{
u = u0(cosϕ cosα + sinϕ cos λ sinα)

v = −u0 sin λ sinϕ
, (14)

where the parameter α is the angle between the axis of the solid body rotation and the polar axis of the spherical

coordinate system, and u0 = 2πa/(12days)

Normalized errors by present model on a series refining grids are given in Table 1, Table 2 and Table 3 for solid

rotations in different directions. According to these results, the fourth order accuracy of present model are verified as

expected.

Table 1: Convergence rate of solid rotation in east direction (α = 0) on Yin-Yang grid.

Resolution l1 l2 l∞
(step) error order error order error order

11.25◦ (480) 3.69e-4 - 3.69e-4 - 4.15e-4 -

5.625◦ (960) 2.14e-5 4.11 2.10e-5 4.14 2.15e-5 4.27

2.8125◦(1920) 1.26e-6 4.09 1.24e-6 4.08 1.54e-6 3.80

Table 2: Same as Table 1, but in northeast direction (α = π
4 ).

Resolution l1 l2 l∞
(step) error order error order error order

11.25◦ (480) 4.97e-4 - 5.11e-4 - 7.71e-4 -

5.625◦ (960) 3.14e-5 3.98 3.21e-5 3.99 3.94e-5 4.29

2.8125◦(1920) 1.94e-6 4.02 1.97e-6 4.03 2.42e-6 4.03

Table 3: Same as Table 1, but in north direction (α = π
2 ).

Resolution l1 l2 l∞
(step) error order error order error order

11.25◦ (480) 8.94e-4 - 1.02e-3 - 1.24e-3 -

5.625◦ (960) 5.10e-5 4.13 5.39e-5 4.24 5.71e-5 4.44

2.8125◦(1920) 2.94e-6 4.12 3.05e-6 4.14 3.29e-6 4.12

3.2. Cosine bell advection

Advection of a cosine bell, as the first test of Williamson’s benchmark test set [10], is wildly checked to evaluate

global models. The cosine bell is initially specified as

φ(λ, ϕ) =

{
0.5[1 + cos(πr/R)] if r < R = a/3
0 otherwise

(15)

where r = a arccos
[
sinϕ0 sinϕ + cosϕ0 cosϕ cos (λ − λ0)

]
, and the center of the distribution is λ0 = π/2 and ϕ0 = 0.

The driving wind field is the same as the accuracy test case. Grid spacing is 4◦ in this case study, which corresponds

to a grid resolution of 4
3

◦
in terms of DOFs.
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Fig.3 shows that the cosine bell returns to its initial position after one revolution (12 days). The numerical contour

lines (dashed lines) are visually identical to the analytic solution (solid lines). The history of normalized errors are

shown in Fig.4 where the fluctuation in the normalized errors is observed when the cosine bell moves across the

overlapping region of the Yin-Yang grid. Table 4 indicates the normalized errors after one revolution of rotation. It is

noted that the normalized errors along the polar direction are larger than the others in Table 4 because in this case the

advection path has more overlapping regions.

Compared with other models developed on LAT-LON grid (SLICE [11]), our result is competitive along the polar

direction. Althrough the smaller CFL number is used against the SLICE scheme, the present model is easy to treat

the source terms with uniform high order accuracy and the polar problems are avoided by utilizing the quasi-uniform

Yin-Yang grid.

Numerical results of fourth order MCV model are better than those results of third order conservative semi-

Lagrangian model [8] with an equivalent spatial resolution, for example, the numerical tests under the 1.40625◦
resolution in [8]. In addition, those are obviously better than [12] with their resolution of 1◦ on the Yin-Yang grid.

The simulation results on the Yin-Yang grid are also competitive to other multi-moment fourth order global models

on the icosahedral grid [13] and on the cubed sphere [14] using similar degree of freedoms.

Figure 3: Numerical and exact solutions of cosine bell advection test at day 12 for different rotation directions with α = 0(upper-left), α = π
4 (upper-

right) and α = π
2 (bottom) on the grid with resolution of 4

3

◦
. The solid line shows numerical result and dashed line shows exact solution. The

contour interval is 0.2 from 0.1 to 0.9.
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Figure 4: Normalized errors of solid-body test case with α = 0(left), α = π
4 (middle) and α = π

2 (right) on the grid with DOFs resolution of 4
3

◦
.

Table 4: Numerical results of cosine-bell advection test in different directions on Yin-Yang grid.

Direction (α) l1 l2 l∞
0 1.63e-2 1.17e-2 1.19e-2
π
4

1.68e-2 1.05e-2 7.54e-3
π
2

1.92e-2 1.31e-2 1.24e-2
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3.3. Moving vortices

A more practical and challenging advection test is introduced in [15]. A complex velocity field is generated by

superposing two vortical deformational flow fields whose vortex centers move along the trajectory of the solid rotation

flow specified by Eq. (14). Detailed configuration of this test can be found in [15].

We run this test on grid with a resolution equivalent to 2.5◦ in terms of DOFs. Rotations of the vortex centers

in three different directions, corresponding to α = 0, α = π
4

and α = π
2
, have been carried out. The time evolution

of normalized errors along three different direction are depicted in Fig.5. It is observed that the errors are hardly

influenced by the rotation direction.

As shown in [15], three methods including discontinuous Galerkin (DG) method, semi-Lagrangian method and

finite volume (FV) methed are implemented for evaluating their performance in this moving vortex test . Compared

with semi-Lagrangian method (see their Fig.5 for normalized errors), the normalized errors of the MCV scheme

are obviously better in the case of the equivalent resolution with respect to the conventional LAT-LON sphere. The

present model gives smaller errors in comparison with FV solution on the grid with same resolution (see their Fig.

7 for normalized errors). Although the DG method shows a little smaller normalized errors under the equivalent

resolution, the MCV scheme allows larger CFL number for computational stability in the same order (see table 1

in [9] ) and has a competitive computational efficiency since there is not any time-consuming volume integration

involved. Contour plots of transport field φ and absolute errors are given in Fig.6 at different days. The location of

moving vortex centers and phase of front of deforming vortices are accurately captured.
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Figure 5: Normalized errors of moving vortex test case with α = 0(left), α = π
4 (middle) and α = π

2 (right) on the grid with DOFs resolution of

2.5◦ × 2.5◦.

4. Conclusion

A fourth order transport model on the spherical Yin-Yang grid is presented by using the multi-moment constrained

finite volume (MCV) scheme. The MCV method uses local DOFs defined within single element at equally spaced

points as the model variables. The evolution formulations for local DOFs are derived by adopting multi moments as

constraint conditions, including volume integrated average (VIA), point value (PV) and spatial derivative value (DV)

in our transport model. In the present model, the polar singularity and the convergence of meridians in the polar

regions of conventional LAT-LON gird is completely avoided through utilizing the quasi-uniform Yin-Yang grid. The

MCV scheme allows less restrictive CFL stability conditions in comparison with discontinuous Galerkin schemes and

spectral volume schemes of same order. The widely used benchmark tests show that the present model has competitive

high-order numerical accuracy and computational efficiency compared to most existing models.
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(a) Day 3 (b) Day 6

(c) Day 9 (d) Day 12

(e) the difference at Day 6 (f) the difference at Day 12

Figure 6: Numerical solution of the moving vortices with α = π
4 at days 3, 6, 9, and 12 (after one full revolution) ( (a)-(d)). The difference of

numerical and exact solution at day 6, 12 ( (e),(f) ) and the contours are from −0.03 to 0.03 with 0.01 interval and from −0.12 to 0.12 with 0.04

interval, respectively. All snapshots are at the DOF resolution of 2.5◦ × 2.5◦.



1013  Xingliang Li et al.  /  Procedia Computer Science   9  ( 2012 )  1004 – 1013 

[5] M. Rancic, R. J. Purser, F. Mesinger, A global shallow-water model using an expanded spherical cube: gnomonic versus conformal coordi-

nates, Q. J. R. Meteorol. Soc. 122 (532) (1996) 959–982.

[6] X. D. Peng, F. Xiao, K. Takahashi, Conservative constraint for a quasi-uniform overset grid on the sphere, Q. J. R. Meteorol. Soc. 132 (2006)

979–999.

[7] P. H. Lauritzen, R. D. Nair, P. A. Ullrich, A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid,

J. Comput. Phys. 229 (2010) 1401–1424.

[8] X. Li, D. Chen, X. Peng, K. Takahashi, F. Xiao, A multimoment finite-volume shallow-water model on the yin–yang overset spherical grid,

Mon. Wea. Rev. 136 (8) (2008) 3066–3086.

[9] S. Ii, F. Xiao, High order multi-moment constrained finite volume High order multi-moment constrained finite volume method. Part I: Basic

formulation, J. Comput. Phys. 228 (2009) 3668–3707.

[10] D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob, P. N. Swarztrauber, A standard test set for numerical approximations to the shallow water

equations in spherical geometry, J. Comput. Phys. 102 (1) (1992) 211–224.

[11] M. Zerroukat, N. Wood, A. Staniforth, SLICE-S: A Semi-Lagrangian Inherently Conserving and Efficient scheme for transport problems on

the Sphere, Q. J. R. Meteorol. Soc. 130 (2004) 2649–2664.

[12] Y. Baba, K. Takahashi, T. Sugimura, K. Goto, Dynamical core of an atmospheric general circulation model on a yin-yang grid, Mon. Wea.

Rev. 138 (2010) 3988–4005.

[13] S. Ii, F. Xiao, Gloabl shallow water model using high order multi-moment constrained finite volume mehod and icosahedral grid, J. Comput.

Phys. 229 (2010) 1774–1796.

[14] C. G. Chen, F. Xiao, Shallow water model on cubed-sphere by multi-moment finit volume scheme, J. Comput. Phys. 227 (2008) 5019?044.

[15] R. D. Nair, C. Jablonowski, Moving vortices on the sphere: a test case for horizontal advection problems, Mon. Wea. Rev. 136 (2008)

699–711.


